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Abstract

Gene-expression deconvolution is used to quantify different types of cells in a mixed popula-

tion. It provides a highly promising solution to rapidly characterize the tumor-infiltrating

immune landscape and identify cold cancers. However, a major challenge is that gene-

expression data are frequently contaminated by many outliers that decrease the estimation

accuracy. Thus, it is imperative to develop a robust deconvolution method that automatically

decontaminates data by reliably detecting and removing outliers. We developed a new

machine learning tool, Fast And Robust DEconvolution of Expression Profiles (FARDEEP),

to enumerate immune cell subsets from whole tumor tissue samples. To reduce noise in the

tumor gene expression datasets, FARDEEP utilizes an adaptive least trimmed square to

automatically detect and remove outliers before estimating the cell compositions. We show

that FARDEEP is less susceptible to outliers and returns a better estimation of coefficients

than the existing methods with both numerical simulations and real datasets. FARDEEP

provides an estimate related to the absolute quantity of each immune cell subset in addition

to relative percentages. Hence, FARDEEP represents a novel robust algorithm to comple-

ment the existing toolkit for the characterization of tissue-infiltrating immune cell landscape.

The source code for FARDEEP is implemented in R and available for download at https://

github.com/YuningHao/FARDEEP.git.

Author summary

Rapidly emerging evidence suggests that the tumor immune microenvironment not only

predisposes cancer patients to diverse treatment outcomes but also represents a promising

source of biomarkers for better patient stratification. Different from the immunohis-

tochemistry-based scoring practice, which focuses on a few selected marker proteins,

immune deconvolution pipelines inform a previously untapped method to comprehen-

sively reveal the tumor-infiltrating immune landscape. Recognizing the numerous
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strengths of existing immune deconvolution algorithms, here we show data outliers,

which are inevitable in whole tissue sequencing data sets, substantially skew estimation

results. Moreover, an estimate related to the absolute amount of each immune subset

offers valuable insight into the nature of the host response in addition to percentage infor-

mation alone. Thus, we engineered a new immune deconvolution pipeline, coined as Fast

and Robust Deconvolution of Expression Profiles (FARDEEP), to automatically detect

and remove outliers prior feeding data into the deconvolution algorithm and to provide

estimates related to the absolute quantity of each immune subset. Utilizing both synthetic

and real data sets, we found that FARDEEP returns superior coefficients and offers a

robust tool to reveal the immune landscape of human cancers.

Introduction

Immune checkpoint blockade has revolutionized the rational design of neoadjuvant cancer

therapies. Compelling evidence suggests that a favorable tumor immune microenvironment

underpins better clinical responses to radiotherapy, chemotherapy, and immunotherapy [1–

3]. Immunohistochemistry (IHC)-based immunoscores, which quantify the number of CD8+

cytotoxic T lymphocytes and CD45RO+ memory T cells, show better prognostic potential than

conventional pathological methods in colon cancer patients [4, 5]. Hence, harnessing the com-

position of intra-tumoral immune cell infiltration is a highly promising approach to stratify

tumors [6–11]. The current IHC immunoscoring approach has two limitations. First, the

interpretation of immune cell subsets varies among pathologists and institutions, thus lacking

a consistent standard for the scoring practice. Second, only a limited number of biomarkers

can be assessed simultaneously, which prevents a comprehensive annotation of the immune

contexture in the tumor microenvironment (TME). Hence, robust methods for genome data-

informed cell type quantitation are in urgent need.

Immunogenomics presents an unprecedented opportunity to resolve the intra-tumoral

immune landscape. Cell type deconvolution using leukocyte signature gene expression profil-

ing is a highly promising approach to estimate the global immune cell composition from

whole tumor gene expression data [12–17]. However, a significant technical obstacle is that the

efficacy and accuracy of gene expression deconvolution are limited by the large number of out-

liers, which are frequently observed in tumor gene expression datasets [18]. The first step

towards enhancing the overall gene deconvolution algorithms is to improve methods for outli-

ers identification and processing. Those outliers include genes with abnormal expression value

which may be caused by measurement error, environmental effect, expression from non-

immune cells, or natural fluctuations in certain type of immune cells. Notably, the current

immune deconvolution gene signature matrix relies on the profiling of differentially expressed

genes among different immune subsets. Frequent contamination of transcripts reading from

cancer cells may significantly bias the algorithms. In this study, we report a novel FAst and

Robust DEconvolution of Expression Profiles (FARDEEP) method that significantly improves

the estimation of coefficients.

Let yi be the observed expression value for the ith gene; xi, a p-dimensional vector, be the

expected expression of the ith gene for the p different cell types; and X = [x1, . . ., xn]0 be the sig-

nature matrix. The gene-expression deconvolution problem can be formulated as follows,

yi ¼ x0iβþ εi; ð0:1Þ

where β 2 Rp
is an unknown parameter corresponding to the compositions of p cell types,
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006976 May 6, 2019 2 / 21

Cancer Center Research Grant (YLL). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006976


and εi is a noise term with a mean of 0. Several methods were proposed to solve this deconvo-

lution problem. To enforce the non-negativity of β in (0.1), several algorithms, such as the

Non-Negative Least Square (NNLS), Non-negative Maximum Likelihood (NNML) frame-

works and the perturbation model (PERT) were developed. They all rely on the signature

matrix (X) derived from Microarray experiments [14, 19–24]. To extend this work to RNA-

seq data, Finotello et al. [14] proposed a constraint linear model with a signature matrix

derived from RNA-seq data. Additionally, the gene expression of each cell may vary depend-

ing on its microenvironment and other factors, which will lead to a biased estimation. To

address this issue, Microarray Microdissection with Analysis of Differences (MMAD) incor-

porates the concept of the effective RNA fraction and estimates coefficients using a maxi-

mum likelihood approach [25]. To further adapt deconvolution to high-dimensional

settings, Altboum et al. [26] proposed a penalized regression framework, Digital Cell Quanti-

fier (DCQ), to encourage sparsity for the estimated β using the elastic net [27]. Cell-type

identification by estimating relative subsets of RNA transcripts (CIBERSORT) uses ν-sup-

port vector regression (ν-SVR) to enhance the robustness of gene expression deconvolution.

CIBERSORT performs a regression by finding a hyperplane that fits as many data points as

possible within a tube whose vertical length is a constant ε [12]. The ε-tube provides a region

in which estimation errors are ignored. This model does not include an intercept to capture

contributions of other contents. Additionally, to increase the computational efficiency,

CIBERSORT applies Z-normalization to the data before fitting the regression, which may

introduce estimation bias. Based on the CIBERSORT framework, several extensions have

been proposed to overcome limitations such as platform inconsistency between signature

and mixture matrices and low estimation accuracy for γδ T cell [15–17]. However, the quan-

titative information of cell proportions of these two approaches is built on CIBERSORT

whose performance may be challenged by frequent outliers in whole tumor tissue transcrip-

tomes. To reduce the dependence on the signature matrix, xCell utilizes the concept of sin-

gle-sample gene set enrichment analysis (ssGSEA) to calculate an immune cell score which

could predict the enrichment of immune cells [13]. Despite its robustness, xCell relies much

on the ranking of gene expression value which leads to suboptimal solution for the estima-

tion accuracy. Overall, a robust method that determines both the distribution and absolute

volume of tumor-infiltrating lymphocytes (TILs) will further improve the current gene

deconvolution pipeline.

To handle the heavily contaminated gene expression data and provide absolute cell abun-

dance estimation, we developed a robust method based on the Least Trimmed Square (LTS)

framework [28, 29]. LTS finds h observations with smallest residuals, and the estimator β̂ is

the least squares fit over these h observations. LTS is an NP-hard problem, and Rousseeuw and

Driessen [30] proposed a stochastic FAST-LTS algorithm. Nevertheless, it may give a subopti-

mal fitting result and get much slower when the sample size and dimension of variables

become larger and higher since its accuracy relies on the initial random h-subsets and the

number of initial subsets. When n is the sample size and p is the number of coefficients, h is

suggested to be the smallest integer that is not less than (n + p + 1)/2 to remove as many outli-

ers as possible while keeping an unbias result. Using the information of only half of the data

reduces the power of the estimator because the amount of outliers in the real case cannot be

presumed and can be small. Xu et al. [31] proposed an adaptive least trimmed square which is

not limited to the randomness of initial subset but only applied the binary dataset. In this

study, we extend the adaptive least trimmed square to introduce a model-free method, which

could find the number of outliers automatically based on LTS. FARDEEP provides a flexible

framework which is suitable for both Microarray and RNA-seq data using LM22 and
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Immunostate signature matrices respectively. As evidence of high fidelity and robustness,

FARDEEP exhibits superior performance in simulated and real-world datasets.

Materials and methods

Model formulation

The usual linear deconvolution model can be expressed as below,

y ¼ Xβþ ε;

where y 2 Rn
is the observed expression data for n immune subset signature genes, X 2 Rn�p

denotes a mean gene expression signature matrix for p different cell types, β 2 Rp
contains

each unknown cell type abundance, and ε 2 Rn
is a vector of random errors with zero mean

and variance of σ2I. To incorporate outliers, we propose the following model

y ¼ Xβþ τ þ ε; ð0:2Þ

where parameter τ = (τ1, . . ., τn)0 is a sparse vector in Rn with τi 6¼ 0 indicating the ith gene is

an outlier.

Under the formulation of (0.2), let β̂ols ¼ ðX
>XÞ� 1X>y be the Ordinary Least Square (OLS)

estimate and H = X(X>X)−1X> be the projection matrix. The residuals r = (r1, . . ., rn) using

OLS could be formulated as

r ¼ y � Xβ̂ols ¼ ðI � HÞτ þ ðI � HÞ�: ð0:3Þ

with mean of (I −H)τ and variance of σ2(I −H).

Adaptive least trimmed square

From (0.3), the residuals, ri with the corresponding τi 6¼ 0, would deviate from zero, which sug-

gests that the set of outliers can be identified through thresholding as follows

E ¼ fi : jrij > k� rmedg; ð0:4Þ

where E is the set of detected outliers, k is a tuning parameter controlling the sensitivity of the

model, and rmed is the median of fjrjig
n
i¼1

. We denote the number of elements in set E as |E|

and let N be the number of true outliers in the data. First, we can use least squares and formula

(0.4) to obtain a rough estimate of E denoted as Ê. Let the cardinality of Ê be �N . Since the

model at this moment is inaccurate with contamination of outliers, �N is an overestimation of

N which can be used to get an underestimate via N ¼ a1
�N with α1 2 (0, 1). With N , we can

then update the least square fitting after removing the N samples with the largest absolute

value of residuals and obtain an improved estimate of E and the corresponding �N . We can

improve the model by repeating the procedure, but we need to increase the underestimate of

outliers, N , by a factor of α2 with α2 > 1 for each iteration to force the convergence between �N
and N . In sum, we initialize our algorithm by setting

β̂ð0Þ ¼ ðX>XÞ� 1X>y;

rð0Þ ¼ y � Xβ̂ð0Þ;

FARDEEP is a novel and robust immune deconvolution tool

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006976 May 6, 2019 4 / 21

https://doi.org/10.1371/journal.pcbi.1006976


which is the OLS solution. For the jth iteration, where j� 1, we update �N ðjÞ by

�N ðjÞ ¼
jfi : jrðj� 1Þ

i j > rðj� 1Þ

med gj; j ¼ 1;

minðjfi : jrðj� 1Þ

i j > k � rðj� 1Þ

med gj;
�N ðj� 1ÞÞ; j � 2:

8
<

:
ð0:5Þ

where the min(�, �) operator guarantees that �N ðjÞ, an overestimation of N, is non-increasing.

Similarly, we update N ðjÞ through

N ðjÞ ¼
da1

�N ðjÞe; j ¼ 1;

minfda2Nðj� 1Þe; �N ðjÞg; j � 2;

8
<

:
ð0:6Þ

where dxemeans the ceiling of x 2 R, α1 2 (0, 1) is used to obtain a lower bound for N in the

first step, α2 > 1 guarantees the monotonicity of N ðjÞ, and the min(�, �) operator guarantees

N ðjÞ is smaller than �N ðjÞ. Then we update β̂ and r after removing N ðjÞ outliers by

β̂ðjÞ ¼ ðXðjÞ>XðjÞÞ� 1XðjÞ>yðjÞ;

rðjÞ ¼ y � Xβ̂ðjÞ:

We repeat this procedure until N and �N converge.

Hence, we hereby report a novel approach, coined as adaptive Least Trimmed Square

(aLTS), to automatically detect and remove contaminating outliers. Our aLTS is an extension

of the iterative LTS algorithm proposed by Xu et al. [31] which is designed for binary output

such as the comparison between two images or videos.

FARDEEP

Because the abundance of cell types are always non-negative, we replaced the OLS regression

in the aLTS procedure with non-negative least square regression (NNLS). By applying the

modified aLTS to the deconvolution model (0.2) and solving the following problem,

β̂ ¼ argmin
β

ky � Xβk2

2
; subject to β � 0

using Lawson-Hanson algorithm [19], we developed a robust tool, FARDEEP, for cellular

deconvolution summarized in Algorithm 1.

One unique advantage of FARDEEP is that it is fast and guarantees to converge within

finite steps, which is summarized in the following theorem.

Algorithm 1 FAst and Robust DEconvolution of Expression Profiles
Input: k > 0, 0 < α1 < 1, α2 > 1, y, X
Initialization: solving the following NNLS problem

β̂ð0Þ ¼ argmin
β

ky � Xβk2

2
; subject to β � 0;

rð0Þ ¼ y � Xβ̂ð0Þ:

1: compute �N ð1Þ and N ð1Þ using (0.5) and (0.6);
2: solving the NNLS problem after removing N ð1Þ genes with largest

residuals, and update β̂ð1Þ, r(1).
3: repeat
4: compute �N ðjÞ and N ðjÞ using (0.5) and (0.6) for j � 2;

FARDEEP is a novel and robust immune deconvolution tool
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5: solving the NNLS problem after removing N ðjÞ genes with largest
residuals, and update β̂ðjÞ, r(j);
6: until �N ¼ N.

Output: Coefficients β̂, Number of outliers N̂, Index of outliers

Theorem 1 Algorithm 1 (FARDEEP) stops in no more than j� steps, where

j� ¼
� log a1

log a2

� �

þ 2:

Here b�c is the largest integer that is less than or equal to x.

Proof. It follows from the fact that the sequence f �N ðjÞg is non-increasing, and fN ðjÞg is a

geometrically increasing sequence that is bounded by the smallest component of f �N ðjÞg. Spe-

cifically, assume that j� steps have been taken in FARDEEP, then j has approached j� − 1, and

N ðjÞ � a2N ðj� 1Þ for 0� j� j� − 1, so

�N ð0Þ � �N ðj�� 2Þ � N ðj�� 2Þ � a
j�� 2

2 N 0 � a
j�� 2

2 a1
�N 0:

which leads to the result.

The β̂ from FARDEEP, denoted as TIL subset score, is the direct estimate of the linear

model without any normalization and hence reflects the absolute abundance of TILs. In addi-

tion, we can derive the relative TILs abundance from the TIL subset scores through

~b j ¼
b̂j

Pp
k¼1
b̂j

; ð0:7Þ

where b̂ j is the jth TIL subset score. In practice, the TIL subset score provides important infor-

mation of patient’s tumor-infiltrating immune landscape, and we have included a discussion

in S2 Text.

Parameter tuning

There are three tuning parameters k, α1, and α2 in FARDEEP. Since α1 is only used in the first

iteration, a relatively small α1 is preferred to ensure that FARDEEP does not remove too many

outliers at the first step. In practice, FARDEEP is not sensitive to different values of α1, and α2,

so we set them to 0.1 and 1.5 respectively by default. However, k controls the number of outli-

ers in each iteration and is critical for the performance of FARDEEP. Thus, we tune k on a

case-by-case basis for each sample to preserve meaningful fluctuations of gene expression lev-

els. Effects for different tuning parameters are shown in S1 Table. Since the test group may

contain outliers that influence the accuracy of the tuning result, cross-validation is not advised.

Instead, we applied the Bayesian Information Criterion (BIC) and assume that the errors fol-

low a log-normal distribution instead of a normal distribution among gene expression datasets

as suggest by Beal [32]. We define the modified BIC referring to the setting of She and Owen

[33]:

BIC�ðkÞ ¼ m log
Pn

i¼1
1fi=2Êg log2

ðyi � ŷiÞ
2

m
þ bðlogðmÞ þ 1Þ; ð0:8Þ

where Ê being the set of detected outliers, b is number of parameters and equals N̂ þ pþ 1

with N̂ ¼ jÊj being the number of outliers, and m equals n � N̂ . Then, we choose the value of

k associated with the smallest BIC�.

FARDEEP is a novel and robust immune deconvolution tool
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Results

To test the performance of FARDEEP, we compared our approach with the existing methods

using numerical simulations and real datasets. Here, we list the outlier genes detected by FAR-

DEEP for real datasets in S4 Table. We use LM22 signature matrix containing 22 immune cell

types hematopoietic cells for Microarray data and use quanTIseq signature matrix containing

10 immune cell types for RNA-Seq data. To compare the performance of different methods,

we report the sum of squared error (SSE), the coefficient of determination denoted as R-

squared (R2) and the Pearson correlation (R) defined as follows

SSE ¼
Xp

j¼1

ðb
�

j � b̂ jÞ
2
;

R2 ¼ 1 �
Xp

j¼1

ðb
�

j � b̂ jÞ
2
=
Xp

j¼1

ðb
�

j �
�b�Þ

2
; �b� ¼

1

p

Xp

j¼1

b
�

j ;

R ¼

Xp

j¼1
ðb
�

j �
�b�Þðb̂ j �

�̂
bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
j¼1
ðb
�

j �
�b�Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pp
j¼1
ðb̂ j �

�̂
bÞ

2

q ;
�̂
b ¼

1

p

Xp

j¼1

b̂ j;

where β� is the ground truth, and β̂ is the estimate.

In silico simulation with varied error types

To test the robustness of FARDEEP under different error conditions, we simulated three data-

sets refer to the setting in [33, 34] with normally distributed errors, heavy tailed errors. The

observations were generated based on the linear regression model (0.2). The predictor matrix

is X = (x1, . . ., xn)0 = UΣ1/2, where U ij � Uð0; 20Þ and Σij ¼ r
Ifi6¼jg with ρ = 0.5. Consider the

proportion of outliers f 2 {5%, 10%, 20%, 30%}, sample size n = 500, and number of predictors

p = 20, we added random errors and outliers to the simulated data as follows:

• Random errors: we generated the random error vector from i) standard normal distribution,

ii) t-distribution with 3 degrees of freedom.

• Vertical outliers: we generated a n dimensional zero vector τ and randomly selected nf ele-

ments in τ to be the outliers generated from a non-central t-distribution with 1 degree of

freedom and a non-centrality parameter of 30.

• Leverage points: we took 20% of the contaminated data as leverage points, that is, replacing

the corresponding predictors by the samples from N ð2maxðXÞ; 1Þ.

The coefficients βj were sampled from Uð0; 1Þ, where j = 1, . . ., p. Based on the framework

above, the dependent variable could be obtained by

y ¼ Xβþ τ þ ε:

We simulated each model 50 times. As shown in Figs 1 and 2, FARDEEP outperforms other

methods, evidenced by the SSE, R2 and R values.

To check FARDEEP’s accuracy of outlier detection, we simulated {5%;10%;20%;30%} outli-

ers using the same method as above for a model with both normally distributed and heavy-

tailed noise. As shown in Table 1, the tuning parameter k decreases when the amount of outli-

ers becomes larger, and the true positive rates always stay around 1, indicating that the tunning

of k is highly effective.

FARDEEP is a novel and robust immune deconvolution tool
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In the supplementary material S3 Text, we also included another outlier construction

scheme with X related outliers and a simulation setting with correlated responses. In both sce-

narios, FARDEEP dominates other methods in terms of SSE, R2 and R values.

In silico simulation based on leukocyte gene signature matrix file

Following the similar procedure as in Newman et al., we randomly generated the abundance

of different cells from interval [0, 1] [12]. Notably, the sum of cell abundance is not necessarily

1. The measurement errors were sampled from 2N ð0; ð0:1 log2ðsÞÞ
2Þ. To incorporate outliers, we

randomly selected i/50 of the data and replaced them with data drawn from 2N ð10; ð0:3 log2ðsÞÞ
2Þ

where i = 1, 2, . . ., 25 and s is the standard deviation of original mixtures.

We repeated the procedure nine times and estimated the cell type abundance using FAR-

DEEP, CIBERSORT (without converting to percentage), NNLS, PERT, and DCQ. As shown

in S2 Table, we found that the SSE range for FARDEEP is 1.51 × 10−7 to 1.47 × 10−4, R2 and R
keeps being 1 regardless of the number of outliers, while Other methods show significantly

larger SSE and smaller R2, R.

Synthetic dataset

We used the cell line dataset GSE11103 generated by Abbas et al. [35] that contains gene

expression profiles of four immune cell lines (Jurkat, IM-9, Raji, and THP-1) and four mix-

tures (MixA, MixB, MixC, and MixD) with various ratios of cells. Before analysis, we quantile

normalized the mixture data for 54675 probesets and downloaded the immune gene signature

matrix with 584 probesets from CIBERSORT website. Then, we applied five deconvolution

Fig 1. SSE of coefficients for different approaches. We simulated different percentage of outliers ({5%, 10%, 20%, 30%}) and compared the SSE for coefficients

applying NNLS, DCQ, PERT, CIBERSORT, and FARDEEP. (A) random error with standard normal distribution, (B) random error with t-distribution.

https://doi.org/10.1371/journal.pcbi.1006976.g001
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Fig 2. Compare the estimation accuracy of different deconvolution approaches (the values in parentheses are R2 and R). Based on {5%, 10%, 20%,

30%} percentage of outliers, we computed R2 to evaluate how well the estimators fit for a straight line β̂ ¼ β. (A) random error with standard normal

distribution, (B) random error with t-distribution.

https://doi.org/10.1371/journal.pcbi.1006976.g002
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methods, including FARDEEP, CIBERSORT (without converting to percentage), DCQ,

NNLS, and PERT, to calculate the sum of squared errors of the estimated abundance of the

four immune cell lines. We also compared with CIBERSORT absolute mode, which is a beta

version in CIBERSORT website (S1 Fig). Since the CIBERSORT absolute mode is a beta ver-

sion and leads to suboptimal results compared with CIBERSORT, we only focused on the com-

parisons with CIBERSORT. We show that FARDEEP gives the smallest SSE and the largest R2,

which indicates the most accurate result (Fig 3).

Synthetic dataset with added unknown content

Both CIBERSORT and FARDEEP are robust deconvolution methods and show advantages in

the above datasets, we next sought to compare their performances on mixtures with unknown

content. We followed the simulation setting proposed by Newman et al. [12] and downloaded

the signature gene file from CIBERSORT website. The mixture file was constructed from the

four immune cell lines data, as mentioned in the previous section, and a colon cancer cell line

HCT116 (average of GSM269529 and GSM269530 in GSE10650). Cancer cells were mingled

into immune cells at different ratios {0%, 30%, 60%, 90%}. Noise was added by sampling from

the distribution 2N ð0;ðf log2ðsÞÞ
2Þ, in which f 2 {0%, 30%, 60%, 90%} and s is the standard deviation

of original mixtures. By applying FARDEEP and CIBERSORT (without converting to percent-

age) on 64 mixtures, we found that FARDEEP remains an accurate estimation, while the

tumor contents skew the results of CIBERSORT with larger deviation from the ground truth

(Fig 4).

Deconvolution performance on immune-cell-rich datasets

To evaluate the performance of FARDEEP in immune-cell-rich settings that are less affected

by outliers, we downloaded and analyzed two gene expression datasets (GSE65135 [12] and

GSE20300 [36]) generated from the Affymetrix Microarray, which is the same platform used

to generate the signature matrix LM22. The GSE65135 dataset consists of (i) surgical lymph

node biopsies of 14 follicular lymphoma patients and (ii) purified B and T cells from the tonsils

of 5 healthy controls, and the GSE20300 dataset includes 24 blood samples from pediatric

renal transplant patients. Flow cytometry or coulter counter data in these studies, which are

presented in relative scales, are treated as ground truth. Thus, we normalized the estimated

parameters of each method to the sum of 1 before comparison.

As shown in Fig 5A and 5B for case (i) of GSE65135 and Fig 5D and 5E for GSE20300,

FARDEEP outperformed CIBERSORT in terms of R2, R and SSE, which is consistent with our

findings with simulated datasets. For case (ii) of GSE65136, we estimated the immune cell

composition for purified B and T cells with purity level exceeding 95% and 98%, respectively.

For purified B cells, CIBERSORT tends to return non-zero estimates for T cell and a large

Table 1. Tuned k for FARDEEP with the adjusted BIC. We simulated normally distributed errors and heavy-tailed errors respectively for different proportion of outliers

and computed true positive rate and false positive rate to evaluate the tunning result.

Percentage of outliers 5% 10% 20% 30%

Normal True positive rate 1 1 1 1

False positive rate 0.005 0.009 0.02 0.05

Parameter (mean of k) 3.63 2.43 1.46 1.19

Heavy-tailed True positive rate 1 1 1 1

False positive rate 0.05 0.05 0.08 0.11

Parameter (mean of k) 3.03 2.06 1.35 1.14

https://doi.org/10.1371/journal.pcbi.1006976.t001
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Fig 3. Applying different deconvolution approaches on the gene expression data of IM-9, Jurkat, Raji, THP-1 and the mixture of

these four immune cell lines with known proportion (MixA, MixB, MixC, MixD). All of the mixtures were performed and measured in

triplicate. (A) SSE of coefficients for FARDEEP, CIBERSORT, NNLS, PERT, DCQ. (B) The abundance of cell lines estimated from

different deconvolution approaches vs. Abundance of cell lines truly mixed. The R2 and R values are also reported at the top of the figures.

(C) Deconvolution of individual cell subsets by FARDEEP and CIBERSORT. The correlation coefficients R, the corresponding p-values

against the null hypothesis of R = 0, trend lines with 95% confidence intervals are shown in the figures. The black dashed line represents

the perfect relationship between the estimate and the true cell abundances with slope 1 and intercept 0.

https://doi.org/10.1371/journal.pcbi.1006976.g003
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Fig 4. Performance comparison between CIBERSORT and FARDEEP on mixtures with unknown content. (A) SSE for various noise and

abundance of tumor contents on 4 different mixtures. (B) Abundance of cell lines estimated by CIBERSORT and FARDEEP vs. Abundance of

cell lines truly mixed. The R2 and R values are also reported in the top of the figures. (C) Deconvolution of individual cell subsets by FARDEEP

and CIBERSORT. The correlation coefficients R, the corresponding p-values against the null hypothesis of R = 0, trend lines with 95%

confidence intervals are shown in the figures. The black dashed line represents the perfect relationship between the estimate and the true cell

abundances with slope 1 and intercept 0.

https://doi.org/10.1371/journal.pcbi.1006976.g004
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Fig 5. Performance assessment on Microarray data with SSE, R2 and R. The follicular lymphoma dataset is evaluated for (A) Overall performance and

(B) individual cell subsets. (C) Normal tonsil dataset with purified B cells and T cells. The blood samples from pediatric renal transplant patients are

evaluated for (D) Overall performance and (E) individual cell subsets. The black dashed line represents the perfect relationship between the estimate and

the true cell abundances with slope 1 and intercept 0.

https://doi.org/10.1371/journal.pcbi.1006976.g005
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proportion of other cell types, while FARDEEP gave almost all zero estimates for T cell and on

average reduced the estimation error by 61%. Similarly, for the purified T cell, although

CIBERSORT had a better performance compared to purified B cell, FARDEEP still signifi-

cantly improves the estimation accuracy by reducing on average 48% of the estimation error

(Fig 5C). Furthermore, as shown in S4 Table, FARDEEP detected gene CD79A and BCL2A1 as

outliers for most samples in case (i) of GSE65135. These two genes are known to have high

expression levels in follicular lymphoma (B-cell lymphoma) cells [37].

Overall, even in specimens that are rich in immune cells without contamination by non-

hematopoietic malignancy, FARDEEP still outperforms CIBERSORT in immune cell

deconvolution.

Deconvolution performance on RNA-seq datasets

In addition to effectively handling Microarray data, FARDEEP can also deconvolve TILs using

RNA-seq data when we replace the signature matrix LM22 with quanTIseq, a signature matrix

generated from RNA-seq data containing ten different immune cell types [14]. We applied

CIBERSORT and FARDEEP using signature matrix quanTIseq to peripheral blood mononu-

clear cell (PBMC) mixtures (GSE64655) generated by Hoek et al. [38], and lymph node bulk

samples of 4 melanoma patients from GSE93722 [39]. Flow cytometry data in these studies are

on a relative scale and are treated as ground truth. We normalized the estimated parameters of

each method to a relative scale using (0.7) before comparison. The RNA-seq data are usually

less noisy compared to Microarray, and PBMC datasets are usually clean with less unknown

contents. Therefore, we expect FARDEEP and CIBERSORT will return comparable results,

which is the case in Fig 6A and 6B. However, when dealing with noisier data containing more

outliers such as lymph node bulk samples, FARDEEP obtained larger advantage over CIBER-

SORT as shown in Fig 6C and 6D.

Ovarian serous cystadenocarcinoma and lung squamous cell carcinoma

datasets

TME of solid carcinomas are different from a lymph node biopsy or peripheral blood, and the

highly variable gene expression in cancer cells challenges the accuracy of immune cell decon-

volution. It is well-established that immune infiltration profile serves as a promising prognosti-

cator [4, 5]. Hence, we next utilized survival and gene expression data of ovarian cancer (OV)

and lung squamous cell carcinoma (LUSC) from The Cancer Genome Atlas (TCGA) database

to assess the prognostic relevance of different deconvolution methods. These two datasets were

chosen because only LM22 not the RNA-seq based signature matrix quanTIseq includes γδ T

cells, and OV and LUSC from TCGA datasets are the only two cancer types with Affymetrix

microarray data. Using gene expression data (n = 514 for OV and n = 133 for LUSC), we esti-

mated the immunoscore using ESTIMATE proposed by yoshihara et al. [40], TILs proportion

using CIBERSORT, as well as TILs subset scores using CIBERSORT (without converting to

percentage) and FARDEEP. Cold tumors typically harbor lower numbers of CD8+ T cells, γδ
T cells, M1-like macrophages, and NK cells [11, 41–43]. Thus, we calculated an anti-tumor

immune subsets score by the summation of CD8+ T cells, γδ T cells, M1-macrophages, and

NK cells. Then, we partitioned the patients into two groups with equal size using the median

of either the immunoscore (ESTIMATE) or anti-tumor immune subsets score (CIBERSORT

and FARDEEP). We compared the survival curves between the two groups. As shown in Fig 7,

FARDEEP most effectively separates patients into high- and low- risk groups with the smallest

p-value (p-value = 0.0065 and 0.059 for OV and LUSC respectively). Recently, CIBERSORT
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website supports a beta-version of an absolute mode for cell deconvolution. We also included

CIBERSORT absolute mode in this survival analysis and showed that it returned a better result

(p-value = 0.037) compared to the relative mode in the OV dataset. FARDEEP shows a stron-

ger performance with a smaller p-value under this setting (S2 Fig). These results demonstrated

Fig 6. Gene-expression deconvolution performance of FARDEEP and CIBERSORT on RNA-seq data. (A) Overall and (B) individual cell subsets results for 8

PBMC samples collected from two vaccinated donors at different time points. (C) Overall and (D) individual cell subsets result for lymph node bulk samples.

Correlation coeffient R and the correspoinding p-value are missing for CIBERSORT on NK cell because the CIBERSORT estimations are all zero. The black dashed

line represents the perfect relationship between the estimate and the true cell abundances with slope 1 and intercept 0.

https://doi.org/10.1371/journal.pcbi.1006976.g006
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Fig 7. Kaplan-Meier survival curves are plotted based on ESTIMATE, FARDEEP- and CIBERSORT- assisted TIL profiling. Log-Rank test was

applied to data classified into two groups according to whether immunoscore (ESTIMATE) or collective anti-tumor immune subsets (CIBERSORT and

FARDEEP) was above or below the median. (A) 514 patients with ovarian cancer. (B) 133 patients with lung squamous cell carcinoma.

https://doi.org/10.1371/journal.pcbi.1006976.g007
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that the TIL subset scores could provide additional clinical-relevant information compared to

the relative abundance.

In addition, we expected the summation of these TIL subset scores would negatively corre-

late with tumor purity. To prove this hypothesis, we calculated the summation of 22 TIL subset

scores for both OV and LUSC datasets and correlated them with the tumor purity estimated

from consensus measurement of purity estimations (CPE) [44]. Even without taking account

of stromal cells, as shown in S3 Fig. the summation of TIL subset scores is negatively correlated

with tumor purity.

Next, we sought to investigate whether outlier removal reduces contamination by tran-

scripts from cancer cells. We first identified those top outlier-genes, which were consistently

removed by FARDEEP in the OV dataset and obtained the average expression values of those

outlier-genes from OV cell lines in GSE32474 [45]. As shown in S3 Table, most of these out-

lier-genes have high expression in cancer cell lines. For example, CXCL10 gene encodes an

important chemokine to recruit CD8+ T cells and is also highly expressed in ovarian cancer

cells. Thus, although some genes in LM22 may play a role in immune cells, they may be also

highly expressed and variable among cancer cells. Such cross-contamination likely skews

immune deconvolution analysis. As shown in S3 Table, FARDEEP successfully detected and

removed those genes, leading to a more robust and accurate deconvolution analysis.

Discussion

The cancer immune microenvironment has emerged as a critical prognostic dimension that

modulates patient responses to neoadjuvant therapy. However, the current clinical TNM stag-

ing system does not have a consistent method to stratify cancers based on their immunogenic-

ity. The recent study shows that the RNA-seq datasets of whole tumors contain valuable

prognostic information to assess the cancer-immunity interactions [12, 46]. But the current

methods to extract immune signatures are susceptible to the frequent outliers in the datasets,

leading to less effective identification of cold tumors. Based on support vector regression,

CIBERSORT is one of the most popular robust deconvolution methods. However, this model

does not include an intercept to capture possible contribution from other cell types and per-

forms a z-normalization to the data before fitting the regression model, which introduces

biases into the output. Discussion of the effect of Z-score normalization for CIBERSORT is

included in S1 Text. In this study, we developed a new machine learning tool, FARDEEP, to

streamline the removal of outliers and increase the robustness of gene-expression profile

deconvolution. Robustness is an indispensable feature to solve a problem of deconvolution

because gene expression data are frequently contaminated by a large amount of outliers. FAR-

DEEP solves the deconvolution problem in a robust way because this tool evaluates all outliers

across the datasets and then examines the true immune gene signature using non-negative

regression. This feature is especially useful to analyze tumors with significant non-hematopoi-

etic tumor components. Interestingly, although FARDEEP and the current robust methods

can both tackle immune-cell-rich specimens such as lymph node and PBMCs, FARDEEP

exhibits improved prognostic potential when dealing more complex datasets with significant

carcinoma cell content.

Although FARDEEP provides a robust computational algorithm to better solve the gene-

expression deconvolution problem with noisy datasets, its performance and application rely

on the choice of the signature matrix. To avoid estimation bias, it is important to choose the

signature matrix derived from the same platform as the mixture matrix. For example, if dealing

with gene expression data measured by Affymetrix HGU133A, we should use LM22, but if

dealing with RNA-seq data, the signature matrix quanTIseq is preferred. Overall, here we
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show that FARDEEP is a powerful and rapid machine learning tool that outperforms existing

robust methods for gene deconvolution in datasets with significant heavy-tailed noise. FAR-

DEEP provides a new technology to interrogate cancer immunogenomics and more accurately

map the immune landscape of solid tumors.
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S1 Table. Parameters of FARDEEP. To show that FARDEEP is not sensitive for different val-

ues of α1, and α2 with tuned value of k, we simulated a dataset with sample size n = 500, num-

ber of predictors p = 20, normal distributed error and 20% outliers using the same setting of in
silico simulation in the paper. Then we ran FARDEEP with following setting and get the num-

ber of detected outliers, true and false positive rate: (1) Take α2 = 1.1, change α1 from 0.1 to 0.5

by 0.05 and tune k using BIC�. (2) Take α1 = 0.1, change α2 from 1.1 to 2 by 0.1 and tune k
using BIC�. (3) Take α1 = 0.1, α2 = 1.5, and change k from 1 to 10 by 0.1. We can see that the

accuracy of the result stays stable with a well tuned k.
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S2 Table. Performance of FARDEEP, CIBERSORT, NNLS, PERT and DCQ methods

under different simulation settings with outliers.
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S3 Table. The outlier genes detected by FARDEEP and their average expression values in 7

ovarian cancer cell lines for TCGA OV dataset. Here we listed all genes with removal fre-
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S4 Table. Table of removed outlier genes for each real datasets.
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S1 Fig. Applying different deconvolution approaches on the gene expression data of IM-9,

Jurkat, Raji, THP-1 and the mixture of these four immune cell lines with known propor-

tion (MixA, MixB, MixC, MixD). All of the mixtures were performed and measured in tripli-

cate. (A) SSE of coefficients for FARDEEP, CIBERSORT, CIBERSORT under absolute mode

(CIBERSORT.abs), NNLS, PERT, DCQ. (B) Abundance of cell lines estimated from different

deconvolution approaches vs. Abundance of cell lines truly mixed. The R2 and R values are

also reported at the top of the figures. The black dashed line represents the perfect relationship

between the estimate and the true cell abundances with slope 1 and intercept 0.

(EPS)

S2 Fig. Kaplan-Meier survival curves are plotted based on CIBERSORT (absolute mode)-

assisted TIL profiling. Patients were classified into two groups according to whether immu-

noscore (ESTIMATE) or collective anti-tumor immune subsets was above or below the

median. Log-Rank test was applied to obtain the p-value. (A) 514 patients with ovarian cancer.

(B) 133 patients with lung squamous cell carcinoma.

(EPS)

S3 Fig. FARDEEP score of TCGA OV and LUSC datasets are calculated from the summa-

tion of 22 TIL subset scores, which show highly negative correlations to the consensus

measurement of purity estimations (CPE).

(EPS)

S1 Text. Discussion for the effect of Z-score normalization.
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