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Abstract
Background: Metabolic	disturbance	is	closely	correlated	with	intrahepatic	cholangio-
carcinoma	(IHCC),	and	we	aimed	to	identify	metabolic	gene	marker	for	the	prognosis	
of	IHCC.
Methods: We	 obtained	 expression	 and	 clinical	 data	 from	 141	 patients	 with	 IHCC	
from public databases. Prognostic metabolic genes were selected using univariate 
Cox	regression	analysis.	Unsupervised	cluster	analysis	was	applied	to	identify	IHCC	
subtypes,	and	CIBERSORT	was	used	for	immune	infiltration	analysis	of	different	sub-
types. Then, the metabolic gene signature was screened using multivariate Cox re-
gression	analysis	and	the	LASSO	algorithm.	The	prognostic	potential	and	regulatory	
network of the metabolic gene signature were further investigated.
Results: We	screened	228	prognosis-	related	metabolic	genes.	Based	on	their	expres-
sion	levels,	IHCC	samples	were	divided	into	two	subtypes,	which	showed	significant	
differences	in	survival	and	immune	cell	infiltration.	After	LASSO	analysis,	eight	meta-
bolic genes including CYP19A1, SCD5, ACOT8, SRD5A3, MOGAT2, PFKFB3, PPARGC1B, 
and RPL17 were identified as the optimal genes for the prognosis signature. The prog-
nostic model had excellent predictive abilities, with areas under the receiver- operating 
characteristic curves over 0.8. A nomogram model was also established based on two 
independent	prognostic	clinical	factors	(pathologic	stage	and	prognostic	model),	and	
the generated calibration curves and c- indexes determined its excellent accuracy and 
discriminative	ability	to	predict	1-		and	5-	year	survival	status	(c-	indexes>0.7).	Finally,	
we	found	that	miR-	26a-	5p,	miR-	27a-	3p,	and	miR-	27b-	3p	were	the	upstream	regula-
tors that mediate the involvement of gene signatures in metabolic pathways.
Conclusion: We	developed	eight	metabolic	gene	signatures	to	predict	IHCC	prognosis	
and proposed potential upstream regulatory axes of gene signatures.
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1  |  INTRODUC TION

Intrahepatic	cholangiocarcinoma	(IHCC)	originates	from	biliary	epi-
thelial	cells	and	accounts	for	25%	of	cholangiocarcinoma.1	 It	 is	the	
second	most	common	primary	liver	cancer,	accounting	for	10–	20%	
of newly diagnosed cases of liver cancer.2	 IHCC	may	present	as	a	
central periductal infiltrating tumor or as a peripheral mass.3 Surgical 
excision is the only curative treatment option for patients, but even 
with	 surgical	 intervention,	 the	 1-	year	 and	 5-	year	 survival	 rates	 of	
IHCC	 patients	 are	 still	 at	 a	 disappointing	 18%	 and	 30%,	 respec-
tively.4,5 Therefore, identifying the molecular signatures of high- risk 
patients to determine prognostic risks for early intervention may 
allow us to better control disease progression. Next- generation and 
exome	 sequencing	 studies	 have	 shown	 that	 30–	40%	 of	 patients	
with	IHCC	have	mutations	in	FGFR fusion, IDH, BRAF, and EGFR.6,7 
Dysfunction of TGF- β1 is associated with cancer development, and a 
study	based	on	78	IHCC	patients	reported	that	the	expression	level	
of TGF- β1	was	associated	with	the	survival	prognosis	of	IHCC	and	
could be used as an independent predictor for patients.8 Although 
these studies have reported a number of genes and mutations as-
sociated	with	IHCC,	their	genetic	pathogenesis	has	not	been	clearly	
described.

Metabolic	abnormalities	are	thought	to	be	closely	related	to	the	
progression	of	IHCC.	Metabolic	syndromes	resulting	from	diabetes	
or	obesity,	hepatitis	B	virus/hepatitis	C	virus	infection,	and	cirrhosis	
are	risk	factors	for	IHCC.9,10 Studies have suggested that the patho-
genesis	of	IHCC	includes	metabolic	disorders	caused	by	disruption	
of transcriptional regulation.11 Jia et al. identified several biomarkers 
related to intestinal microorganisms and bile acid metabolism for 
the	diagnosis	of	IHCC	and	predicting	vascular	invasion	in	patients.12 
KDM5C was found to affect tumor activity by inhibiting FASN- 
mediated lipid metabolism.13	Manieri	et	al.	found	that	JNK-	mediated	
disruption activated by PPARα may lead to changes in cholesterol 
and bile acid metabolism that promote cholestasis, bile duct prolif-
eration,	 and	 IHCC.14	 Several	prognostic	genes	of	 IHCC,	which	are	
involved in type 2 diabetes and retinol metabolism pathways, were 
identified	by	constructing	a	 long-	noncoding	RNA	 (lncRNA)-	related	
competing endogenous RNA network.15 Additionally, lncRNA 
HAGLROS was also shown to regulate lipid metabolic reprogramming 
in	IHCC	through	the	mTOR	signaling	pathway.16 These studies have 
suggested	a	relationship	between	metabolism	and	IHCC,	but	there	
is still a lack of systematic understanding of the role of metabolism- 
related genes in predicting disease prognosis.

Therefore,	 we	 analyzed	 the	molecular	 characteristics	 of	 IHCC	
from the perspective of metabolism- related genes to identify the 
corresponding prognostic markers of different subtypes and provide 
a	reference	for	targeted	therapy.	In	this	study,	we	used	expression	
data from public databases together with published metabolic genes 

to	 perform	 unsupervised	 cluster	 analysis	 and	 identify	 two	 IHCC	
subtypes.	Based	on	the	clinical	information,	we	screened	prognostic	
signatures and established a prognostic model and nomogram model 
to	predict	IHCC	prognosis.	Finally,	we	constructed	a	miRNA-	mRNA	
regulatory network to explain the roles and regulatory mechanisms 
of prognostic signatures regulated by miRNAs in the metabolic pro-
cess	of	IHCC.	Our	study	aims	to	identify	these	metabolic	genes	and	
highlight the potential applications of these molecular signatures in 
the	prognosis	of	IHCC.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition and process

Expression	 data	 from	 Illumina	 HiSeq	 2000	 RNA	 Sequencing	 and	
clinical	 information	 of	 30	 IHCC	 samples	 were	 downloaded	 from	
The	Cancer	Genome	Atlas	 (TCGA,	 https://gdc-	portal.nci.nih.gov/).	
Additionally, four expression profile microarrays were obtained 
from	gene	expression	omnibus	(GEO)	that	met	the	following	crite-
ria:	(a)	entity	tumor	tissue	sample,	(b)	total	sample	size	>40,	and	(c)	
clinical information on survival prognosis. Among the microarrays, 
GSE89747	 (detected	 from	 Illumina	 HumanHT-	12	 V4.0	 expression	
beadchip),	 GSE89748	 (detected	 from	 Illumina	 HumanHT-	12	 V4.0	
expression	 beadchip),	 and	 GSE10	7943	 (detected	 from	 Illumina	
NextSeq	500	(Homo	sapiens))	contain	mRNA	expression	data	of	32,	
49,	and	30	IHCC	samples,	respectively,	while	the	GSE53870	dataset	
contains	miRNA	expression	data	of	nine	controls	and	63	IHCC	sam-
ples	 (detected	from	State	Key	Laboratory	Human	microRNA	array	
1104).	 Notably,	 data	 from	 TCGA,	 GSE89747,17 GSE89748,17 and 
GSE10 794318,19 were used to select prognosis- related metabolic 
genes	and	construct	prognostic	models,	and	data	 from	GSE53870	
were used to build a miRNA regulatory network. The sva package 
version 3.38.020 (http://www.bioco nduct or.org/packa ges/relea se/
bioc/html/sva.html)	in	R3.6.1	was	used	to	remove	the	batch	effect	of	
TCGA, GSE89747, GSE89748, and GSE10 7943 caused by different 
detection	platforms.	Finally,	the	expression	data	of	141	IHCC	sam-
ples were obtained from the combined dataset. The data sources 
and workflow were summarized in Figure 1.

2.2  |  Analysis of prognosis- related metabolic genes

Human metabolic and transporter genes were obtained according 
to a published article21 (https://www.ncbi.nlm.nih.gov/pmc/artic 
les/PMC33	53325/	#SD3).	Genes	associated	with	metabolism	were	
also	 selected	 from	 the	 Gene	 Set	 Enrichment	 Analysis	 (GSEA)	 da-
tabase22	 (http://softw	are.broad	insti	tute.org/gsea/downl	oads.jsp).	

K E Y W O R D S
intrahepatic cholangiocarcinoma, metabolism, miRNA- mRNA regulatory network, prognostic 
model
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The expression data for these metabolic genes were extracted from 
the combined datasets. Taken together with clinical information, 
univariate Cox regression analysis was performed to select meta-
bolic genes significantly related to survival prognosis (p <	0.05)	using	
survival package version 2.41– 123 (http://bioco nduct or.org/packa 
ges/survi	valr/).

2.3  |  Protein– protein interaction (PPI) network 
construction and enrichment analyses

String version 11.024	(http://strin	g-	db.org/)	was	used	to	analyze	the	
interactions between the coding proteins of prognosis- related meta-
bolic	genes	and	establish	a	PPI	network.	Cytoscape	version	3.6.125,26 
(http://www.cytos	cape.org/)	was	used	to	visualize	the	interactions	
between	nodes.	Gene	ontology	(GO)	biological	processes	(BP)	and	
Kyoto	 Encyclopedia	 of	 Genes	 and	 Genomes	 (KEGG)	 pathways	 of	
genes	in	the	PPI	network	were	explored	using	DAVID	online	tool27 
with	a	false	discovery	rate	(FDR)	<0.05.

2.4  |  Unsupervised cluster analysis to identify 
IHCC subtypes

Based	on	the	expression	data	of	prognosis-	related	metabolic	genes,	
pheatmap version 1.0.828 (https://cran.r- proje ct.org/web/packa ges/
pheat	map/index.html)	was	used	to	analyze	bidirectional	hierarchical	
clusters according to the centered Pearson correlation algorithm,29 
thereby	 identifying	 different	 subtypes	 of	 IHCC	 from	 clustering	

results.	The	Kaplan-	Meier	(KM)	curve	was	created	to	assess	the	cor-
relation of survival prognosis between different subtypes using the 
survival package. The clinical information of samples from different 
subtypes were compared statistically.

2.5  |  Association analysis of IHCC 
subtype and immunity

CIBERSORT30 was used to calculate the proportion of 22 types of 
immune cells in each sample from the combined dataset. Then, the 
differences in infiltration abundance of immune cells between dif-
ferent subtypes were compared, and the between- group variance 
was visualized using a violin plot.

2.6  |  Construction of a prognostic model

All	 IHCC	samples	were	randomly	grouped	into	training	and	valida-
tion	sets	at	a	ratio	of	1:1.	Independent	prognosis-	related	metabolic	
genes were then screened through multivariate Cox regression anal-
ysis, and p <	0.05	was	set	as	the	standard.	Using	these	genes,	the	
least	absolute	shrinkage	and	selection	operator	 (LASSO)	algorithm	
was applied to further identify metabolic gene signatures using the 
lars package version 1.231 (https://cran.r- proje ct.org/web/packa 
ges/lars/index.html).	Then	a	model	based	on	 the	prognostic	 score	
(PS)	was	developed	by	calculating	the	LASSO	prognostic	coefficient	
of each gene and its expression data in the training set. The PS was 
calculated as follows:

F I G U R E  1 Flowchart	describing	this	study

http://bioconductor.org/packages/survivalr/
http://bioconductor.org/packages/survivalr/
http://string-db.org/
http://www.cytoscape.org/
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/lars/index.html
https://cran.r-project.org/web/packages/lars/index.html
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where Coefgenes	 indicates	 the	LASSO	prognostic	 coefficient	of	met-
abolic gene signatures, and Expgenes indicates the expression level of 
candidate	genes	in	the	training	set.	A	KM	curve	was	created	to	eval-
uate the association between the expression levels of metabolic gene 
signatures and survival.

2.7  |  Efficiency evaluation of the prognostic model

The values of PS in the training, validation, and entire sample sets 
were computed, and then the samples were divided into high-  and 
low- risk groups according to the median value of PS in each group. 
The	 KM	 method	 was	 used	 to	 analyze	 the	 differences	 in	 survival	
prognosis between the two groups. Receiver- operating characteris-
tic	(ROC)	curves	were	created	to	assess	predictive	performance	by	
calculating the specificity and sensitivity.

2.8  |  Establishment of a namogram 
prediction model

Based	 on	 the	 entire	 IHCC	 sample	 set,	 univariate	 and	 multivari-
ate Cox regression analyses were applied to identify independ-
ent prognostic clinical factors with standards of log rank p <	0.05.	
A	 nomogram	 model	 was	 constructed	 to	 predict	 1-	,	 3-	,	 and	 5-	
year	 survival	 for	 patients	using	 the	 rms	package	version	5.1–	232 
(https://cran.r-	proje	ct.org/web/packa	ges/rms/index.html).	 We	
then calculated the c- index for the nomogram prediction model by 
using R3.6.1 survcomp version 1.34.033 (http://www.bioco nduct 
or.org/packa	ges/relea	se/bioc/html/survc	omp.html)	 to	 evaluate	
its discriminative ability.34,35

2.9  |  Construction of a prognosis- related miRNA 
regulatory network

The	expression	data	of	miRNA	in	GSE53870,	which	contains	nine	
healthy	controls	and	63	 IHCC	samples,	were	used	 to	 screen	dif-
ferentially	 expressed	 miRNAs	 (DEmiRNAs)	 between	 IHCC	 pa-
tients and controls. DEmiRNAs were then identified based on 
standards of FDR <0.05,	and	|log2fold	change	(FC)|	>0.263 using 
R package limma version 3.34.736 (https://bioco nduct or.org/
packa	ges/relea	se/bioc/html/limma.html).	 StarBase	 version	 2.0	
database37	(http://starb	ase.sysu.edu.cn/)	was	used	to	predict	the	
target	 genes	 of	 the	DEmiRNAs.	 By	 considering	 the	 intersection	
of miRNA- related genes and prognosis- related metabolic genes, 
key mRNAs were selected to build a regulatory network based 
on miRNA- mRNA interactions. The network was visualized using 
Cytoscape.26 Function and pathway enrichment analyses were 
performed on hub genes in the above network, and FDR <0.05	
was set as the threshold.

3  |  RESULTS

3.1  |  Screening of prognosis- related metabolic 
genes of IHCC

To remove the batch effect of samples from TCGA, GSE10 7943, 
GSE89747, and GSE89748, the sva algorithm was applied to ob-
tain	 a	 combined	 dataset.	 Principal	 component	 analysis	 (PCA)	
plots before and after removing the batch effect are shown in 
Figure S1. With batch effect elimination, no significant differ-
ences were found between the samples. We then obtained 
2742 metabolic genes from published articles and the GSEA da-
tabase, and expression data of these metabolic genes were ex-
tracted	 from	 the	 combined	 dataset.	 By	 applying	 the	 univariate	
Cox regression analysis, 228 prognosis- related metabolic genes 
were identified.

3.2  |  PPI and enrichment analyses of prognosis- 
related metabolic genes

The	STRING	database	was	then	used	to	analyze	the	interactions	of	
the coding proteins of these 228 prognosis- related metabolic genes. 
We obtained 896 relation pairs with a combined score over 0.4, and 
established the network shown in Figure 2A. This network con-
tained 218 nodes, and PPP2R1A, PPARG, and PSMC5 were found to 
have more degrees of connection (degree >25).	We	then	performed	
function and pathway enrichment analyses of 218 genes in the 
PPI	network,	and	obtained	62	GO-	BP	and	17	KEGG	pathways.	By	
ranking	the	values	of	FDR	from	small	to	large,	top	20	GO-	BP	func-
tions	and	top	17	KEGG	pathways	were	obtained,	which	are	shown	
in	Figure	2B,C.	The	results	suggested	that	these	genes	were	mainly	
enriched in metabolic processes of cellular amino acid regulation, li-
pids, and fatty acids, among others, as well as enriched in metabolic 
pathways.

3.3  |  Identification of IHCC subtypes by 
unsupervised cluster analysis

Combined with the clinical information of 228 prognosis- related 
metabolic	genes,	we	identified	IHCC	subtypes	by	bidirectional	hi-
erarchical cluster analysis. The heatmap in Figure 3A shows that 
samples in the combined dataset were divided into two subtypes 
(cluster	 1	 and	 cluster	 2,	 containing	 52	 and	 89	 samples,	 respec-
tively).	 The	 expression	 of	 these	 metabolic	 genes	 also	 differed	
between	cluster	1	and	2.	By	comparing	the	difference	 in	clinical	
information	 between	 the	 two	 clusters	 (Table	 1),	 we	 found	 that	
the samples were significantly different in terms of age, sex, and 
death rate (p <	0.05).	Thereafter,	survival	analysis	was	performed	
on	samples	from	clusters	1	and	2.	The	KM	curve	in	Figure	3B	sug-
gests that samples in cluster 2 had a better survival status than 
those in cluster 1 (p =	0.026).

Prognostic score(PS) =
∑

Coefgenes × expgenes

https://cran.r-project.org/web/packages/rms/index.html
http://www.bioconductor.org/packages/release/bioc/html/survcomp.html
http://www.bioconductor.org/packages/release/bioc/html/survcomp.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53870
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
http://starbase.sysu.edu.cn/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107943
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89747
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89748
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3.4  |  Analysis of the association between IHCC 
subtypes and immunity

Based	on	the	expression	data	of	samples	in	the	combined	dataset,	
the	 CIBERSORT	 algorithm	 was	 used	 to	 calculate	 the	 proportions	
of 22 types of immune cells in each sample. Then, the immune cell 
fraction was compared between cluster 1 and 2, and we found that 
CD8+ T cells, activated CD4+	memory	T	cells,	resting	NK	cells,	ac-
tivated	NK	cells,	M2	macrophages,	 and	 resting	mast	 cells	 showed	
significant differences in cell proportion between samples in cluster 
1	and	2	(Figure	4).

3.5  |  Construction and validation of the 
prognostic model

To develop prognostic markers, we divided the samples of the 
combined dataset into training and validation sets, which con-
tained	 70	 and	 71	 IHCC	 samples,	 respectively.	 Then,	 based	 on	
samples in the training set, multivariate Cox regression analysis 
was used to select 20 independent prognosis- related metabolic 

genes.	Furthermore,	a	LASSO	algorithm	was	implemented	to	fur-
ther identify an eight- metabolic- gene signature as the optimal 
gene set (1se =	 0.08267079).	 The	 parameters	 of	 the	 LASSO	 al-
gorithm are presented in Figure S2. These eight metabolic gene 
signatures included CYP19A1, SCD5, ACOT8, SRD5A3, MOGAT2, 
PFKFB3, PPARGC1B, and RPL17, and their correlations with prog-
nosis	are	 shown	 in	Table	2	and	Figure	5A	along	with	 the	hazard	
ratio	 (HR),	 95%	 confidence	 interval,	P	 value,	 and	 LASSO	 coeffi-
cient. Then, the samples were grouped into high expression and 
low expression according to the median expression level of each 
gene	signature	for	survival	analysis.	The	KM	curves	 in	Figure	5B	
suggest that there were significant differences in survival status 
(all p <	 0.05)	 between	 samples	 from	 high-		 and	 low-	expression	
groups	 with	 respect	 to	 all	 eight	 gene	 signatures.	 Importantly,	
the	results	 in	Figure	5B	were	also	consistent	with	Figure	5A	and	
proved that CYP19A1, ACOT8, SRD5A3, MOGAT2, and PPARGC1B 
were risk factors for prognosis (HR >1),	 and	 patients	with	 high-	
expression	 levels	 had	 worse	 survival	 status.	 In	 contrast,	 SCD5, 
PFKFB3, and RPL17	played	protective	roles	in	IHCC	prognosis	(HR	
<1),	 and	 higher	 expression	 of	 these	 proteins	 indicated	 a	 better	
survival status.

F I G U R E  2 PPI	and	enrichment	analyses	of	228	prognosis-	related	metabolic	genes.	(A)	Construction	of	the	PPI	network.	The	larger	the	
number of nodes, the higher the number of connections. The redder the nodes, the smaller the p	value.	(B	and	C)	Top	20	GO-	BP	(B)	and	top	
17	KEGG	pathways	(C)	ranking	by	FDR	from	small	to	large.	The	x- axis indicates the fold enrichment, whereas the y- axis indicates the terms 
of	the	GO-	BP	or	KEGG	pathways
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To further verify the predictive ability of these eight metabolic 
gene signatures, we constructed the PS models in the training, val-
idation, and entire sample sets. The distributions of PS and survival 
time, as well as the changes in the expression level of the eight gene 
signatures in these three sample sets, are shown in Figure 6A– C. 
The results suggested that in these three sample sets, patients with 
higher PS had higher prognostic risks and shorter survival times. 
Moreover,	 patients	with	 lower	 PS	 and	 higher	 PS	 had	 significantly	

different expression levels of the eight metabolic gene signature. 
Patients were divided into high- risk and low- risk groups by calcu-
lating	the	median	PS	values.	We	then	created	KM	curves	and	ROC	
curves to illustrate survival differences and to evaluate the predic-
tive	performance	of	the	PS-	based	prognostic	models	(Figure	6D–	F).	
The	KM	curves	demonstrate	that	patients	in	the	high-	risk	group	had	
worse	survival.	Meanwhile,	the	ROC	curves	suggest	excellent	abili-
ties	of	PS-	based	prognostic	models	to	predict	the	1-	,	3-	,	and	5-	year	

F I G U R E  3 Unsupervised	cluster	analysis	to	identify	IHCC	subtypes.	(A)	Bidirectional	hierarchical	clustering	heatmap	based	on	the	
expression	levels	of	228	prognosis-	related	metabolic	genes.	The	green	and	purple	bars	indicate	cluster	1	and	2,	respectively.	(B)	The	KM	
curve shows the differences in survival between samples from clusters 1 and 2. The red and green lines indicate cluster 1 and 2, respectively

characteristics Cases n=141

Subtype

P valueCluster 1 (n=52) Cluster 2 (n=89)

Age(years) 0.046

≤60 64 28 36

>60 77 24 53

Gender 0.016

Male 77 34 43

Female 64 18 46

Pathologic stage 0.182

Stage	I 44 14 30

Stage	II 24 11 13

Stage	III 15 9 6

Stage	IV 43 14 29

Dead 0.043

Yes 72 30 42

No 69 22 47

Note: Bold	P indicates statistical significance.
Abbreviation: n, number.

TA B L E  1 Differences	in	clinical	
information between samples of cluster 
1 and 2
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prognoses	of	IHCC	patients	with	areas	under	the	curves	(AUCs)	over	
0.9	in	the	training	set,	over	0.75	in	the	validation	set,	and	over	0.8	in	
the entire sample set.

We also created a histogram showing the proportional distribu-
tions of the two clusters in the high- risk and low- risk groups (Figure 
S3).	Using	the	chi-	square	test,	we	found	that	the	distribution	of	the	
two clusters in the high-  and low- risk groups was significantly differ-
ent (p =	0.027).	The	results	also	suggested	that	more	samples	from	
cluster 1 were involved in the high- risk group, while more samples 
from cluster 2 were included in the low- risk group.

3.6  |  Developing a nomogram prediction model 
based on independent prognostic factors

By	performing	univariate	and	multivariate	Cox	regression	analyses,	
we identified pathologic stage and PS status as two independent 
prognostic	clinical	 factors	of	 IHCC	(p <	0.05),	as	shown	 in	Table	3	

and Figure 7A. To further analyze the correlation between prognos-
tic clinical features and survival status, we established a nomogram 
model	to	predict	the	1-	,	3-	,	and	5-	year	survival	probabilities	for	pa-
tients	with	 IHCC	 (Figure	 7B).	 Calibration	 curves	 (Figure	 7C)	were	
created to validate the model, and the results suggested a high fit-
ness	of	1-		and	5-	year	actual	and	predictive	survival	ratios.	C-	indexes	
were also calculated to assess the predictive accuracy of the nomo-
gram	model,	and	the	c-	indexes	of	the	1-	,	3-	,	and	5-	year	prediction	
models were 0.774, 0.683, and 0.732, respectively. This finding also 
showed that the nomogram model was accurate in predicting the 
1-		and	5-	year	survival	probabilities.

3.7  |  Construction of a miRNA regulatory network 
based on prognostic signatures

The	 expression	 data	 of	 miRNA	 in	 the	 GSE53870	 dataset	 were	
employed	 to	screen	DEmiRNAs	between	 IHCC	and	controls,	 and	

F I G U R E  4 Immune	cells	with	
significant differences in infiltration 
abundances between samples from 
cluster 1 and 2

TA B L E  2 Coefficients	of	8	metabolic	gene	signatures	identified	from	a	LASSO	algorithm

Symbol Hazard ratio
95% Confidence 
interval Standard error Z score P value

LASSO 
coefficient

CYP19A1 1.051 1.015–	1.089 1.806E−02 2.777 5.480E−03 6.600E−02

SCD5 0.944 0.912– 0.978 1.792E−02 −3.196 1.390E−03 −1.860E−01

ACOT8 1.011 1.002– 1.020 4.407E−03 2.487 1.287E−02 2.000E−02

SRD5A3 1.003 1.002– 1.009 2.589E−03 1.347 4.178E−02 2.240E−02

MOGAT2 1.025 1.002– 1.048 1.161E−02 2.095 3.616E−02 6.700E−02

PFKFB3 0.999 0.997– 0.999 9.197E−04 −1.413 4.158E−02 −1.880E−03

PPARGC1B 1.005 1.003– 1.020 7.496E−03 0.672 4.502E−02 2.070E−02

RPL17 0.999 0.998– 0.999 2.398E−04 −1.693 2.905E−02 −3.160E−05

Note: Abbreviation:	LASSO:	least	absolute	shrinkage	and	selection	operator.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53870
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a total of 24 DEmiRNAs, 14 upregulated and 10 downregulated, 
were obtained. Then, the target mRNAs of the DEmiRNAs were 
predicted	in	starBase.	By	comparing	the	predicted	mRNAs	and	228	
prognosis- related metabolic genes, overlapping mRNAs were se-
lected	to	construct	a	miRNA-	mRNA	regulatory	network	(Figure	8A).	
This network contained 96 mRNAs, 8 miRNAs, and 238 miRNA- 
mRNA relation pairs. Among them, PFKFB3, SCD5, and PPARGC1B 
were	 the	metabolic	gene	signatures	of	 IHCC	prognosis,	 and	 they	
were	 predicted	 to	 be	 regulated	 by	miR-	26a-	5p,	 miR-	27a-	3p,	 and	

miR- 27b- 3p. Then, the function and pathway enrichment analyses 
of mRNAs in the above network were performed, and the top 20 
GO-	BP,	 ranking	 by	 FDR	 from	 small	 to	 large,	 and	 all	 KEGG	 path-
ways	are	shown	in	the	bubble	diagrams	in	Figure	8B.	These	results	
suggest that these mRNAs were mainly enriched in lipid metabolic 
processes and metabolic pathways. Finally, the upstream miRNAs 
of PFKFB3, SCD5, and PPARGC1B, and their involved pathways were 
extracted to build a relational network, as shown in Figure 8C. 
These results suggested that PFKFB3 involvement in fructose 

F I G U R E  5 Screening	of	an	optimal	gene	set	associated	with	prognosis	and	identifying	the	metabolic	gene	signatures	to	predict	the	IHCC	
prognosis.	(A)	The	forest	plot	shows	the	coefficients	of	eight	metabolic	gene	signatures	identified	using	the	LASSO	algorithm.	(B)	KM	curves	
show the differences in survival status between high- expression and low- expression groups; samples are divided into groups according to 
the median expression values of eight metabolic gene signatures. The green and red lines indicate the high- expression and low- expression 
groups, respectively
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F I G U R E  6 Construction	and	verification	of	the	prognostic	models	in	the	training	set,	validation	set,	and	entire	sample	set.	(A–	C)	The	
distributions	of	PS	and	survival	time,	as	well	as	the	changes	in	expression	level	of	the	eight	gene	signature	in	the	training	set	(A),	validation	
set	(B),	and	entire	sample	set	(C).	(D–	F)	KM	curves	and	ROC	curves	created	to	evaluate	the	predictive	abilities	of	PS-	based	prognostic	
models	in	the	training	set	(D),	validation	set	(E),	and	entire	sample	set	(F)
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and	mannose	metabolism	and	AMPK	signaling	pathways	might	be	
regulated	by	miR-	26a-	5p;	PPARGC1B participation in insulin resist-
ance might be regulated by miR- 27a- 3p and miR- 27b- 3p; and role 

of SCD5 in mediating fatty acid metabolism as well as PPAR and 
AMPK	signaling	pathways	might	be	 regulated	by	miR-	27a-	3p	and	
miR- 27b- 3p.

TA B L E  3 Screening	of	independent	prognostic	clinical	factors

Characteristics

Univariable Cox regression Multivariable Cox regression

HR (95% CI) P value HR (95% CI) P value

Age (years, mean ±SD) 1.013	(0.993–	1.034) 0.212 – – 

Gender	(male/female) 1.292	(0.804–	2.075) 0.289 – – 

Pathologic	stage	(I/II/III/IV/-	) 1.498	(1.233–	1.819) 2.51E−05 1.416	(1.162–	1.725) 5.63E−04

Prognostic	score	status	(high/low) 4.477	(2.631–	7.618) 1.89E−09 4.735	(2.644–	8.479) 1.68E−07

Note: Bold	P indicates statistical significance.
Abbreviation:	SD,	standard	deviation;	HR,	hazard	ratio;	CI,	confidence	interval.

F I G U R E  7 Construction	and	validation	of	a	nomogram	prediction	model.	(A)	The	forest	plot	shows	that	the	pathologic	stage	and	PS	
status	are	two	independent	prognostic	clinical	factors	of	IHCC.	(B)	A	nomogram	model	based	on	two	independent	prognostic	clinical	factors	
built	to	predict	the	1-	,	3-	,	and	5-	year	survival	probabilities	of	IHCC	patients.	(C)	Calibration	curves	and	c-	indexes	were	analyzed	to	evaluate	
the predictive ability of the nomogram model. The x- axis indicates the predicted survival status, and the y- axis indicates the actual survival 
status.	The	blue,	red,	and	black	lines	indicate	1-	,	3-	,	and	5-	year	survival	status,	respectively,	along	with	the	calculated	c-	indexes



    |  11 of 13RAN et Al.

4  |  DISCUSSION

The	 high	 aggressiveness	 of	 IHCC	 may	 lead	 to	 multifocal	 tumor,	
lymph node metastasis, and vascular invasion, thereby resulting 
in a high incidence of local recurrence and/or distant metastasis 
and poor long- term survival after surgical resection.9,38	 IHCC	dif-
fers from hepatocellular carcinoma in carcinogenesis and biologi-
cal behavior and is also different from hilar and distal bile duct 
carcinomas in terms of clinical characteristics, imaging manifesta-
tions, and treatment approaches.39,40 Hence, a unique prognos-
tic model is necessary for hepatobiliary malignancy. Wang et al. 
constructed a histogram model based on the clinical information 
of 367 patients, and this model was shown to have a more ac-
curate prognostic prediction ability than the traditional clinical 
staging system.41 However, the clinicopathological features as-
sociated with long- term survival after surgery have not been fully 
defined,	 and	 the	 clinical	manifestations	 of	 IHCC	 are	 nonspecific,	
thereby preventing the identification of risk groups and patient 

susceptibility. Therefore, this study, which was performed based on 
metabolic genes together with clinical information of patients with 
IHCC,	screened	228	prognosis-	related	metabolic	genes.	According	
to the expression of these genes, samples were divided into two 
subtypes	(cluster	1	and	2),	which	showed	significant	differences	in	
survival status and immune cell infiltration. We then optimized the 
algorithm and identified eight metabolic gene signatures (CYP19A1, 
SCD5, ACOT8, SRD5A3, MOGAT2, PFKFB3, PPARGC1B, and RPL17)	
and established a PS- based prognostic model. This model had ex-
cellent	abilities	in	predicting	patients’	1-	,	3-	,	and	5-	year	survival	with	
AUCs	over	0.8	in	the	ROC	curves	of	the	combined	dataset.	Based	
on independent clinical prognostic factors, we also constructed a 
nomogram model that exhibited a high accuracy in predicting 1-  
and	5-	year	survival	probabilities	with	c-	indexes	of	0.774	and	0.732,	
respectively. Finally, we built a miRNA- mRNA regulatory network 
and revealed that PFKFB3, PPARGC1B, and SCD5 were regulated 
by	miR-	26a-	5p,	miR-	27a-	3p,	and	miR-	27b-	3p	and	were	involved	in	
metabolic pathways.

F I G U R E  8 Construction	of	a	miRNA	regulatory	network	based	on	metabolic	gene	signatures.	(A)	A	miRNA-	mRNA	regulatory	network	
based	on	DEmiRNAs	of	IHCC	and	prognosis-	related	metabolic	genes.	The	triangles	and	circles	indicate	miRNAs	and	mRNAs,	respectively.	
The	red	lines	indicate	the	relationship	between	the	upstream	miRNAs	and	prognostic	metabolic	gene	signatures.	(B)	GO-	BP	function	and	
KEGG	pathway	enrichment	analyses	of	mRNAs	in	the	miRNA-	mRNA	regulatory	network.	The	x- axis indicates the fold enrichment, and 
the y-	axis	indicates	the	terms	of	GO	functions	and	KEGG	pathways.	(C)	Construction	of	miRNA-	mRNA-	pathway	regulatory	axes	based	on	
metabolic	gene	signatures	of	IHCC	prognosis
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In	this	study,	we	grouped	IHCC	samples	into	two	subtypes	(cluster	
1	and	2)	based	on	228	prognosis-	related	metabolic	genes,	and	these	
two clusters showed significant differences in immune cell infiltration, 
including CD8+	T	cells	and	M2	macrophages.	Zhu	et	al.	found	an	in-
creased	expression	level	of	PD-	L1	in	IHCC	cells,	and	the	expression	of	
PD- L1 was positively correlated with CD8+ T cell infiltration.42	It	was	
also	found	that	IHCC	patients	with	higher	expression	of	HLA	class	I	
had	a	lower	5-	year	overall	survival	rate,	and	the	CD8+ T cell number 
in the outer border area of the tumor was positively correlated with 
the	 expression	 of	HLA	 class	 I.43	 In	 terms	 of	macrophages,	 studies	
have	illustrated	that	the	number	of	M2	macrophages	in	IHCC	tissues	
was significantly higher than that in normal bile ducts.44 Consistent 
with the above findings, our results suggested that samples in clus-
ter 2 had worse survival status, and the infiltration of CD8+ T cells 
and	M2	macrophages	was	significantly	higher	in	cluster	2	than	that	
in cluster 1. This further proved that the classification of subtypes 
based on the expression of 228 prognosis- related metabolic genes 
could	accurately	identify	the	prognostic	risk	of	patients	with	IHCC.

By	applying	Cox	regression	analyses	and	the	LASSO	algorithm,	
we screened out an optimal gene set including eight metabolic gene 
signatures	 to	 identify	 the	molecular	 characteristics	 of	 IHCC	prog-
nosis. Among them, CYP19A1 was found to promote cholangio-
carcinoma progression with aggressive clinical outcomes achieved 
by increasing cell migration and proliferative activity.45 Roos et al. 
proposed an association between PFKFB3 mutations and gallbladder 
cholangiocarcinoma tissues through sequencing.46 The effects of 
these	eight	gene	signatures	on	IHCC	have	not	been	widely	studied,	
but by predicting their relationship with DEmiRNAs, we revealed 
the possible regulatory axis of these metabolic gene signatures. For 
example, we found that PFKFB3	involvement	in	the	AMPK	signaling	
pathway and fructose and mannose metabolism pathways may be 
regulated	by	miR26a-	5p.	PFKFB3 is an important regulatory factor 
of glycolysis, and studies have confirmed that miR26a could reduce 
the injury of rat vascular endothelial cells by inhibiting PFKFB3 and 
activating	the	AMPK	pathway{Wu,	2019	#65}.	This	finding	provides	
a good explanation for our results, and we speculate that PFKFB3, 
regulated	by	miR-	26a-	5p,	 is	 involved	 in	 the	glucose	metabolism	of	
vascular endothelial cells, which may cause vascular invasion in pa-
tients	with	IHCC.

In	this	study,	we	identified	eight	metabolic	gene	signatures,	and	
the prognostic model based on these gene signatures was able to 
predict	the	survival	time	for	patients	with	IHCC.	However,	our	re-
search on the regulatory mechanisms of characteristic genes in the 
IHCC	process	 is	not	comprehensive.	The	miRNA-	mRNA	regulation	
network based on database prediction lacks experimental verifica-
tion. Therefore, we will further validate the target binding of pre-
dicted miRNAs and metabolic gene signatures and conduct animal 
experiments to explore the metabolic signaling pathways and mo-
lecular regulatory mechanisms of gene signatures in controlling the 
IHCC	process.

To conclude, we selected eight metabolic gene signatures to 
identify	 the	molecular	 characteristics	of	 IHCC	patients,	 and	 these	
genes	can	be	used	as	biomarkers	to	predict	the	prognosis	of	IHCC.	

We also predicted the upstream regulatory mechanisms of the gene 
signatures and improved our understanding of the roles of candidate 
genes	in	the	metabolic	process	of	IHCC.
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