
Activation of AMP-Activated Protein Kinase by
Interleukin-6 in Rat Skeletal Muscle
Association With Changes in cAMP, Energy State, and
Endogenous Fuel Mobilization
Meghan Kelly, Marie-Soleil Gauthier, Asish K. Saha, and Neil B. Ruderman

OBJECTIVE—Interleukin-6 (IL-6) directly activates AMP-acti-
vated protein kinase (AMPK) in vivo and in vitro; however, the
mechanism by which it does so is unknown.

RESEARCH DESIGN AND METHODS—We examined this
question in skeletal muscle using an incubated rat extensor
digitorum longus (EDL) muscle preparation as a tool.

RESULTS—AMPK activation by IL-6 coincided temporally with
a nearly threefold increase in the AMP:ATP ratio in the EDL. The
effects of IL-6 on both AMPK activity and energy state were
inhibited by coincubation with propranolol, suggesting involve-
ment of �-adrenergic signaling. In keeping with this notion, IL-6
concurrently induced a transient increase in cAMP, and its ability
to activate AMPK was blocked by the adenyl cyclase inhibitor
2�5�-dideoxyadenosine. In addition, like other �-adrenergic stim-
uli, IL-6 increased glycogen breakdown and lipolysis in the EDL.
Similar effects of IL-6 on AMPK, energy state, and cAMP content
were observed in C2C12 myotubes and gastrocnemius muscle in
vivo, indicating that they were not unique to the incubated EDL.

CONCLUSIONS—These studies demonstrate that IL-6 activates
AMPK in skeletal muscle by increasing the concentration of
cAMP and, secondarily, the AMP:ATP ratio. They also suggest
that substantial increases in IL-6 concentrations, such as those
that can result from its synthesis by muscles during exercise,
may play a role in the mobilization of fuel stores within skeletal
muscle as an added means of restoring energy balance.
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P
roinflammatory effects of interleukin-6 (IL-6)
have been well documented (rev. in 1). In light of
this and the presence of elevated plasma levels
(two- to threefold) of IL-6 in patients with obe-

sity, diabetes, and atherosclerotic cardiovascular disease
(2,3), IL-6 has previously been viewed as a contributor to
the development of these and other disorders associated
with insulin resistance and the metabolic syndrome. How-
ever, studies in humans have demonstrated that IL-6 may
have other functions. IL-6 is synthesized and released in

large quantities from contracting skeletal muscle, resulting
in plasma concentrations 50- to 100-fold higher than those
seen at rest (rev. in 4). Furthermore, when IL-6 was
infused into humans to achieve plasma levels similar to
those seen with intense sustained exercise, it stimulated
both lipolysis and fat oxidation (5), and no evidence of
insulin resistance was observed. Cumulatively, these find-
ings have led to the suggestion that muscle-derived IL-6
plays a role in regulating mammalian fuel homeostasis
during exercise.

AMP-activated protein kinase (AMPK) is a fuel sensing
enzyme that responds to cellular energy deficits by in-
creasing catabolic processes that generate ATP (e.g., fatty
acid oxidation) and downregulating anabolic processes
that consume ATP but are not acutely required for cell
survival (e.g., protein, glycerolipid, and cholesterol synthe-
sis) (rev. in 6). The current view is that the primary
mechanism by which AMPK is activated is through alter-
ations in cellular energy state, as manifested by increases
in the AMP:ATP ratio (rev. in 7). Hormones such as
adrenaline (8), leptin (9), and ciliary neurotrophic factor
(CNTF) (10) and pharmacological agents such as isopro-
terenol (11), thiazolidenediones (12), and metformin (13)
have been reported to alter cellular energy state and
activate AMPK in various tissues.

In addition to hormones and pharmacological agents, a
number of studies have demonstrated that exercise also
induces AMPK activity in multiple tissues (14). Previously,
we have demonstrated that exercise increases AMPK
activity in liver and adipose tissue, as well as muscle, in
the rat leading to the notion that a systemic factor may be
involved. In turn, the finding that increases in AMPK
during exercise are markedly attenuated in these tissues in
IL-6�/� mice suggested that one such factor could be IL-6
(15). The concurrent demonstrations that IL-6 can directly
activate AMPK in skeletal muscle and adipose tissue, both
in vivo and in vitro, also supported this notion (15,16).
Despite these observations, the mechanism by which IL-6
activates AMPK in various tissues is not known. In the
present study, we examined this question in skeletal
muscle. The results indicate that IL-6 activates AMPK in an
incubated rat extensor digitorum longus (EDL) prepara-
tion by increasing the concentrations of cAMP and, sec-
ondarily, the AMP:ATP ratio. They also suggest that IL-6
concurrently stimulates lipolysis, glycogenolysis, and fatty
acid oxidation in this tissue.

RESEARCH DESIGN AND METHODS

Antibodies for P-AMPK (Thr172), P-STAT3 (Tyr705) cAMP-responsive element
binding protein (P-CREB; Ser133), and phosphorylated glycogen synthase
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kinase 3� (P-GSK3�; Ser9) were obtained from Cell Signaling (Danvers, MA);
phosphorylated acetyl CoA carboxylase (P-ACC; Ser79) from Upstate Biotech-
nologies (Charlottesville, VA); total GSK3� from BD Transduction Laborato-
ries (San Jose, CA); and uncoupling protein 3 (UCP3) from Chemicon
(Billerica, MA). Peroxisome proliferator–activated receptor-� coactivator 1�
(PGC1�) antibody and 2�5� dideoxyadenosine were purchased from Calbio-
chem (San Diego, CA), rat recombinant IL-6 from Pierce Biotechnologies
(Rockford, IL), and Protein A/G PLUS agarose beads from Santa Cruz Biotech-
nology (Santa Cruz, CA). “SAMS” peptide and polyclonal antibodies that immu-
noprecipitate the �1 or the �2 catalytic subunit of AMPK and were used for
activity assays were obtained from QCB Biotechnology (Hopkinton, MA). Dul-
becco’s modified Eagle’s medium (DMEM), GlutMAX, penicillin/streptomycin,
and horse serum were purchased from Invitrogen (Carlsbad, CA) and FBS from
Hyclone (Logan, UT). All other materials were purchased from Sigma Aldrich (St.
Louis, MO).

Sprague-Dawley rats (50–100 g), obtained from Charles River Laboratories
(Framingham, MA), were housed in the Boston University School of Medicine
Animal Facility. Animals were on a 12-h light/dark cycle and were allowed
standard rodent diet and water ad libitum. Food was withdrawn 16–20 h
before experiments. All studies were conducted according to the Institutional
Animal Care and Use Committee (IACUC) at Boston University.
In vitro experiments. On the experimental day, rats were anesthetized with
sodium pentobarbital (60 mg/kg i.p.) and EDL muscles were removed and tied

to stainless steel clips as described previously (17). Muscles were preincu-
bated for 20 min at 37°C in oxygenated (95% O2/5% CO2) Krebs-Henseleit
solution containing 6 mmol/l glucose and then incubated in the absence or
presence of rat recombinant IL-6 (15–120 ng/ml) for the times indicated
(10–120 min). For palmitate oxidation measurements, muscles were incu-
bated with or without IL-6 (120 ng/ml) in the presense of 0.2 mmol/l palmitate
complexed to 2% BSA in media containing 0.2 �Ci/ml [U-14C] palmitate. After
30 min, media was acidified with acetic acid (0.5 N) and the 14CO2 released
was trapped on hyamine hydroxide–soaked filter paper. At the end of the
incubation protocols, muscles were blotted, quick-frozen in liquid nitrogen,
and stored at �80°C until additional analyses were performed.
In vivo experiments. Male Sprague-Dawley rats weighing 100 g (�5 g) were
used for experiments in which they were injected with IL-6 (25 ng/g animal
weight i.p.). Sixty minutes after the injection, animals were anesthetized with
sodium pentobarbital (60 mg/kg i.p.) and whole gastrocnemius muscle was
excised, frozen in liquid nitrogen, and stored at �80°C until further analysis.
Cell culture experiments. C2C12 myoblasts were purchased from American
Type Culture Collection (Rockville, MD). The cells were placed in six-well
plates and cultured in DMEM containing 1% GlutMAX, 1% penicillin/strepto-
mycin, and 10% FBS. When myoblasts reached 80% confluence, their differ-
entiation to myotubes was induced by switching the media to DMEM
containing 2% horse serum, 1% GlutMAX, and 1% penicillin/streptomycin.
Experiments were performed when over 80% of cells had formed myotubes.
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FIG. 1. Incubation with IL-6 increases �2 AMPK activity, protein phosphorylation, and UCP3 and PGC1� protein abundance in incubated EDL
muscle. A: �2 AMPK activity (bar graph) and AMP:ATP ratio (line graph) were assayed in rat EDL muscles incubated with IL-6 (120 ng/ml) for
15–60 min. B: Dose-curve of �2 AMPK activity in response to IL-6 (15–120 ng/ml) for 30 min. C: Immunoblots of P-ACC (Ser79), P-STAT3 (Tyr705),
P-AMPK (Thr172), P-CREB (Ser133), and �-actin in EDL muscles incubated with IL-6 (120 ng/ml) for 15 min. D: Immunoblots of PGC1�, UCP3, and
�-actin in EDL incubated with IL-6 (120 ng/ml) for 30–120 min. E: Densitometric analysis of immunoblots of UCP3 and PGC1� protein shown in
D. Results are means � SE, n � 4–10. EDL muscles. *P < 0.05 versus control. ‡P < 0.05 versus 15 min IL-6. Immunoblots shown are representative
of four samples.
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AMPK activity. AMPK activity was assayed in frozen skeletal muscle
homogenized in lysis buffer as described previously (18). Briefly, muscle lysate
containing 200 �g protein was immunoprecipitated with antibody specific to
the �2 or �1 catalytic subunit of AMPK and protein A/G agarose beads. Beads
were washed five times, and the activity of the immobilized enzyme was
assayed based on the phosphorylation of “SAMS” peptide (0.2 mmol/l) by 0.2
mmol/l ATP (containing 2 �Ci [�-32P] ATP) in the presence and absence of 0.2
mmol/l AMP. Label incorporation into the SAMS peptide was measured on a
Racbeta 1214 scintillation counter.
Western blotting. Cultured cells were scraped on ice in cell lysis buffer (Cell
Signaling Technology, Beverly, MA) (plus 1 mmol/l phenylmethylsulfonyl
fluoride) and centrifuged (14,000g for 15 min at 4°C). Protein concentrations
of cell supernatants were determined with the bicinchoninic acid reagents
(Pierce, Rockford, IL) using BSA as the standard. Fifty micrograms of protein
lysate from skeletal muscle or C2C12 cells were run on a 4–15% gradient
polyacrylamide gel and transferred onto a polyvinylidene fluoride membrane.
Membranes were then stained with Ponceau S (1% in 5% acetic acid) to ensure
even transfer and blocked in Tris-buffered saline (pH 7.5) containing 0.05%
Tween 20 (TBST) and 5% milk for 1 h at room temperature. Blots were first
incubated overnight in primary antibody diluted in TBST containing 5% BSA
(1:1,000 for P-AMPK, P-ACC, P-GSK3�, T-GSK3�; 1:2,000 for P-STAT3 and
PGC1�; and 1:500 for P-CREB and UCP3) and then in TBST containing 5%
nonfat dry milk and the appropriate secondary antibody conjugated to
horseradish peroxidase at a 1:5,000 dilution. After this, the membranes were
subjected to an enhanced chemiluminescence solution, and multiple autora-
diogaphs (to ensure linearity) were generated. Densitometry was performed
using Scion Image software.
Adenine nucleotides and cAMP measurements. Concentrations of ATP,
ADP, AMP, and phosphocreatine were initially determined spectrophotometri-
cally in neutralized perchloric acid filtrates as described previously (19). cAMP
content was determined with a commercially available enzyme-linked immu-
nosorbent assay kit according to the instructions provided by the manufacturer

(Alpco Diagnostics). Samples assayed for cAMP were digested in 5% trichloro-
acetic acid (TCA), and the supernatant was extracted five times in an equal
volume of diethyl ether. The aqueous layer was dried using the SpeedVac sc110,
and pellets were stored at �80°C until analysis. On the day of analysis, pellets
were reconstituted in 250 �l of deionized water. In studies in which both cAMP
and adenine nucleotides were assayed, tissues were extracted with TCA.
Other measurements. Lactate release into the incubation medium was
determined spectrophotometrically as described previously (20), and glycerol
release was determined with a commercially available kit after concentration
of the medium by lyophilization (Sigma). Tissue glycogen content was
determined using the phenol-sulfuric acid reaction (21).
Statistical analyses. Results are expressed as means � SE. Statistical
significance was determined by a one-way or two-way ANOVA for nonre-
peated measures, as appropriate. The Bonferroni post hoc test was used in the
event of a significant (P � 0.05) ratio.

RESULTS

IL-6 activates �2 AMPK in intact rat skeletal muscle.
The time course and dose response of AMPK activation by
IL-6 are presented in Fig. 1A and B. Incubation of EDL
muscle with IL-6 (120 ng/ml) has been shown previously to
induce a twofold increase in the phosphorylation of the �
subunit of AMPK at Thr172 (an index of its activity) after 15
min, with values returning to baseline by 60 min (15). As
shown in Fig. 1A, an almost identical pattern was observed
when the activity of the immunoprecipitated �2 isoform of
AMPK was measured. In contrast, no change in the activity
of the �1 isoform of AMPK was observed (data not
shown). Activation of the �2 AMPK occurred at IL-6

†

‡

†

FIG. 2. IL-6–induced increases in �2 AMPK activity, cAMP levels, and AMP:ATP ratio are abrogated by propanolol (Propr). A: Activity of �2 AMPK
(bar graph) and AMP:ATP ratio (line graph) in EDL pretreated or not pretreated for 30 min with the �-adrenergic antagonist propranolol (10
�mol/l) and then with or without IL-6 (120 ng/ml) for 15 min. B: cAMP levels in EDL muscles incubated with IL-6 (120 ng/ml) for 15 or 30 min.
C: cAMP levels in EDL preincubated with or without propranolol (10 �mol/l) for 30 min and then with or without IL-6 (120 ng/ml) for 15 min.
Results are means � SE (n � 4–7), *P < 0.05 versus control, no propanalol, †P < 0.05 versus IL-6 no propanalol, ‡P < 0.05 versus 15-min time
point.

TABLE 1
IL-6 alters intracellular concentrations of adenine nucleotides and creatine phosphate

Time of incubation (min)
Control 10 15 30 60

ATP (�mol/g tissue) 4.4 � 0.2 3.8 � 0.3 3.2 � 0.3* 4.1 � 0.4 4.1 � 0.2†
ADP (�mol/g tissue) 0.67 � 0.02 0.84 � 0.04 0.73 � 0.12 0.67 � 0.04 0.83 � 0.11
AMP (�mol/g tissue) 0.04 � 0.004 0.045 � 0.003 0.07 � 0.006* 0.05 � 0.007 0.03 � 0.007†
Creatine phosphate (�mol/g tissue) 13.9 � 0.5 10.9 � 0.5* 10.7 � 0.8* 12.5 � 1.0 12.9 � 0.4†

Data are means � SE (n 	 5-8). Rat EDL muscles were incubated with IL-6 (120 ng/ml) for 10–60 min. Because no significant differences
in the nucleotide content were observed in the control muscles at the different time points, values for control muscles at all time points were
pooled for statistical purposes. *P � 0.05 vs. control, †P � 0.05 vs. 15 min IL-6.
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concentrations as low as 15 ng/ml; however, it was some-
what less than that observed at 120 ng/ml (Fig. 1B).
Incubation with IL-6 (120 ng/ml) for 15 min increased the
phosphorylation of AMPK (Thr 172) and of its downstream
target ACC (Ser79) (Fig. 1C) in keeping with the changes in
AMPK �2 activity. Thereafter, P-AMPK and P-ACC re-
turned to baseline values after 60 min and remained so for

up to 4 h, the maximum length of incubation tested (data
not shown). IL-6 also increased the phosphorylation of
STAT3 (Tyr 705), a known event in the activation of the
JAK/STAT signaling cascade (22) (Fig. 1C). Finally, al-
though the increase in AMPK activity was transient, it was
followed by two- and fourfold increases in UCP3 protein
abundance after 1 and 2 h, respectively (Fig. 1D and E). A
smaller increase in PGC1� protein expression (25%) was
observed; however, it only achieved statistical significance
after 2 h (Fig. 1D and E).
IL-6 alters the levels of intracellular adenine nucle-

otides. As a first step in studying the mechanism by which
IL-6 activates AMPK, we examined its effect on cellular
energy state. Control muscles gave similar values to those
reported previously (23); however, incubation with IL-6
(120 ng/ml) led to decreases in the concentrations of
creatine phosphate and ATP, no significant changes in
ADP, and an increase in AMP levels (Table 1). This
resulted in increases in the AMP:ATP ratio that paralleled
those of AMPK activity, with both of them being maximal
at 15 min and returning to baseline by 60 min (Fig. 1A).
The effects of IL-6 on AMPK activity are dependent

on cAMP production and energy state alterations.

Koh et al. (8) have reported that the injection of adrenaline
activates AMPK and increases the AMP:ATP ratio in rat
adipose tissue and that these changes are inhibited by the
�-adrenergic antagonist propranolol. Here we found that
propranolol, at a concentration of 10 �mol/l, also inhibited
IL-6–induced AMPK activation, raising the possibility that

Control IL-6
0.0

0.5

1.0

1.5

2.0

2.5 *

*

 α
2 

A
M

PK
 a

ct
iv

ity
(p

m
ol

/m
in

/m
g 

pr
ot

ei
n)

 Vehicle
 ddA

†

FIG. 3. The adenylyl cyclase inhibitor 2�-5� dideoxyadenosine (ddA)
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inhibitor, †P < 0.05 versus IL-6 no inhibitor.
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1 h before being killed. Immunoblots shown are representative of n � 3. C: cAMP levels assayed in extracts of C2C12 myotubes treated for 15
min with IL-6 (50 ng/ml). D: Adenine nucleotide and cAMP levels in muscles studied in B. Results are means � SE, n � 3–4. *P < 0.05 versus
control.
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IL-6 caused �-adrenergic stimulation (Fig. 2A). In keeping
with this notion, 15-min incubation with IL-6 (120 ng/ml)
induced an increase in both cAMP levels and the phos-
phorylation of its downstream target P-CREB at Ser133

(Figs. 2B and 1C). As expected, the IL-6–induced increase
in cAMP was prevented by propranolol (Fig. 2C). In
addition, propranolol prevented the increases in the AMP:
ATP ratio caused by IL-6 (Fig. 2A). As shown in Fig. 1A, the
alterations in the AMP:ATP ratio (Fig. 2A, line-graph) coin-
cided with changes in �2 AMPK activity (Fig. 2A, bar graph).
Finally, consistent with these results, activation of AMPK by
IL-6 was also prevented by the adenyl cyclase inhibitor 2�5�
dideoxyadenosine (Fig. 3).
The effects of IL-6 on energy state and cAMP are also
observed in cultured C2C12 myotubes and gastrocne-
mius muscle in vivo. Treatment of C2C12 cells with IL-6
increased cAMP, P-ACC, P-AMPK, P-STAT3, and P-CREB
abundance, as did isoproterenol (Fig. 4A and C), suggest-
ing both that the effects of IL-6 on the EDL are not unique
to the incubated muscle and that they can be mimicked by
isoproterenol, a known �-adrenergic agonist. In keeping
with the former conclusion, IL-6 injected intraperitoneally
for 60 min also led to increases in the abundance of P-ACC,

P-AMPK, P-STAT3, and P-CREB and in the AMP:ATP ratio
in the gastrocnemius muscle, just as it did in the incubated
muscle (Fig. 4B and D).
IL-6 increases lipolysis and glycogenolysis. IL-6 has
been reported to increase whole-body lipolysis (5) and
decrease glycogen content in primary hepatocytes (24), as
do catecholamines, glucagon, and other agents that in-
crease cAMP. For this reason, we assessed whether IL-6
had similar effects on muscle. As shown in Fig. 5A,
incubation of the EDL with IL-6 (120 ng/ml) for 120 min
diminished muscle glycogen by 30%. In keeping with this,
IL-6 treatment decreased the phosphorylation of GSK3�
suggesting that it inhibited glycogen synthase activity (Fig.
5B). (Phosphorylase A and glycogen synthase activity per
se were not assayed.) The decrease in GSK3� phosphory-
lation was not affected by propranolol, indicating that it is
independent of AMPK activation. IL-6 also caused a 1.5-
fold increase in lactate release into the media and in-
creased the release of glycerol, suggesting that glycolysis
and lipolysis were also stimulated by this treatment (Fig.
5C and D). Finally, in agreement with previous studies in
cultured myotubes and soleus muscle (25), incubation of
the EDL for 30 min with IL-6 caused a fivefold increase in
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palmitate oxidation (Fig. 5E), an effect attributed to AMPK
activation.

DISCUSSION

IL-6 acutely activates AMPK in skeletal muscle both in vivo
and in vitro (15,16,25,26). The results of the present study
indicate that it does so by altering events that increase
intracellular cAMP and, secondarily, the AMP:ATP ratio.
In support of this notion, IL-6–induced AMPK activation in
the incubated EDL was accompanied by increases in
cAMP, and this, as well as the increase in the AMP:ATP
ratio, was completely inhibited by the �-adrenergic antag-
onist propranolol. Additionally, the adenyl cyclase inhibi-
tor 2�5� dideoxyadenosine blocked the activation of AMPK
by IL-6. Finally, IL-6 caused similar changes in C2C12
myotubes and gastrocnemius muscle in vivo, indicating its
effects were not unique to the incubated EDL.

How the IL-6–induced elevation of cAMP in turn in-
creased the AMP:ATP ratio remains to be determined.
Another agent that increases cAMP in skeletal muscle,
isoproterenol, also has been reported to increase AMPK
activity (27), lipolysis, and glycogenolysis (28); however,
its effect on energy state was not examined. On the other
hand, such measurements have been carried out in adi-
pose tissue. Investigations in 3T3-L1 adipocytes have dem-
onstrated that increases in the AMP:ATP ratio and AMPK
activation occur when cAMP is increased by either fors-
kolin or isoproterenol (11) and that they are dependent on
the stimulation of lipolysis. Studies by Koh et al. (8) have
suggested that a similar mechanism occurs in rat adipose
tissue in vivo, in that exercise and adrenaline (epineph-
rine)-induced increases in the AMP:ATP ratio and AMPK
activity were both inhibited by propranolol. Recently, it
has been reported that IL-6 induces lipolysis in porcine
adipocytes and that this effect appears to be dependent on
the actions of IL-6 on ERK1/2 and its ability to directly
phosphorylate hormone-sensitive lipase (HSL) (29); how-
ever, the role of AMPK in this setting was not examined.
Whether the stimulation of lipolysis accounts for the
IL-6–induced changes in energy state and AMPK activity in
the EDL muscle as it does in adipose tissue remains to be
determined.

It has been clearly demonstrated that cAMP and protein

kinase A (PKA) activation increase the biosynthesis of IL-6
in various cells (30); however, IL-6–induced increases in
cAMP have not been previously reported. Thus, one major
question is, how does IL-6 induce cAMP production? We
speculate that an intermediary molecule could be protein
kinase C-
 (PKC
), given that this enzyme mediates the
activation of the cAMP producing adenyl cyclase isoform
VII (31) and that IL-6 induces its membrane translocation
in hepatocytes (32). Also, PKC
 mediates the binding of
the IL-6 transmembrane receptor gp130 to STAT3 (33,34),
and it has been implicated in IL-6–induced insulin signal-
ing (34).

The effects of IL-6 on the phosphorylation of CREB
(Ser133) have not been reported previously; however, it has
been noted that both AMPK and PKA phosphorylate CREB
at the same residue (Ser133) (35). In addition, both AMPK
(36,37) and CREB (38) appear to regulate the abundance
of UCP3 and PGC1�. Whether AMPK or PKA is responsi-
ble for the IL-6–induced increases in UCP3 and PGC1�
observed in the present study remains to be determined
experimentally. It is noteworthy that these effects of IL-6
are qualitatively similar to those produced by leptin and
CNTF (10,39), both of which also induce a rapid and
transient activation of AMPK, increase the AMP:ATP ratio
(9,10), and activate the JAK/STAT signaling cascade (22).
Recently, it has been reported that STAT3 can localize in
mitochondria and enhance oxidative phosphorylation
(40), suggesting that it could directly influence cellular
ATP levels.

In previous reports, a concentration of IL-6 (120 ng/ml)
well above that in plasma was used to induce AMPK
activation in incubated rat skeletal muscle (15,26,41). In
the present study, AMPK activation was observed at IL-6
concentrations as low as 15 ng/ml; however, this is still
significantly higher than the reported resting concentra-
tion of IL-6 in the plasma of a rat (10–300 pg/ml) (42,43).
During sustained exercise, the muscle cell is most likely
exposed to much higher concentrations of IL-6 given that
it is synthesizing IL-6 and releasing it into the circulation at
amounts sufficient to increase its plasma concentration
dramatically. Thus, in humans, IL-6 release from muscle
during exercise can result in plasma concentrations 50- to
100-fold higher than those at rest (44) and concentrations

Stimulus
(e.g. exercise)

IL-6 production

IL-6

AMPK PKA

fat 
oxidation

AMP/ ATP cAMP

glycogenolysis 
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?

FIG. 6. Paracrine functions of IL-6 synthesized and released by muscle during exercise. During sustained intense exercise, IL-6 is synthesized and
released from skeletal muscle cells and increases muscle cAMP, AMP:ATP ratio, and AMPK activity. This results in enhanced muscle fatty acid
oxidaton, lipolysis, and glycogenolysis.
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in the interstitial fluid of muscle 10- to 100-fold higher than
those in plasma (45,46). In one study, an interstitial fluid
IL-6 concentration of 1.2 ng/ml was observed in humans
after low-grade repetitive exercise without a detectible
change in plasma IL-6 (46). Therefore, in the rat, if one
assumes a low (�10 pg/ml) resting plasma IL-6 level and
an effect of exercise similar to that in humans, an intersti-
tial fluid IL-6 concentration between 10–100 ng/ml would
be achieved during intense exercise; this, however, re-
mains to be determined.

It has been proposed that IL-6 synthesized and released
into the circulation by skeletal muscle during exercise is
an endocrine signal from the muscle cell that is becoming
fuel deficient (4). In keeping with this notion, IL-6 in-
creases adipose tissue lipolysis and hepatic glycogenolysis
(during exercise) in humans (5,47) and its release from
muscle is enhanced when muscle glycogen is depleted
(48). As already noted, large increases in muscle intersti-
tial fluid IL-6 have been observed in humans after low-
intensity exercise in the absence of a change in plasma
IL-6. This, together with the results of the present study,
suggest that IL-6 could also act as an autocrine or para-
crine factor that enhances lipolysis and glycogenolysis and
activates AMPK in the muscle cell during exercise (Fig. 6).
Finally, the physiological relevance of IL-6 in this setting is
strongly suggested by the observation that both the ability
to sustain exercise and activate AMPK are impaired in
IL-6�/� mice (15,49,50).

In summary, the results indicate that IL-6, at concentra-
tions hypothetically representative of those released dur-
ing exercise, activates AMPK in skeletal muscle by
increasing cAMP production and, secondarily, the AMP:
ATP ratio. They also indicate that this transient activation
of AMPK results in a more sustained increase in the
protein expression of two AMPK-mediated genes that act
on mitochondria, PGC1�, and UCP3. Finally, they reveal
that IL-6 increases substrate availability within the muscle
cell by increasing glycogenolysis and lipolysis. Studies in
IL-6�/� mice have established that a lack of IL-6 markedly
inhibits AMPK activation during exercise (15), whether it
also diminishes the increases in cAMP levels, and PGC1�
and UCP3 expression caused by exercise, remains to be
determined.
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No potential conflicts of interest relevant to this article
were reported.

The authors thank Kathleen Tumelty, Vaishali Patel, and
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