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Prostate cancer is still the main male health problem in the world. The role of metabolism in
the occurrence and development of prostate cancer is becoming more and more obvious,
but it is not clear. Here we firstly identified a metabolism-related gene-based subgroup in
prostate cancer. We used metabolism-related genes to divide prostate cancer patients
from The Cancer Genome Atlas into different clinical benefit populations, which was
verified in the International Cancer Genome Consortium. After that, we analyzed the
metabolic and immunological mechanisms of clinical beneficiaries from the aspects of
functional analysis of differentially expressed genes, gene set variation analysis, tumor
purity, tumor microenvironment, copy number variations, single-nucleotide
polymorphism, and tumor-specific neoantigens. We identified 56 significant genes for
non-negative matrix factorization after survival-related univariate regression analysis and
identified three subgroups. Patients in subgroup 2 had better overall survival, disease-free
interval, progression-free interval, and disease-specific survival. Functional analysis
indicated that differentially expressed genes in subgroup 2 were enriched in the
xenobiotic metabolic process and regulation of cell development. Moreover, the
metabolism and tumor purity of subgroup 2 were higher than those of subgroup 1 and
subgroup 3, whereas the composition of immune cells of subgroup 2 was lower than that
of subgroup 1 and subgroup 3. The expression of major immune genes, such as CCL2,
CD274, CD276, CD4, CTLA4, CXCR4, IL1A, IL6, LAG3, TGFB1, TNFRSF4, TNFRSF9,
and PDCD1LG2, in subgroup 2 was almost significantly lower than that in subgroup 1 and
subgroup 3, which is consistent with the results of tumor purity analysis. Finally, we
identified that subgroup 2 had lower copy number variations, single-nucleotide
polymorphism, and neoantigen mutation. Our systematic study established a
metabolism-related gene-based subgroup to predict outcomes of prostate cancer
patients, which may contribute to individual prevention and treatment.

Keywords: prostate cancer, metabolism, immune, non-negative matrix factorization (NMF), The Cancer Genome
Atlas (TCGA), International Cancer Genome Consortium (ICGC)
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INTRODUCTION

Prostate cancer (PCa) is the most common urological cancer
among men in the United States (1). It is reported that in 2021,
there were an estimated 250,000 new cases and 34,000 deaths (2).
The 5-year prevalence of PCa is the highest globally, and its age-
standardized mortality is the sixth highest (1). The clinical
diagnosis of PCa mainly depends on digital rectal examination,
serum prostate-specific antigen, and imaging examination (3).
Usually, prostate biopsy for pathological examination is also
required. Gleason score can help to evaluate the malignancy of
PCa. Although radical prostatectomy has become the main
strategy for resection of localized primary prostate tumors,
more than one in five PCa patients inevitably progress to the
advanced stage with a poor prognosis within 10 years (4, 5). Due
to the high rate of bone metastasis, PCa patients shared an
unfavorable prognosis (6). Other treatment methods, such as
hormone therapy and chemoradiotherapy, are not satisfactory
for the prognosis (7). In addition, PCa has high heterogeneity,
which results in different prognoses of patients after treatment
(8). Therefore, there is a need to deeply understand the potential
mechanism leading to PCa progression and metastasis, and select
specific subtypes to find the population who benefit the most.

The cell proliferation state in tumor progression involves the
corresponding changes of cell metabolism (9), and metabolic
reprogramming is considered to be a basic feature of cancer cells
(9). Metabolism in tumors, such as the Warburg effect and
glutamine metabolism, is significantly different from that in
normal tissues (10, 11). There is increasing evidence that
metabolic abnormalities are associated with poor prognosis of
many tumor types (12). Fortunately, the screening of metabolic
biomarkers can specifically detect abnormal changes in organisms
to prevent malignant diseases with pathophysiological
characteristics (13). The metabolic markers have been well
displayed in a variety of tumors, such as hepatocellular
carcinoma (14), colorectal cancer (15), endometrial cancer (16),
and clear cell renal cell carcinoma (17), but research in PCa is still
relatively scarce. Therefore, it is of great clinical significance to find
a new metabolic marker to predict the prognosis of PCa.

In the present study, we systemically analyzed the profile of
metabolism-related genes from The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium
(ICGC). All patients could be grouped into three subgroups
with different prognoses through non-negative matrix
factorization (NMF) based on TCGA, which was validated in
ICGC. Then we obtained differentially expressed genes (DEGs)
and chronologically conducted functional analysis, gene set
variation analysis (GSVA), and immune-related comprehensive
analysis (Figure S1).
MATERIALS AND METHODS

Acquisition and Processing of Raw Data
We downloaded the RNA-sequence data, clinical information,
survival data, and somatic mutation data of TCGA prostate
adenocarcinoma (PRAD) from UCSC Xena (https://
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xenabrowser.net/datapages/). According to clinical information
corresponding to the sample, we only select these samples whose
primary diagnosis is “adenocarcinoma, NOS” and sample type is
“primary tumor” follow-up analysis. After the expression profile
was reannotated, the expression data of all mRNAs were selected
according to the human genome information contained in the
HUGO Gene Nomenclature Committee (HGNC) database (18),
and a new expression profile was obtained.

Then, we downloaded the gene expression files, sample
information, and clinical information corresponding to PRAD-
CA from the ICGC database, removed the normal samples (only
PRAD samples were included), and sorted out the new
expression profile data according to the HGNC database for
subsequent verification and analysis.

Screening of Metabolism-Related
PRAD Genes
We cross-referenced maps of metabolic pathways with the Kyoto
Encyclopedia of Genes and Genomes database to compile a
comprehensive list of 2,752 genes encoding all known human
metabolic enzymes and transporters (19). After intersecting with
TCGA PRAD mRNA expression profile, we obtained the
metabolism-related genes in PRAD. After that, we removed the
genes with median absolute deviation (MAD) < = 0.5 to obtain
metabolism-related PRAD genes.

NMF and Survival Analysis
We performed survival-related univariate regression analysis on
metabolism-related PRAD genes and selected the significant
genes (P < 0.05) for subsequent NMF analysis. Based on the
expression profile of these significant genes, we performed NMF
analysis through the NMF package (20). Taking the front point
of the maximum change of the cophenetic correlation with K as
the best rank for NMF analysis, TCGA PRAD metabolism-
related subgroups were obtained, and then dimensionality
reduction visualization was carried out by using principal
component analysis (PCA) and the t-distributed stochastic
neighbor embedding (t-SNE) unsupervised clustering
method was used to view the characteristics between different
metabolic subgroups.

Moreover, we applied the expression profile of the same
significant genes in ICGC to conduct NMF analysis using the
same best rank as mentioned above. Then we used the SubMap
module (21) of GenePattern (22) to map the subgroups obtained
from TCGA and ICGC.

After obtaining the results of metabolism-related subgroups
in TCGA and ICGC, we used the survival package (https://
CRAN.R-project.org/package=survival to analyze the survival of
different metabolic subgroups in the two datasets, as described
previously (23), and compared the prognosis of the
corresponding subgroups in the two different datasets.

Identification of DEGs
In order to obtain the possible unique molecular biological
functions of different metabolic subgroups, we analyzed the
differences among three subgroups obtained from TCGA data.
Differential analysis was performed based on the limma
June 2022 | Volume 12 | Article 909066
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package (24), and the screening threshold of DEGs was
|log2

Fold Change| > 1 and adjusted P < 0.01.
Then, we used jveen, a flexible tool, to cross analyze the

results of the three groups of DEGs (25) and obtain the unique
DEGs of each subgroup relative to other subgroups, and then
visualized the corresponding expression of these DEGs with a
cluster heatmap.

Functional Analysis
We used the Metascape database to enrich and analyze the
unique DEGs of each subgroup (26) to explore the possible
molecular biological functions, as described previously (27).

GSVA
GSVA is a non-parametric and unsupervised gene set enrichment
method that can estimate the score of a certain pathwayor signature
based on transcriptomic data (28). Similarly, we employed 2,752
metabolism-related genes from the previous study (19) to conduct
GSVA using the gsva package (28). Then we got the score of each
sample under 113 metabolic items and then conducted ANOVA
amongmultiple subtypes basedon themetabolic score. P < 0.01was
considered significant. For the significant metabolic items, we
further conducted a Tukey posttest to judge the differences
among different subgroups under the corresponding items. For
eachmetabolic item,we selected themetabolic itemswith |diff| > 0.2
andadjustedP<0.01as the itemswith significantdifferences among
different subgroups.

Tumor Purity Analysis
In the tumor microenvironment, immune cells and stromal cells
are two main types of tumor cells. ESTIMATE uses the
expression profiles to predict the score of stromal cells and
immune cells and then predicts the content of these two cells
(29). Therefore, the tumor purity in each tumor sample can be
calculated; that is, if there are many stromal cells and immune
cells, the tumor purity is low, and on the contrary, the tumor
purity is high. Here, we analyzed the tumor purity of TCGA
based on the estimate package (https://R-Forge.R-project.org/
projects/estimate, as described previously (30).

Tumor Immune Microenvironment Analysis
CIBERSORT is a method to deconvolute the expression matrix of
human immune cell subtypes based on the principle of linear
support vector regression (31). It is mostly used for gene
expression profiles, and the deconvolution analysis of unknown
mixture and expression profiles containing similar cell types is
better than othermethods. Based onCIBERSORT, we obtained the
composition of 22 immune cells in TCGA and statistically analyzed
the immune microenvironment of different subtypes.

Mutational Cancer Driver and Immune
Gene Analysis
The Integrative OncoGenomics (IntOGen) pipeline is an
implementation to obtain the compendium of mutational
cancer drivers. Its application to somatic mutations of more
than 28,000 tumors of 66 cancer types reveals 568 cancer genes
and points toward their mechanism of tumorigenesis (32). We
Frontiers in Oncology | www.frontiersin.org 3
downloaded the cancer driver genes of PRAD from IntOGen and
analyzed the main tumor driver gene (CGC_ CANCER_ Gene =
TRUE) among subgroups. At the same time, we also analyzed the
expression of major immune genes among subgroups.

CNV, SNP, and Tumor-Specific
Neoantigen Analysis
We downloaded the CNV data of TCGA PRAD from the GDAC
Firehose database (http://gdac.broadinstitute.org/), as described
previously (33), and then used the Gistic (version 2.0) module of
GenePattern to analyze the CNV of each subgroup. Themaftools
package was used for visualization (34).

At the same time, we downloaded the PRAD somatic SNP
results under the varscan processing flow from TCGA. After
calculating the TMB, we used the maftools package (34) to
statistically visualize the top 20 mutant genes and mutational
cancer driver genes.

TSNAdb is a comprehensive tumor-specific neoantigen
database based on pan-cancer immunogenomic analysis of
somatic mutation data and human leukocyte antigen (HLA)
allele information for 16 tumor types with 7,748 tumor samples
from TCGA and The Cancer Immunome Atlas (TCIA) (35). We
downloaded the tumor-specific neoantigens in PRAD and then
analyzed the mutations carried by the tumor-specific
neoantigens in the three subgroups.
RESULTS

Patient Characteristics
Through acquisition and processing of raw data from TCGA and
ICGC, we obtained 485 and 144 samples, respectively. The
patient characteristics are listed in Table 1. After HGNC
validation, we obtained 18,400 and 18,570 mRNAs in TCGA
and ICGC, respectively (Table S1).

Metabolism-Related PRAD Genes
We crossed 2,752 metabolism-related genes with 18,400 genes in
TCGA PRAD to obtain 2,579 metabolism-related genes in PRAD.
After further screening, 2,243 metabolism-related PRAD genes
were left.

NMF Analysis
We identified 56 significant genes for NMF after survival-related
univariate regression analysis (Table S2). From Figure 1A, we
identified three as the best rank for NMF analysis. Then, we
divided 56 significant genes into three subgroups. A heatmap of
the gene clustering method in TCGA showed significant
differences in expression levels (Figure 1B). We also generated
a heatmap to show the characteristic expression of 56 significant
genes in the three subgroups (Figure 1C). The clinical relevance
of the three subgroups is shown in Figure S2. The principal
component analysis unsupervised clustering method indicated
that the samples of different subgroups had significant
characteristics, while subgroups 2 and subgroups 3 had certain
June 2022 | Volume 12 | Article 909066
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TABLE 1 | Characteristics of patients in TCGA and ICGC datasets.

Variable TCGA (N = 485) ICGC (N = 144)

Age (years)
≤60 219 (45%) 59 (41%)
>60 266 (55%) 85 (59%)

Race
Asian 12 (2%) Not applicable
Black or African American 56 (12%) Not applicable
White 404 (83%) Not applicable
Others 13 (3%) Not applicable

Gleason score
6 46 (9%) 29 (20%)
7 245 (51%) 80 (56%)
8 59 (12%) 9 (6%)
9 131 (27%) 2 (1%)
10 4 (1%) Not applicable
Other 0 (0%) 24 (17%)

Prostate-specific antigen (ng/ml)
<4 402 (83%) Not applicable
≥4 26 (5%) Not applicable
No detection 57 (12%) Not applicable

T stage
T1 0 (0%) 83 (58%)
T2 188 (39%) 61 (42%)
T3 280 (58%) 0 (0%)
T4 10 (2%) 0 (0%)
No detection 7 (1%) 0 (0%)

N stage
N0 442 (91%) Not applicable
N1 3 (1%) Not applicable
No detection 40 (8%) Not applicable

M stage
M0 336 (69%) Not applicable
M1 77 (16%) Not applicable
No detection 72 (15%) Not applicable

Tumor status
Tumor free 338 (70%) Not applicable
With tumor 88 (18%) Not applicable
No detection 59 (12%) Not applicable

New event
No 357 (74%) Not applicable
Yes 104 (21%) Not applicable
No detection 24 (5%) Not applicable

Radiation therapy
No 383 (79%) Not applicable
Yes 59 (12%) Not applicable
No detection 43 (9%) Not applicable

Primary therapy outcome
Complete response 331 (68%) Not applicable
Progressive disease 26 (5%) Not applicable
Partial response 40 (8%) Not applicable
Stable disease 29 (6%) Not applicable
Other 59 (12%) Not applicable

Residual tumor
R0 206 (42%) Not applicable
R1 144 (30%) Not applicable
R2 5 (1%) Not applicable
No detection 130 (27%) Not applicable

Zone of origin
Central zone 4 (1%) Not applicable
Overlapping/multiple zones 124 (26%) Not applicable
Peripheral zone 134 (28%) Not applicable
Transition zone 7 (1%) Not applicable
No detection 216 (45%) Not applicable
Frontiers in Oncology | www.frontiersin.org 4
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similarities (Figure 1D). The same results were obtained by t-
distributed stochastic neighbor embedding (t-SNE) (Figure 1E).

Then, we used the data from ICGC to verify these three
subgroups in TCGA; we also used three as the rank for NMF
analysis of the expression profile of 56 significant genes in ICGC to
obtain three subgroups, and the internal consistency of the three
subgroups was also good (Figure 1F). Figure 1G shows the
characteristic expression of 56 significant genes in the three
subgroups in ICGC. Through mapping the three subgroups from
TCGA and ICGC, we confirmed their corresponding relationships
(Figure 1H). Detailly, TCGA subgroup 3 corresponded to ICGC
subgroup 2, TCGA subgroup 1 corresponded to ICGC subgroup 3,
and TCGA subgroup 2 corresponded to ICGC subgroup 1
(Figure 1H). Importantly, the corresponding relationships were
Frontiers in Oncology | www.frontiersin.org 5
consistent with the characteristic expression of 56 significant genes
in the subgroups (Figures 1C, G), indicating that our submap
matching analysis results of subgroups in the two datasets
were good.

Survival Analysis
Then, we performed survival analysis under subgroups in both
TCGA and ICGC to explore the prognosis. According to TCGA
data, the three subgroupshad statistically significantoverall survival
differences (P = 0.0017, Figure 2A), and we can observe that the
overall survival of subgroup 1 was the worst, subgroup 2 was the
second, subgroup 3 has a better overall survival, and the overall
survival of subgroup 2 and subgroup 3 was the same. Moreover,
patients in subgroup 1 shared an unfavorable disease-free interval
A B

D E

F G H

C

FIGURE 1 | NMF analysis in the TCGA and ICGC datasets. (A) Identification of rank. (B) Heatmap of gene clustering of three subgroups in TCGA. (C) Heatmap of
characteristic expression of three subgroups in TCGA. (D) Principal component analysis in TCGA. (E) T-distributed stochastic neighbor embedding in TCGA.
(F) Heatmap of gene clustering of three subgroups in ICGC. (G) Heatmap of characteristic expression of three subgroups in ICGC. (H) Map of three subgroups in
TCGA and ICGC assessed by the SubMap module of GenePattern.
June 2022 | Volume 12 | Article 909066
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(P = 0.035, Figure 2B), progression-free interval (P = 0.0059,
Figure 2C), and disease-specific survival (P = 0.004, Figure 2D).
In ICGC, the overall survival of subgroup 3was theworst, subgroup
1was the second, subgroup2was the best, and theoverall survival of
subgroup 1 and subgroup 2was the same (Figure 2E). These results
were consistent with the results of subgroup matching of the two
datasets (Figure 1H).

Functional Analysis of DEGs
Through multi-subgroup DEG screening, we obtained 88 DEGs in
subgroup 1, 15 DEGs in subgroup 2, and 166 DEGs in subgroup 3
(Figure 3A). Moreover, we found that most of the DEGs in
Frontiers in Oncology | www.frontiersin.org 6
subgroup 1 and subgroup 3 were significantly up-regulated,
whereas most of the DEGs in subgroup 2 were down-regulated
(Figure 3B). Later functional analysis indicated that these DEGs in
the three subgroups were enriched with some metabolism-related
biological processes and pathways (Figures 3C–E).

GSVA
Through preliminary screening, we obtained 15 significant
metabolic items (Figure 4A). Among them, for most metabolic
pathways, the metabolism of subgroup 2 was higher than that of
subgroup 1 and subgroup 3. Detailly, cyclooxygenase arachidonic
acid metabolism and ascorbate and aldrate metabolism were the
A B

D

E

C

FIGURE 2 | Survival analysis in the TCGA and ICGC datasets. (A) OS in TCGA. (B) DFI in TCGA. (C) PFI in TCGA. (D) DFS in TCGA. (E) OS in ICGC.
June 2022 | Volume 12 | Article 909066
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highest in subgroup 1, whereas prostanoid biosynthesis; propanote
metabolism; valine, leucine, and isoleucine degradation; beta-
alanine metabolism; glycosphingolipid biosynthesis; other glycan
degradation; and caffeine metabolism were the lowest in subgroup
1 (Figure 4B).
Tumor Purity and Immune
Microenvironment Analysis
The results indicated that the tumor purity of subgroup 2 was
significantly higher than that of subgroup 1 and subgroup 3, and
the composition of immune cells of subgroup 2 was lower than
that of subgroup 1 and subgroup 3 (Figures 5A, B).
Frontiers in Oncology | www.frontiersin.org 7
Through CIBERSORT, we found that the main immune cell
type is T cells CD4 memory resetting, followed by macrophage
M2, plasma cells, and B cells naïve in TCGA (Figure 5C). T cells
CD4 memory resting, which were the main components of
PRAD, were significantly lower than subgroup 1 and subgroup
3 (Figure 5D), which was consistent with tumor purity.
However, in subgroup 2, there were significantly more plasma
cells than in subgroup 1 and subgroup 3 (Figure 5D).

Mutational Cancer Driver and Immune
Gene Analysis
From IntOGen, we obtained 11 mutational cancer driver genes
in PRAD. Among these genes, CDKN2A was down-regulated in
A B

D

E

C

FIGURE 3 | Functional analysis of DEGs in three subgroups. (A) Venn diagram of DEGs in three subgroups. (B) Heatmap of DEGs in three subgroups.
(C) Functional analysis of DEGs in subgroup 1. (D) Functional analysis of DEGs in subgroup 2. (E) Functional analysis of DEGs in subgroup 3.
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subgroup 1, BRCA2 was down-regulated in subgroup 2, and
BNF43 was up-regulated in subgroup 2 (Figure S3A). Moreover,
we demonstrated that the expression of major immune genes,
such as CCL2, CD274, CD276, CD4, CTLA4, CXCR4, IL1A, IL6,
LAG3, TGFB1, TNFRSF4, TNFRSF9, and PDCD1LG2, in
subgroup 2 was almost significantly lower than that in
subgroup 1 and subgroup 3 (Figure S3B), which is consistent
with the results of tumor purity analysis.

CNV, SNP, and Tumor-Specific
Neoantigen Analysis
Each area of CNV is assigned a G-score that considers the
amplitude of the alteration as well as the frequency of its
Frontiers in Oncology | www.frontiersin.org 8
occurrence across samples (36). Subgroup 1 had amplifications
of 8q24.21, subgroup 2 had amplifications of 13q33.3, 3q26.2, and
8q22.1, and subgroup 3 had amplifications of 13q12.11, 8p12, and
8q22.3 (Figure 6A and Table S3). Interestingly, all subgroups had
deletions of 10q23.31, 3p13, 5q11.2, 5q21.1, 6q14.3, 13q14.13,
17p13.1, and 21q22.3 (Figure 6A and Table S3). In addition,
subgroup 1 had the highest copy number amplification
(Figure 6B) and copy number deletion (Figure 6C). Moreover,
the tumor-specific neoantigens of subgroup 1 carried more
mutations than subgroup 2 and subgroup 3 (Figure 6D).

Through SNP analysis, missense mutation was the most
frequent variant classification and C>T was the most frequent
single-nucleotide variant (Figure 7A). From the oncoplots of top
A

B

FIGURE 4 | GSVA in TCGA dataset. (A) Heatmap of 15 significant metabolic items in three subgroups. (B) Box diagrams of 15 significant metabolic items in three
subgroups. ANOVA test was performed among groups, and t-test was performed between the two groups.
June 2022 | Volume 12 | Article 909066
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20 mutant genes (Figure 7B) and mutational cancer driver genes
(Figure 7C), we found that TP53, FAT3, LRP1B, ATM, KMT2C,
and KMT2D from mutant genes were also recognized as cancer
driver genes.
DISCUSSION

In recent years, the heterogeneity of PCa has been an
important topic of research (37). Exploring new tumor
subtypes, especially combined metabolism, is an effective way
to study their heterogeneity and thus provides insights for
Frontiers in Oncology | www.frontiersin.org 9
clinicians to conduct more accurate clinical evaluation.
Bioinformatics analysis based on database has increasingly
shown its superiority and clinical applicability (23, 38). Here,
we used metabolism-related genes to conduct consensus
clustering among large-scale PCa patients and finally
identified three PCa subgroups. These subgroups were
validated by an external clinical patient cohort from ICGC.
We conducted GSVA to enrich pathways. ESTIMATE and
CIBERSORT algorithms were used to conduct an integrative
analysis of immune scores and immune cells in the different
subgroups. Finally, cancer driver genes, CNV, SNP, and
tumor-specific neoantigens were analyzed. Our results
A

B

D

C

FIGURE 5 | Tumor purity and immune microenvironment analysis in TCGA dataset. (A) Heatmap of tumor purity analysis in three subgroups. (B) Box diagrams
tumor purity analysis in three subgroups. (C) Composition of 22 immune cells in TCGA. (D) Immune cell types with significant differences among subgroups. ANOVA
test was performed among groups, and t-test was performed between the two groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and ns P ≥ 0.05.
June 2022 | Volume 12 | Article 909066
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from this study might reveal the molecular mechanism of
metabolism-induced PCa.

Through survival analysis, we found that the prognosis of
patients in subgroup 1 was significantly worse than that of the
other two subgroups in TCGA, and there was no significant
difference in prognosis among other two subgroups. Moreover,
the prognosis of patients in subgroup 3 (corresponded to TCGA
subgroup 1) was significantly worse than that of the other two
subgroups in ICGC and there was no significant difference in
prognosis among other two subgroups. Principal component
analysis (PCA) and t-distributed stochastic neighbor embedding
(t-SNE) showed a clear boundary between these subgroups in
both TCGA and ICGC.

Steroidogenic enzymes are essential for PCa development
(39). 17bHSD2 decreased potent androgen production by
converting testosterone or dihydrotestosterone to each of their
upstream precursors (40), which might provide new strategies
for clinical management. On the other hand, chemokine
signaling regulates tumor metastasis (41). CXCL12, a member
of the chemokine family, and its receptor, CXCR4, are key
mediators of PCa bone metastasis (42). What is more, the
tyrosine 190 and 211 phosphorylation of proliferation cell
nuclear antigen is a frequent event in advanced prostate cancer
(43, 44). Strikingly, we found that steroid hormone biosynthesis,
regulation of chemokine production, and peptidyl-tyrosine
phosphorylation were enriched in subgroup 1 in TCGA.
Cyclooxygenase is a rate-limiting enzyme involved in the
cyclooxygenase metabolic pathway of arachidonic acid, which
can catalyze the conversion of arachidonic acid to prostaglandins
(45). A systematic review indicated that an 8.75-month increase
Frontiers in Oncology | www.frontiersin.org 10
in progression-free survival and an improved trend in overall
survival in the cancers received ascorbate (46). Interestingly, our
study identified that cyclooxygenase arachidonic acid
metabolism and ascorbate and aldrate metabolism were the
highest in subgroup 1. Altogether, our results explain the poor
prognosis of this particular population.

Patients in subgroup 1 had the highest tumor purity,
causing worse prognosis. We also found that T cells CD4
memory resetting, macrophages M2, macrophages M1, B cells
naïve, and NK cells resetting infiltrated significantly more in
subgroup 1. Previous data showed that PRAD patients with
high numbers of M2 macrophages in the tumor environment
had increased odds of dying (47). These cells could promote
PCa progression by promoting immunosuppressive responses
(48, 49). Through CNV analysis, we found that 8q24.21,
strongly associated with risk of tumors (50, 51), was
amplificated in subgroup 1. Some long non-coding RNAs,
such as CCAT1 (52, 53), PVT1 (54), PRNCR1 (55), and
PCAT1 (56), in 8q24.21 have an influence in oncogenesis of
PCa. The tumor-specific neoantigens might contribute to the
immunogenic phenotype (57). In prostate cancer, inactivating
CDK12 mutations produces tumor-specific neoantigens and
possibly sensitivity to immunotherapy (58). Vaccines that
target tumor-specific neoantigens have the potential to
induce robust antitumor responses (59). Sipuleucel-T, a
neoantigen vaccine, prolonged overall survival among men
with metastatic castration-resistant prostate cancer (60). In the
present study, we confirmed more mutations of tumor-specific
neoantigens in subgroup 1, which may be one of the reasons
for the poor prognosis.
A

B DC

FIGURE 6 | CNV and tumor-specific neoantigens analysis in TCGA dataset. (A) G-scores of three subgroups. (B) Copy number amplification of three subgroups.
(C) Copy number deletion of three subgroups. (D) Tumor-specific neoantigens of three subgroups.
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There are some limitations in this study. First, the available
public datasets in our study were from TCGA and ICGC, two
independent data platforms. Although the results can be well
verified, there is inevitable selection bias. We will further validate
our results in the inpatients at our hospitals. Second, limited by
the survival data in ICGC, we could not conduct multiple
survival analyses like TCGA; we can only do OS analysis.
Moreover, although we used different datasets as the training
cohort and validation cohort respectively, the sample size of
each cohort is still small, and large-sample data are needed to
verify our findings. Finally, more solid experimental studies are
Frontiers in Oncology | www.frontiersin.org 11
needed to verify DEGs and their immune and molecular
biological mechanism.
CONCLUSION

Collectively, the metabolic mechanism of PCa was systematically
explored, providing associations with mutational burden and
immune infiltrations. PCa-related signatures prove to have
advantages in predicting prognosis and can be used as a good
molecular classifier to find different metabolic types. The relevant
A

B

C

FIGURE 7 | SNP analysis in TCGA dataset. (A) Variant classification, variant type, and SNV class. (B) Oncoplot of top 20 mutant genes. (C) Oncoplot of mutational
cancer driver genes.
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findings will need further basic experiments and even clinical
trials to be corroborated in the future before they can be further
applied in clinical practice.
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32. Martıńez-Jiménez F, Muiños F, Sentıś I, Deu-Pons J, Reyes-Salazar I, Arnedo-
Pac C, et al. A Compendium of Mutational Cancer Driver Genes. Nat Rev
Cancer (2020) 20(10):555–72. doi: 10.1038/s41568-020-0290-x

33. Feng J, Jiang L, Li S, Tang J, Wen L. Multi-Omics Data Fusion Via a Joint
Kernel Learning Model for Cancer Subtype Discovery and Essential Gene
Identification. Front Genet (2021) 12:647141. doi: 10.3389/fgene.2021.647141

34. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: Efficient
and Comprehensive Analysis of Somatic Variants in Cancer. Genome Res
(2018) 28(11):1747–56. doi: 10.1101/gr.239244.118

35. Wu J, ZhaoW, ZhouB, Su Z,GuX,ZhouZ, et al. Tsnadb: ADatabase for Tumor-
Specific Neoantigens From Immunogenomics Data Analysis. Genomics
Proteomics Bioinf (2018) 16(4):276–82. doi: 10.1016/j.gpb.2018.06.003

36. Mirchia K, Sathe AA, Walker JM, Fudym Y, Galbraith K, Viapiano MS, et al.
Total Copy Number Variation as a Prognostic Factor in Adult Astrocytoma
Subtypes. Acta Neuropathologica Commun (2019) 7(1):92. doi: 10.1186/
s40478-019-0746-y

37. Zhang E, He J, Zhang H, Shan L, Wu H, Zhang M, et al. Immune-Related
Gene-Based Novel Subtypes to Establish a Model Predicting the Risk of
Prostate Cancer. Front Genet (2020) 11:595657. doi: 10.3389/fgene.2020.
595657

38. Zhou J-G, Liang B, Liu J-G, Jin S-H, He S-S, Frey B, et al. Identification of 15
Lncrnas Signature for Predicting Survival Benefit of Advanced Melanoma
Patients Treated With Anti-Pd-1 Monotherapy. Cells (2021) 10(5):977.
doi: 10.3390/cells10050977

39. Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, et al. Structural
Insights of Transcriptionally Active, Full-Length Androgen Receptor
Coactivator Complexes. Mol Cell (2020) 79(5):812–23.e4. doi: 10.1016/
j.molcel.2020.06.031

40. Gao X, Dai C, Huang S, Tang J, Chen G, Li J, et al. Functional Silencing of in
Prostate CancerPromotesDisease Progression.ClinCancer Res anOff J AmAssoc
Cancer Res (2019) 25(4):1291–301. doi: 10.1158/1078-0432.CCR-18-2392

41. Gutjahr JC, Crawford KS, Jensen DR, Naik P, Peterson FC, Samson GPB, et al.
The Dimeric Form of Cxcl12 Binds to Atypical Chemokine Receptor 1. Sci
Signaling (2021) 14(696):eabc9012. doi: 10.1126/scisignal.abc9012

42. Sbrissa D, Semaan L, Govindarajan B, Li Y, Caruthers NJ, Stemmer PM, et al.
A Novel Cross-Talk Between Cxcr4 and Pi4kiiia in Prostate Cancer Cells.
Oncogene (2019) 38(3):332–44. doi: 10.1038/s41388-018-0448-0

43. Hong Z, Zhang W, Ding D, Huang Z, Yan Y, Cao W, et al. DNA Damage
Promotes Tmprss2-Erg Oncoprotein Destruction and Prostate Cancer
Suppression Via Signaling Converged by Gsk3b and Wee1. Mol Cell (2020)
79(6):1008–23.e4. doi: 10.1016/j.molcel.2020.07.028

44. Zhao H, Lo Y-H, Ma L, Waltz SE, Gray JK, Hung M-C, et al. Targeting
Tyrosine Phosphorylation of Pcna Inhibits Prostate Cancer Growth. Mol
Cancer Ther (2011) 10(1):29–36. doi: 10.1158/1535-7163.MCT-10-0778

45. Zheng C-Y, Xiao W, Zhu M-X, Pan X-J, Yang Z-H, Zhou S-Y. Inhibition of
Cyclooxygenase-2 by Tetramethylpyrazine and Its Effects on A549 Cell
Invasion and Metastasis. Int J Oncol (2012) 40(6):2029–37. doi: 10.3892/
ijo.2012.1375

46. Nauman G, Gray JC, Parkinson R, Levine M, Paller CJ. Systematic Review of
Intravenous Ascorbate in Cancer Clinical Trials. Antioxidants (Basel) (2018) 7
(7):89. doi: 10.3390/antiox7070089

47. Erlandsson A, Carlsson J, Lundholm M, Fält A, Andersson S-O, Andrén O,
et al. M2 Macrophages and Regulatory T Cells in Lethal Prostate Cancer.
Prostate (2019) 79(4):363–9. doi: 10.1002/pros.23742
Frontiers in Oncology | www.frontiersin.org 13
48. Liang P, Henning SM, Schokrpur S, Wu L, Doan N, Said J, et al. Effect of
Dietary Omega-3 Fatty Acids on Tumor-Associated Macrophages and
Prostate Cancer Progression. Prostate (2016) 76(14):1293–302. doi: 10.1002/
pros.23218

49. Cortesi F, Delfanti G, Grilli A, Calcinotto A, Gorini F, Pucci F, et al. Bimodal
Cd40/Fas-Dependent Crosstalk Between Inkt Cells and Tumor-Associated
Macrophages Impairs Prostate Cancer Progression. Cell Rep (2018) 22
(11):3006–20. doi: 10.1016/j.celrep.2018.02.058

50. Jenkins RB, Xiao Y, Sicotte H, Decker PA, Kollmeyer TM, Hansen HM, et al.
A Low-Frequency Variant at 8q24.21 Is Strongly Associated With Risk of
Oligodendroglial Tumors and Astrocytomas With Idh1 or Idh2 Mutation.
Nat Genet (2012) 44(10):1122–5. doi: 10.1038/ng.2388

51. Wilson C, Kanhere A. 8q24.21 Locus: A Paradigm to Link Non-Coding Rnas,
Genome Polymorphisms and Cancer. Int J Mol Sci (2021) 22(3):1094.
doi: 10.3390/ijms22031094

52. Liu J, Ding D, Jiang Z, Du T, Liu J, Kong Z. Long Non-Coding Rna Ccat1/Mir-
148a/Pkcz Prevents Cell Migration of Prostate Cancer by Altering
Macrophage Polarization. Prostate (2019) 79(1):105–12. doi: 10.1002/
pros.23716

53. You Z, Liu C, Wang C, Ling Z, Wang Y, Wang Y, et al. Lncrna Ccat1 Promotes
Prostate Cancer Cell Proliferation by Interacting With Ddx5 and Mir-28-5p.
Mol Cancer Ther (2019) 18(12):2469–79. doi: 10.1158/1535-7163.MCT-19-0095

54. Liu H-T, Fang L, Cheng Y-X, Sun Q. Lncrna Pvt1 Regulates Prostate Cancer
Cell Growth by Inducing the Methylation of Mir-146a. Cancer Med (2016) 5
(12):3512–9. doi: 10.1002/cam4.900

55. Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al.
Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer.
Cell (2018) 174(3):758–69.e9. doi: 10.1016/j.cell.2018.06.039

56. Hua JT, Ahmed M, Guo H, Zhang Y, Chen S, Soares F, et al. Risk Snp-
Mediated Promoter-Enhancer Switching Drives Prostate Cancer Through
Lncrna Pcat19. Cell (2018) 174(3):564–75.e18. doi: 10.1016/j.cell.2018.06.014

57. Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al.
Insertion-And-Deletion-Derived Tumour-Specific Neoantigens and the
Immunogenic Phenotype: A Pan-Cancer Analysis. Lancet Oncol (2017) 18
(8):1009–21. doi: 10.1016/S1470-2045(17)30516-8

58. Antonarakis ES, Isaacsson Velho P, Fu W, Wang H, Agarwal N, Sacristan
Santos V, et al. -Altered Prostate Cancer: Clinical Features and Therapeutic
Outcomes to Standard Systemic Therapies, Poly (Adp-Ribose) Polymerase
Inhibitors, and Pd-1 Inhibitors. JCO Precis Oncol (2020) 4:370–81.
doi: 10.1200/po.19.00399

59. Collins JM, Redman JM, Gulley JL. Combining Vaccines and Immune
Checkpoint Inhibitors to Prime, Expand, and Facilitate Effective Tumor
Immunotherapy. Expert Rev Vaccines (2018) 17(8):697–705. doi: 10.1080/
14760584.2018.1506332

60. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al.
Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. New
Engl J Med (2010) 363(5):411–22. doi: 10.1056/NEJMoa1001294

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Reviewer DH declared a shared parent affiliation with authors GY, MZ, XG, JW,
SS, YL, QY, TJ, and BX to the handling editor at the time of review.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yu, Liang, Yin, Zhan, Gu,Wang, Song, Liu, Yang, Ji and Xu. This is
an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
June 2022 | Volume 12 | Article 909066

https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1111/jcmm.17021
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/s41568-020-0290-x
https://doi.org/10.3389/fgene.2021.647141
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.gpb.2018.06.003
https://doi.org/10.1186/s40478-019-0746-y
https://doi.org/10.1186/s40478-019-0746-y
https://doi.org/10.3389/fgene.2020.595657
https://doi.org/10.3389/fgene.2020.595657
https://doi.org/10.3390/cells10050977
https://doi.org/10.1016/j.molcel.2020.06.031
https://doi.org/10.1016/j.molcel.2020.06.031
https://doi.org/10.1158/1078-0432.CCR-18-2392
https://doi.org/10.1126/scisignal.abc9012
https://doi.org/10.1038/s41388-018-0448-0
https://doi.org/10.1016/j.molcel.2020.07.028
https://doi.org/10.1158/1535-7163.MCT-10-0778
https://doi.org/10.3892/ijo.2012.1375
https://doi.org/10.3892/ijo.2012.1375
https://doi.org/10.3390/antiox7070089
https://doi.org/10.1002/pros.23742
https://doi.org/10.1002/pros.23218
https://doi.org/10.1002/pros.23218
https://doi.org/10.1016/j.celrep.2018.02.058
https://doi.org/10.1038/ng.2388
https://doi.org/10.3390/ijms22031094
https://doi.org/10.1002/pros.23716
https://doi.org/10.1002/pros.23716
https://doi.org/10.1158/1535-7163.MCT-19-0095
https://doi.org/10.1002/cam4.900
https://doi.org/10.1016/j.cell.2018.06.039
https://doi.org/10.1016/j.cell.2018.06.014
https://doi.org/10.1016/S1470-2045(17)30516-8
https://doi.org/10.1200/po.19.00399
https://doi.org/10.1080/14760584.2018.1506332
https://doi.org/10.1080/14760584.2018.1506332
https://doi.org/10.1056/NEJMoa1001294
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Identification of Metabolism-Related Gene-Based Subgroup in Prostate Cancer
	Introduction
	Materials and Methods
	Acquisition and Processing of Raw Data
	Screening of Metabolism-Related PRAD Genes
	NMF and Survival Analysis
	Identification of DEGs
	Functional Analysis
	GSVA
	Tumor Purity Analysis
	Tumor Immune Microenvironment Analysis
	Mutational Cancer Driver and Immune Gene Analysis
	CNV, SNP, and Tumor-Specific Neoantigen Analysis

	Results
	Patient Characteristics
	Metabolism-Related PRAD Genes
	NMF Analysis
	Survival Analysis
	Functional Analysis of DEGs
	GSVA
	Tumor Purity and Immune Microenvironment Analysis
	Mutational Cancer Driver and Immune Gene Analysis
	CNV, SNP, and Tumor-Specific Neoantigen Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


