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Abstract. Several members of the rho/rac family of 
small GTP-binding proteins are known to regulate the 
distribution of the actin cytoskeleton in various subcel- 
lular processes. We describe here a novel rac protein, 
racE, which is specifically required for cytokinesis, an 
actomyosin-mediated process. The racE gene was iso- 
lated in a molecular genetic screen devised to isolate 
genes required for cytokinesis in Dictyostelium. Pheno- 

typic characterization of racE mutants revealed that 
racE is not essential for any other cell motility event, in- 
cluding phagocytosis, chemotaxis, capping, or develop- 
ment. Our data provide the first genetic evidence for 
the essential requirement  of a rho-like protein, specifi- 
cally in cytokinesis, and suggest a role for these proteins 
in coordinating cytokinesis with the mitotic events of 
the cell cycle. 

T 
HE intimate association between mitosis and cyto- 
kinesis requires a means of coordination between 
these two processes to insure that the newly dupli- 

cated nuclei segregate properly with half of the cytoplasm 
into the daughter cells. Although much is known about 
these processes, the mechanism(s) by which they are coor- 
dinated remains unknown. The regulation of the mitotic 
cell cycle has been intensively studied over the last several 
years. Biochemical and genetic approaches have combined 
to identify many of the key proteins that control different 
aspects of the cell cycle. In addition, many of the structural 
proteins that compose the mitotic apparatus have been 
characterized. Similarly, much is understood about how 
cells achieve proper cytoplasmic division. In animal cells, 
this involves the formation of an equatorial contractile 
ring that consists largely of actin and myosin and constricts 
to divide the cell into two (Satterwhite and Pollard, 1992). 
However, it is not understood how these proteins localize 
to the equator of the cell at the appropriate time and in the 
correct orientation. From the work of Rappaport (1990), it 
is clear that the astral microtubules of the mitotic appara- 
tus are intimately involved in determining the placement 
of the contractile ring. What is not clear is what kind of sig- 
nals may be involved or how they may be transmitted by 
the mitotic apparatus to the cell cortex. 

The rho family of ras-related small GTP-binding pro- 
teins (including rho, cdc42, and rac proteins) are known to 
have profound effects on the actin cytoskeleton (Hall, 
1994). Rho proteins have been implicated in the regulation 
of cytokinesis in both sand dollar (Mabuchi et al., 1993) 
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and Xenopus (Kishi et al., 1993) embryos. In both systems, 
the inhibition of rho activity by ADP ribosylation with 
Clostridium botulinum C3 exoenzyme prevented the for- 
mation and maintenance of the contractile ring. However, 
these experiments could not uniquely identify the specific 
rho protein that is required for cytokinesis. Similarly, in 
the yeast Saccharomyces cerevisiae, the protein Cdc42p is 
also important for cell division, although its function 
ranges from bud site selection to polarized growth and or- 
ganization of the actin cytoskeleton (Adams et al., 1990; 
Johnson and Pringle, 1990). In mammalian cells, rho regu- 
lates the formation of stress fibers and focal adhesion 
plaques, whereas rac mediates the formation of lamellipo- 
dia. Cdc42, on the other hand, is involved in filopodia for- 
mation (Nobes and Hall, 1995). It is not clearly under- 
stood how these closely related proteins mediate such 
diverse effects. 

We have taken a molecular genetic approach, using Dic- 
tyostelium discoideum, to identify additional components 
essential for the proper completion of cytokinesis. A 
screening protocol was designed to isolate cell lines con- 
taining mutations in genes absolutely required for cytoki- 
nesis (Vithalani et al., 1996). The validity of this screen 
was confirmed here by the isolation of two independent 
mutant cell lines containing a disruption in the gene en- 
coding myosin II heavy chain, an essential component of 
the contractile ring. In addition, two independent cell lines 
suffered disruptions in the gene coding for a novel small 
GTP-binding protein, designated here as racE. Phenotypic 
characterization of these mutants revealed that racE is 
required only for cytokinesis. All other physiological 
processes mediated by the actin cytoskeleton, such as pha- 
gocytosis, receptor capping, cortical contraction, and chemo- 
taxis appear normal in the racE mutant cells. Furthermore, 
these cells are able to complete the developmental life cy- 
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cle generating viable spores. Taken together, these results 
suggest that racE is specifically involved in the regulation 
of cytokinesis and may yield insights into how cytokinesis 
is so intimately tied to the regulation of the cell cycle. In 
addition, we are now in a position to begin dissecting the 
pathway through which rho proteins are able to modulate, 
in a profound manner, the actin cytoskeleton. 

Materials and Methods 

Restriction Enzyme-mediated Integration and 
Screening Protocols 
The restriction enzyme-mediated integration (REMI) 1 mutagenesis pro- 
tocol was based on that described by Kuspa and Loomis (1992) with the 
modifications indicated below. The screening protocol used to isolate cy- 
tokinesis mutants is similar to that described by Vithalani et al. (1996) 
with the following modifications. Electroporation was used to transfect 8 
x 106 Dictyostelium DH1 cells with the plasmid pRHI30 (40 ~g) in the 
presence of 150 U of the restriction enzyme DpnII. Before transfection, 
pRHI30 was linearized with the restriction enzyme BglII, which generates 
the same cohesive ends as DpnII. After electroporation, the cells were re- 
suspended in FM minimal medium (Franke and Kessin, 1977) lacking 
uracil and distributed into 20 96-well plates. The medium in these plates 
was changed weekly until colonies appeared in the wells. To increase the 
probability that each well contained cells from a single clone, we dis- 
carded those plates that had >35 of 96 wells occupied. The individual col- 
onies were then transferred in duplicate to 24-well plates. One 24-well 
plate was placed on an orbital shaker at 240 rpm, and the other plate was 
placed on a stationary shelf. After several days, duplicate wells were ex- 
amined for colonies that displayed growth in the stationary plate but not 
in the shaking plate. Such colonies were picked and rescreened in the 
same manner. Positive clones from these two screens were then used to in- 
oculate six-well plates and 50-ml flasks containing 10 ml of FM medium. 
The flasks were shaken at 240 rpm for several days and monitored for 
growth. After screening 7,500 independent clones, we found four cell lines 
that were incapable of growth in suspension culture. These cells were then 
grown on plates in large quantities for the isolation of genomic DNA. 

Genomic DNA was digested with a number of restriction enzymes and 
analyzed by Southern blotting using the plasmid pRHI30 as the initial 
probe. Digests that generated single bands larger than pRHI30 were cho- 
sen for cloning. These were ligated and transformed into Escherichia coli 
strain DH5ct and selected with ampicillin. The resulting plasmids con- 
tained pRHI30 with Dictyostelium flanking sequences. The flanking se- 
quences were then isolated and used as a probe on Southern blots com- 
paring mutant with wild-type (DH1) DNA. DNA sequencing was carried 
out by either the Sanger method or PCR sequencing with Taq polymerase 
(Promega Corp., Madison, WI). 

Disruption of racE by Homologous Recombination 
The plasmid isolated from the BglII digestion of 24EH6 genomic DNA 
was used to recreate an identical mutation in wild-type cells by homolo- 
gous recombination. This plasmid contains ~1.5 kb upstream and ~1.8 kb 
downstream of the insertion point of pRHI30 in the 24EH6 mutant. 20 p~g 
of this plasmid was linearized with BgllI and transfected (without en- 
zyme) via electroporation into 8 × 106 Dictyostelium DH1 cells, which 
were then plated into five 96-well plates in FM medium lacking uracil. All 
independent transformed cell lines were grown on plates and analyzed for 
their ability to grow in suspension cultures. Two of these independent 
transformants were also subjected to Southern and Northern blot analyses. 

Northern Blot Analysis 
Total RNA from each cell line was isolated according to the method of 
Nellen et al. (1987). 20-1xg aliquots were electrophoresed on formalde- 
hyde/agarose gels. Electrophoresed RNA was then transferred to Hy- 
bond-N (Amersham, Arlington Heights, IL) and probed with either the 
racE or myosin II heavy chain gene. 

1. Abbreviations used in this paper. REMI, restriction enzyme-mediated 
integration; SB, Sorensen's buffer. 

Visualization of Actin, Myosin, and DNA in Fixed Cells 
Agar-overlay immunofluorescence and staining were carried out accord- 
ing to the method of Fukui et al. (1987) to examine the distribution of my- 
osin II and the number of nuclei in our cell lines. Briefly, cells were har- 
vested from plates, allowed to attach to glass coverslips for 15 min, and 
washed in Sorensen's buffer (SB; 15 mM KHEPO4, 2 mM Na2PO4, pH 6.1). 
The amoebae were then overlaid with thin agarose M (Pharmacia Bio- 
tech, Uppsala, Sweden) sheets (0.17~0.25-mm thick), and excess buffer 
was carefully wicked away. The agar-overlaid coverslips were fixed in 1% 
formaldehyde in methanol at -20°C for 5 min, washed in TBS (50 mM 
Tris, 150 mM NaCl, pH 7.5), blocked with a 5% BSA solution for 30 min, 
and incubated with a polyclonal antibody raised against myosin II heavy 
chain for 45 min. Blocking and all subsequent steps were carried out at 
37°C. After washing again in TBS, the cells were incubated for 45 min with 
a FITC-conjugated goat anti-rabbit IgG antibody (Molecular Probes, Inc., 
Eugene, OR). This antibody was preabsorbed against fixed and permeabi- 
lized Dictyostelium cells to remove background reactivity as described 
(Burns et al., 1995). The coverslips were washed a third time in TBS, 
stained with DAPI (1 ~g/ml) for 10 min, and mounted onto glass slides for 
visualization by fluorescence microscopy. 

To determine actin distribution, cells were harvested as described 
above, allowed to attach to coverslips, and subsequently fixed with 3.7% 
formaldehyde in 150 mM KC1, 5 mM MgC12, 20 mM K-phosphate, 10 mM 
EGTA, pH 6.1 at room temperature. Cells were then rinsed in TBS and 
incubated with rhodamine-phalloidin (1:100 dilution; Molecular Probes) 
in PBS containing 0.5% NP-40. The coverslips were rinsed, mounted, and 
visualized as described above. 

Con A Capping, Cortical Contraction, 
and Phagocytosis Assays 
To assay for capping of Con A receptors, cells were harvested from petri 
dishes, allowed to attach to glass coverslips for 15 min, and washed free of 
medium with SB. A 1 mg/ml solution of FITC-Con A (Sigma Chemical 
Co., St. Louis, MO) in SB was freshly prepared, and 100 ~.l of this solution 
was added to the cells for exactly 2 min at room temperature. The cells 
were once again washed in SB and allowed to incubate for an additional 5, 
10, or 15 min. As indicated above, cells were fixed in formaldehyde/meth- 
anol, mounted on glass slides, and observed. 

To assay for cortical contraction, cells were allowed to grow overnight 
in six-well plates or on glass coverslips, and were then exposed to medium 
containing 2 mM sodium azide. Cells were observed continuously at 200× 
for changes in cell morphology in response to the sodium azide treatment. 

Phagocytosis assays were performed as described previously (Cohen et 
al., 1994). 

Dictyostelium Development 
Bacterial lawns of E. coli B/R cells were allowed to grow overnight at 
37°C on SM/5 agar plates (Sussman, 1987). The lawns were then inocu- 
lated with the different Dictyostelium strains by adding 250-1xl drops con- 
taining 5 X 106 Dictyostelium cells. The plates were incubated at 21°C and 
monitored continuously for the ability of the cells to phagocytose the bac- 
teria and proceed with the Dictyostelium developmental program. 

Results 

Isolation and Recapitulation of 
Cytokinesis-deficient Mutants 

To identify novel genes required for cytokinesis, we ran- 
domly mutagenized Dictyostelium cells by REMI (Kuspa 
and Loomis, 1992) and screened for cytokinesis-deficient 
cells. Our screen was based on the phenotype of Dictyoste- 
lium strains deficient for myosin II, a protein known to be 
essential for cytokinesis (De Lozanne and Spudich, 1987; 
Knecht and Loomis, 1987). Because these mutant cells are 
unable to complete cytokinesis, they become large and 
multinucleate when grown in suspension culture. How- 
ever, they are able to propagate on a solid substratum by 
"pinching-off" into smaller cells by a process known as 
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traction-mediated cytofission (Fukui et al., 1990). Accord- 
ingly, we screened mutagenized clones for those that failed 
to grow in suspension culture but were able to grow on a 
solid substrate. Four mutant cell lines with this phenotype 
were isolated out of a collection of 7,500 independent 
REMI transformants. When analyzed by Southern blot 
analysis with a specific probe for the Dictyostelium myosin 
II heavy chain (mhcA) gene, we found that two of the four 
mutant cell lines (28IF8 and 53PF1) contained a plasmid 
insertion within the mhcA locus (data not shown). This re- 
sult established the screening protocol as a legitimate 
means of identifying cytokinesis mutants. 

Southern blot analysis of a third cytokinesis mutant 
(24EH6) indicated that it contained a single copy of the 
transforming plasmid pRHI30 within an 8-kb BgllI frag- 
ment (data not shown). Using this plasmid as a tag, we re- 
trieved the flanking sequences by digesting genomic DNA 
from the 24EH6 mutant with BgllI, self-ligating the DNA 
fragments, and introducing them into E. coli DH5a  cells. 
A plasmid, p24EH6-BgllI, which contained 1.5 kb of se- 
quence upstream and 1.8 kb of sequence downstream from 
the insertion site of pRHI30, was recovered (Fig. 1). To 
confirm that we had cloned the genomic region affected by 
the plasmid insertion, a fragment of p24EH6-BglII (Fig. 1, 
probe A) was used as a probe in Southern blot analysis of 
wild-type (DH1) and mutant genomic DNA digested with 
BgllI (Fig. 2). As predicted, this probe detected a 3.3-kb 
band in the wild-type or myosin II  mutant D N A  (Fig. 2, 
lanes 1 and 5). In contrast, the same probe detected an ~8  kb 
band in the 24EH6 mutant DNA (Fig. 2, lane 2). The dif- 
ference in size between wild-type and mutant DNA corre- 
sponds to the size of the inserted pRHI30 plasmid (4.45 kb). 

We subsequently determined that the fourth cytokinesis 
mutant in our collection, named 37TB1, also contained a 
disruption of the same genomic region as 24EH6. South- 
ern blot analysis of 37TB1 mutant DNA probed with 
probe A from p24EH6-BgllI revealed a disruption of the 
3.3-kb BgllI wild-type fragment (data not shown). Thus, 
our screen resulted in the isolation of four independent 
mutants containing disruptions in two different genes: the 
mhcA gene and a gene in the 24EH6 genomic region. 

pRHI30 

I/ 

Bgl IJ Elgl II 

f t 

I I I I , , . A  

Figure 1. Map of the Dictyostelium race gene and the plasmid in- 
sertion in the mutant 24EH6. The racE gene is encompassed 
within a 3.3-kb BgllI genomic fragment in wild-type Dictyostel- 
ium cells (Fig. 2). The open reading frame is apportioned into 
five exons (closed bars). The Dictyostelium transformation plas- 
mid pRHI30 (broken bar) was inserted at a DpnlI site within the 
second exon of the racE gene as illustrated. This insertion results 
in the formation of an ,-.~8-kb BgllI genomic fragment in the 
24EH6 mutant (see Fig. 2). An internal 0.84-kb fragment (probe 
A) was used as a probe in the Southern blot in Fig. 2. 

Figure 2. Disruption of the Dictyostelium racE gene by REMI 
and by homologous recombination. A Southern blot of BglII di- 
gests of genomic DNA isolated from wild-type (DH1) and sev- 
eral mutant cell lines was probed with the racE gene probe A de- 
scribed in Fig. 1. The racE REMI mutant (24EH6) and the 
mutants created by homologous recombination (24EH6-hr1 and 
24EH6-hr2) contain a disruption of the racE locus as dia- 
grammed in Fig. 1. Wild-type cells (DH1) and a myosin REMI 
mutant (28IF8) both contain an intact racE locus. Molecular 
weights in kilobases are indicated on the right. 

To be certain that the phenotype of the 24EH6 mutant 
resulted from the disruption of the 24EH6 genomic region, 
and not to a secondary mutation occurring elsewhere in 
the genome, homologous recombination (which occurs at 
a high frequency in Dictyostelium; (De Lozanne and Spu- 
dich, 1987)) was used to recreate the 24EH6 mutation in 
wild-type cells. The 8-kb p24EH6-BgllI plasmid rescued 
from the mutant cells (24EH6) was linearized with BgllI 
and transfected into wild-type DH1 cells via electropora- 
tion. We then tested each transformed cell line for its abil- 
ity to grow in suspension culture. We found that all of the 
transformants failed to grow under these conditions. Fur- 
thermore, we analyzed two of these mutants (24EH6-hr1 
and 24EH6-hr2) by Southern blot analysis and confirmed 
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that they contained a disruption identical to that of 24EH6 
(Fig. 2, lanes 3 and 4). 

A Novel rac Gene Is Affected by the REMI Mutation 

The sequence of the isolated flanking regions of p24EH6- 
BglII was determined (Fig. 3) and compared to the Gen- 
Bank database. This analysis revealed that the 24EH6 se- 
quence encodes a protein that belongs to the rho family of 
ras-related GTP-binding proteins (Hall, 1994). The close 
similarity among these proteins allowed for the identifica- 
tion of an open reading frame in our sequence that is dis- 
tributed over five exons with four short introns (Fig. 1). 
We subsequently confirmed the intron-exon boundaries 
of this novel gene by sequence analysis of an isolated 
cDNA clone (data not shown). The open reading frame of 
the racE gene extends over 672 bp and encodes a protein 
of 223 amino acids. 

Cladistic analysis of the protein encoded by the 24EH6 
sequence indicated that it is more closely related to the rac 
and cdc42 subfamilies of proteins than to the rho subfam- 
ily (Fig. 4). Therefore, we have named this novel gene 
racE, after the nomenclature of the different rac genes 

cgttattatatattcataatattaatttgtattttctttataaataataa 50 
caggacaaaaccaaaactaatcaaattatcacttagtttaatagtaattt i00 
aaataaat~aaaaccaaaaaattcccaattatttcatataaatatcaata 150 
aaATQTCAG~gtaagtgattteatatgcgaaaott~ttttttttttttt 200 

1 M S E  
t t t t t t t t t t t t a a t a a t t a t t t a & a t a t t a a t g = t a a = t a t t t t t t t t t  250 
a a a a a t a a a t a a a a t a a t a a t a a a a a a a t a t a a a t t a t t a t a a t a a t e t a  300 
ttataataatagBNmR~AGOTTCA~AGC~C~GAGTTA~TTAGTAGT 350 

4 D Q G S G A T R V K L V V  
TGTCQGTGATGQTGCTGTTGG~tetgtatttta.tttttattattttttt 400 

17 V G D G A V G  
t t t a t t t & t a t t t t t a g a a a t = a a a t t o t a a t t c a a c a a o t t t t t t t t t t  450 
t t t t t t t c t t t t t c c c t © a a t a a a a t t o a a a t c a a a t g g a t t c t a t a E t t  500 
c a a a a a a a a a a a a a a a a a a a a a c a a a t t t a a t t a a a a a c t t a a a a c a a a a  550 
a a a a a a a a t a t a e a & t a a t t t t c a a a a t t t a t c a a a a a a c e t t t a t a a t t  6 0 0  
tca&tacaaGagT~CATGTCTTTT~TTTGTTATQCAC~TQATT 650 

24 K T C L L I C Y A Q N D  
TTCCAGTAGATTATGTACC~CTGTTTTTG/~TTATACAGC~CCAGA 700 

3 6 F P V D Y V P T V F E N Y T A T R  
~QA~GGAAATG~GATATT~AGTACATTTATGGGATACTGCAGGCCA 750 

5 3 K R G N E D I K V H L W D T A G Q  
AG~Q~TATGATCGTTTACgtaaattattgtetQcaaatctatttttat 800 

70 E E Y D R L 
c t t t t t t t t t t t a a a a a a a a a a a a a a t t c t a t t t t t t g a a a a a a a a a a a a  850 
a a a a a a a a a a a a a a a a a a c C t ~ t ~ a c a a ~ a g a ~ a t t a t t a a t c t t t t t t t  9 0 0  
~ttattttt~tattttaatag~TCC&TTATCATACCCA~GC~CT~AT~TT 950 

76 R P L S Y P G A D V  
GTTCTCCTTTGTTTCAGCACAATCAGTC~TCATCATAT~AAGCCATTAG i000 

86 V L L C F S T I S Q S S Y E A I R  
AGATAAA~aagttata~atatca~at~atcacttt~tttat&gtat~ 1050 

103 D K 
a a t = a t t t t t t t a t t t t t t t t a t t t t t a a t t t t a a a a a t t a ~ T G G G C A C C  1100 

105 W A P 
A~TT~TCACTATATCCCAGAT~TACCATC~TTTTAGTT~GTACTA 1150 

1 0 8 E V N H Y I P D V P S I L V G T  
A~TCGATTTACGTG~C~C~CACCCAGATCCAAACTCTGGT~ATTC 1200 

1 2 4 K I D L R E Q Q H P D P N S G K F  
G~CC~TCACTGCCGATATGGGTATTTC~TGCA~AACA~TT~AGC 1250 

1 4 1 E P I T A D M G I S M Q K Q I K A  
C~GA~TATTTAG~GTCTCTGCA~GACTCGTC~GGTTTAG~G~G 1300 

1 5 8 K K Y L E V S A K T R Q G L E E  
TTTTCA~TGCTGCCATTGA~qATC~TTCTT~TC~GAGGTAT~QATA~ 1350 

1 7 4 V F S A A I E I V L E S R G M D K  
AAGA~TC~ATG~TTCTTCAAGTGCATCT~GTGTTCCATCA~GTGAT~ 1400 

1 9 1 K S Q D G S S S A S G V P S G D K  
ACC~CA/~G~A~GCAGGT~AgA~TCTGGTT~TATTATACTTt 1450 

2 0 8 P T K ~ K A G K K K S G C I I L  
aaa~tataggaataaaaataaaaataaaaataataataataataa~aaaa 1500 
aaaaaaaaaaacaaaaaaaaaaacaaaaaaatcaaaatctnaaaaaaaaa 1550 
caaaacaaaacaaaacaaaacaaaaaagaaaagaaaaagaaaagcaa~Ea 1600 
cttttt 1606 

Figure 3. Sequence of the Dictyostelium racE gene. The open 
reading frame of the racE gene is divided into five exons (bold 
capital letters) by four short introns (bold lower case letters). The 
plasmid pRHI30 that  disrupted this gene in the 24EH6 mutant  
was inserted at a Dpn l I  site within the second exon (white letters 
on black background). The 5' and 3' flanking sequences are 
shown in lower case letters. The predicted amino acid sequence is 
shown below the respective coding sequence. The amino acid se- 
quence is numbered  on the left and the nucleic acid sequence on 
the right. This sequence is available from GenBank  under  acces- 
sion number  U41222. 

that have been previously isolated from Dictyostelium 
(raclA, raclB, raclC, racA, racB, racC, and racD; Bush et 
al., 1993). Alignment of the racE protein sequence with 
other members of the rho family (Fig. 5) demonstrates the 
high degree of similarity among these proteins. These pro- 
teins share the four conserved GTP-binding domains that 
are found in all other small GTP-binding proteins (Gil- 
man, 1987; Bourne et al., 1991). These regions are the 
phosphate-binding loop L1, G(X)aGKS/T (amino acids 
18-25); the region that interacts with the gamma phos- 
phate, WDTAGQE (amino acids 64-70); the guanine 
specificity region, N/TKXD (amino acids 123-126); and 
the highly conserved SAK/L sequence (amino acids 164- 
166). In addition, the racE protein also ends in the con- 
served prenylation motif or CAAX box. The most diver- 
gent region of the racE protein is the region immediately 
preceding the COOH-terminal CAAX box. This region is 
much longer in the racE protein than in the other mem- 
bers of the rho family. 

The REMI Mutation Causes the Loss 
of race Expression 

To understand how the REMI-induced plasmid insertion 
within the second exon of the race gene caused a mutant 
phenotype, we assessed the expression of racE mRNA by 
Northern blot analysis (Fig. 6). racE was expressed in 
DH1 cells (the parental wild-type strain), but not in the 
mutant 24EH6 cells. Furthermore, the two race mutants 
created by homologous recombination (24EH6-hrl and 
-hr2) also failed to express the racE gene. As a control, we 
examined the expression of the racE gene in the myosin II 
28IF8 mutant isolated in the same screen. This mutant ex- 
pressed racE at levels comparable to the wild-type cells. 
We also probed the same blot for mhcA gene expression. 
As predicted, all the cells expressed the mhcA gene except 
for the myosin II mutant 28IF8 cells. Thus, disruption of 
the race gene results in the complete inactivation of racE 
expression. 

Phenotypic Characterization of racE Mutant Cells 

Our screening method was based on identifying cells that 
failed to divide in suspension culture. When grown either 
in suspension culture or on solid substrates, wild-type cells 
divide by cytokinesis and remain small and mono- or binu- 
cleate, with few cells accumulating more than two nuclei 
(Fig. 7, A and B). When grown on tissue culture plates, 
racE mutant cells were able to propagate by traction- 
mediated cytofission (Fukui et al., 1990) at rates compara- 
ble to wild-type cells (data not shown). The majority of 
racE cells grown on substrates were generally mono- or bi- 
nucleate, with a small percentage of large and multinucle- 
ated cells (Fig. 7 C). When grown in suspension cultures, 
however, the racE mutant cells were no longer able to di- 
vide. Consequently, these cells became very large and ac- 
cumulated many nuclei, as illustrated by the single cell 
shown in Fig. 7 D. 

Since members of the rho family of proteins are known 
to be involved in the regulation of the actin cytoskeleton, 
it seemed possible that the loss of racE function would 
cause an abnormal actin distribution in the mutant cells. 
Accordingly, we examined the distribution of actin and 
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Figure 4. Phylogenetic analysis of the rho family of small GTP-binding proteins. This tree displays the phylogenetic relationships among 
different members of the rho family. The three known subfamilies, rho, rac, and cdc42 are indicated. The Dictyostelium racE protein 
(asterisk) is most related to the rac/cdc42 subfamilies, although it clearly has diverged to some extent from these subfamilies. The pub- 
lished sequences most similar to that of racE are those from Dictyostelium racC and from the pea "rho." Sequences were aligned with 
the Megalign program using the Clustal algorithm and a PAM250 table. The scale at the bottom indicates the number of substitutions 
between sequences. 

myosin II in racE mutant cultures grown on coverslips for 
a period of several days and compared them with parallel 
cultures of wild-type cells. We found that the mutant cells 
had the same actin-rich structures, such as filopodia, 
pseudopodia, and membrane ruffles, which wild-type cells 
have (Fig. 8, A and D). Similarly, myosin II was found 
mostly in the cortical region of the cells and had the punc- 
tate appearance characteristic of wild-type cells (Fig. 8, B 
and E). The formation of a contractile ring was never ob- 
served in these cells, but, because synchronization of these 
cell lines has not been successful, we cannot exclude the 
possibility that contractile rings are transiently formed in 
the racE mutants. 

The disruption of the racE gene clearly affected cytoki- 
nesis and could potentially affect other functions mediated 
by the acto-myosin cytoskeleton. Therefore, the ability of 
the race mutants to carry out some of these functions was 
tested. When wild-type cells are treated briefly with FITC- 
labeled Con A, they quickly concentrate their cross-linked 
Con A receptors into a polar cap in a process that requires 
myosin II (Fukui et al., 1990; Fig. 8 C in this paper). We 
found that the race mutants had the same ability to cap 

their Con A membrane receptors (Fig. 8 F). Another 
known myosin II-dependent process is the cortical con- 
traction of cells when treated with sodium azide (Paster- 
nak et al., 1989). We found that both wild-type and racE 
mutant cells contracted quickly when treated with sodium 
azide, whereas the myosin II 28IF8 mutants did not (data 
not shown). 

Phagocytosis is a third process that requires the actin cy- 
toskeleton, in possible conjunction with the unconven- 
tional myosin I's (Jung et al., 1993). We have determined 
that racE is not essential for phagocytosis, since the racE 
mutants phagocytose to the same extent as wild-type cells 
(data not shown). 

When starved of nutrients, Dictyostelium undergoes a 
well-defined yet simple developmental program that cul- 
minates in the formation of fruiting bodies containing 
spores. Myosin II has also been shown to be essential for 
the completion of this developmental program, demon- 
strating a role for the acto-myosin cytoskeleton in this pro- 
cess (De Lozanne and Spudich, 1987; Knecht and Loomis, 
1988). To test for a possible role for the racE protein in de- 
velopment, 24EH6 cells were grown on bacterial lawns. 
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Figure 5. Comparison of the Dictyostelium racE protein with other members of the rho family. Residues that are identical between the 
Dictyostelium racE protein and the other members of the rho family are shown in white letters on a black background. Dashes indicate 
gaps inserted in the sequence for best alignment. The asterisks indicate the sequences known to be involved in GTP binding. D.d., Dic- 
tyostelium discoideum; D.m., Drosophila melanogaster; C.e., Caenorhabditis elegans; S.c., Saccharomyces cerevisiae; H.s., Homo sapiens. 
GenBank accession numbers: D.d. racE, U41222; D.d. racC, Ll1593; D.m. racl, L38309; C.e. racl, L03711; H.s. racl, M29871; S.c. cdc42, 
X51906; D.m. cdc42, Ul1824; H.s. cdc42, M35543; S.c. rhol, M15189; D.m. rhol, L38311; H.s. rhoA, X05026. 

When the bacteria were depleted, 24EH6 cells developed 
into mature fruiting bodies that were slightly smaller than 
wild-type fruiting bodies but contained viable spores (data 
not shown). Thus, these results show that the inactivation 
of the racE gene leads to the loss of a single actin- and my- 
osin II-based function: cytokinesis. 

Discussion 

To date, few proteins are known to be essential for cytoki- 
nesis in animal cells. The first and best documented exam- 
ple is myosin II. From early microinjection studies in star- 
fish eggs (Mabuchi and Okuno, 1977; Kiehart et al., 1982) 
and the analysis of mutants in Dictyostelium (De Lozanne 
and Spudich, 1987; Knecht and Loomis, 1987; Pollenz et 
al., 1992; Chen et al., 1994) and Drosophila (Karess et al., 
1991), it is clear that myosin II  plays a central role in cy- 
tokinesis. In the present paper, we used a screening proto- 
col (Vithalani et al., 1996) designed to identify novel gene 
products that are required for cytokinesis, based on the cy- 
tokinesis-deficient phenotype observed in Dictyostelium 
myosin II null cells. Using this method, we have isolated 
and characterized four cell lines that share this phenotype. 
Two of these cell lines contained disruptions in the myosin 
II heavy chain locus. Although these two mutants offer no 

new insights into the mechanism of cytokinesis, they do 
confirm the screening protocol as a valid one for isolating 
cytokinesis-deficient strains. The remaining two cell lines 
contained disruptions in a gene encoding a novel member 
of the rho family of small GTP-binding proteins, desig- 
nated here as racE. That only two genes were disrupted in 
the four mutant cell lines described here might suggest 
that the screen has reached saturation for identifying 
genes required specifically for cytokinesis. We know that 
additional genes, however, such as the myosin II light 
chains (Pollenz et al., 1992; Chen et al., 1994) and profilin 
genes (Haugwitz et al., 1994), are also required for cytoki- 
nesis in Dictyostelium. Furthermore, a novel cytokinesis- 
deficient mutant has been isolated in an independent 
screen using a different plasmid, restriction enzyme, and 
Dictyostelium strain (Vithalani et al., 1996). Thus, it is 
likely that further screening, with variations in the choice 
of enzymes and plasmids used for REMI, may allow the 
isolation of additional genes. Any gene involved in cytoki- 
nesis that is also essential for the viability of Dictyostelium 
cells, however, would not be detected using this approach. 

The superfamily of small GTP-binding proteins consist 
of the ras oncogene product and a growing number of ras- 
related proteins (Hall, 1990). These proteins are known to 
modulate a wide variety of cellular activities ranging from 
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Figure 6. Disruption of racE leads to a loss of gene expression. 
Northern blot analysis of RNA isolated from wild-type (DH1), 
racE mutants (24EH6, 24EH6-hrl, and 24EH6-hr2), and myosin 
II mutant (281F8) cell lines. The upper panel was probed for racE 
expression using probe A (Fig. 1). The bottom panel shows the 
same blot probed with the full-length myosin II heavy chain gene. 
The migration of ribosomal RNA is indicated on the right-hand 
side of the figure. 

cell proliferation and differentiation (ras family) to intra- 
cellular vesicle transport (rab family) to regulation of the 
actin cytoskeleton (rho family). Precisely how this super- 
family of proteins mediates such a wide variety of effects 
remains to be determined. It is evident that many cell 
types contain multiple forms of rho proteins. For example, 
Swiss 3T3 cells express at least one member  each of the 
cdc42, rac, and rho-  subfamilies (Nobes and Hall, 1995), 
and it is likely that a single cell type expresses more than 
one member  of each of these subfamilies. Whether pro- 
teins within the same subfamily have distinct or overlap- 
ping functions is an open question. In Dictyostelium, seven 

different rac genes have been previously identified, al- 
though no function has been assigned to these proteins 
(Bush et al., 1993). racE, the eighth member  of the rac 
subfamily to be identified in this organism, appears to be 
essential solely for cytokinesis. Since we could not detect 
any other defects in the racE mutants, we postulate that 
this protein may not be involved in other cellular func- 
tions. Of course, given the relatively large number of rac 
genes in Dictyostelium, it is possible that there may be 
some redundancy of function between them. However, if 
rac proteins are able to overlap in function, it is apparent 
that none of the other rac genes can compensate for the 
absence of racE during cytokinesis. It is tempting to specu- 
late that the extended C O O H  terminus before the CAAX 
box of racE (the most strikingly different region of this 
protein when compared to the other rac, rho, and cdc42 
proteins) may be important in delineating the specificity of 
racE for cytokinesis. Members of the rab family of pro- 
teins are also known to have an extended C O O H  termi- 
nus, which has been found to be involved in the subcellular 
localization of these proteins (Chavrier et al., 1991). Simi- 
larly, this region of the racE protein may be responsible 
for targeting race  to the appropriate site in the cell during 
cytokinesis. 

Although we have designated the novel gene described 
here as racE, it is only 49.5% identical to its nearest rela- 
tive (Dictyosteliurn racC). At the same time, it is 47.2% 
identical to human rhoA. Though cladistic analysis has 
placed racE in the rac/cdc42 branch, as opposed to the rho 
branch, it is almost equally divergent from both branches. 
It is possible that the race  protein defines a new branch of 
the rho family of small GTP-binding proteins, with a spe- 
cific function during cytokinesis. Only through a search for 
homologous proteins in other species can this hypothesis 
be tested. 

Given that there is an absolute requirement for racE in 
cytokinesis, how might this protein be involved in the reg- 
ulation of this process? racE may be responsible for the re- 
organization of actin filaments in the presumptive cleav- 
age furrow at the onset of cytokinesis. As such, racE may 
be the signal that is carried by the mitotic apparatus and 
determines the placement of the contractile ring at the ap- 

Figure 7. Dictyostelium racE mutant cells be- 
come large and multinucleate when grown in sus- 
pension culture. Nuclear staining was carried out 
on wild-type (DH1) (A and B) and race mutant 
(24EH6) (C and D) cells grown on stationary tis- 
sue culture plates (A and C) or in suspension (B 
and D) for 3 d. Note that D shows a single racE 
mutant cell grown in suspension. All frames are 
shown at the same magnification. 
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Figure 8. Actin and myosin distribution and Con A capping in wild-type and racE mutant cells. Wild-type (A-C) or racE mutant (D-F) 
cells were allowed to grow on coverslips and were then stained with rhodamine-phalloidin (A and D) or an anti-myosin II antibody (B 
and E) to determine the organization of these two cytoskeletal proteins. The cells were also challenged with FITC-conjugated Con A for 
2 min (C and F) to observe their receptor-capping response. 

propriate site. Alternatively, racE may be selectively acti- 
vated in the presumptive furrow region by a different 
signal, again transmitted by the mitotic apparatus. This lo- 
calized placement or activation of racE would then be re- 
sponsible for the rearrangement of actin filaments into a 
contractile ring. It is unknown whether this rearrangement 
is brought about by the recruitment of preexisting actin fil- 
aments or the formation of actin nucleation sites. Most im- 
portantly, we don't know whether racE is required to be 
associated with the cleavage furrow at all, only transiently, 
or throughout the life of the contractile ring. 

It is also possible that the involvement of race in cytoki- 
nesis is not directly linked to the regulation of actin distri- 
bution. Cdc42 and rac can both bind to p65 PAK (Manser et 
al., 1994), a potential upstream activator of mitogen-acti- 
vated protein kinase (MAPK) cascades. Activation of a ki- 
nase cascade by racE may be a requisite step in the forma- 
tion and regulation of a contractile ring. Indeed, protein 
phosphorylation has been implicated in the regulation of 
cytokinesis in other studies (Satterwhite et al., 1992; Laro- 
chelle and Epel, 1993). Furthermore, members of the rho 
family have also been shown to influence the activity of 
other members of this family, thereby creating a cascade 
of events that ultimately lead to profound changes in cell 
morphology (Chant and Stowers, 1995). A similar cascade 
of GTP-binding proteins, coupled to one or more kinase 
cascades, may all be involved in regulating different as- 
pects of cytokinesis. 

The exquisite spatial and temporal regulatory mecha- 
nisms that orchestrate the formation of a contractile ring 
at precisely the right place and the right time of the cell cy- 
cle have yet to be defined. Actin and myosin II clearly pro- 
vide the mechano-chemical force that is necessary to di- 
vide a cell into two; however, many other proteins must 
participate in the formation and regulation of the contrac- 
tile ring. Our data suggest that the pathway through which 
the mitotic machinery communicates with the acto-myosin 

cytoskeleton to form a contractile ring may involve small 
GTP-binding proteins, possibly as part of a signal-trans- 
ducing cascade. Understanding how these small GTP-bind- 
ing proteins modulate the actin cytoskeleton is an essential 
step toward defining the molecular steps that control cyto- 
kinesis. 
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