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Koşaloğlu-Yalçın Z, Blazeska N,
Carter H, Nielsen M, Cohen E,

Kufe D, Conejo-Garcia J, Robbins P,
Schoenberger SP, Peters B and

Sette A (2021) The Cancer Epitope
Database and Analysis Resource:
A Blueprint for the Establishment

of a New Bioinformatics Resource
for Use by the Cancer

Immunology Community.
Front. Immunol. 12:735609.

doi: 10.3389/fimmu.2021.735609

ORIGINAL RESEARCH
published: 24 August 2021

doi: 10.3389/fimmu.2021.735609
The Cancer Epitope Database and
Analysis Resource: A Blueprint for
the Establishment of a New
Bioinformatics Resource for Use by
the Cancer Immunology Community
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Recent years have witnessed a dramatic rise in interest towards cancer epitopes in
general and particularly neoepitopes, antigens that are encoded by somatic mutations
that arise as a consequence of tumorigenesis. There is also an interest in the specific T cell
and B cell receptors recognizing these epitopes, as they have therapeutic applications.
They can also aid in basic studies to infer the specificity of T cells or B cells characterized in
bulk and single-cell sequencing data. The resurgence of interest in T cell and B cell
epitopes emphasizes the need to catalog all cancer epitope-related data linked to the
biological, immunological, and clinical contexts, and most importantly, making this
information freely available to the scientific community in a user-friendly format. In
parallel, there is also a need to develop resources for epitope prediction and analysis
tools that provide researchers access to predictive strategies and provide objective
evaluations of their performance. For example, such tools should enable researchers to
identify epitopes that can be effectively used for immunotherapy or in defining biomarkers
to predict the outcome of checkpoint blockade therapies. We present here a detailed
vision, blueprint, and work plan for the development of a new resource, the Cancer
Epitope Database and Analysis Resource (CEDAR). CEDAR will provide a freely
accessible, comprehensive collection of cancer epitope and receptor data curated from
the literature and provide easily accessible epitope and T cell/B cell target prediction and
analysis tools. The curated cancer epitope data will provide a transparent benchmark
org August 2021 | Volume 12 | Article 7356091
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dataset that can be used to assess how well prediction tools perform and to develop new
prediction tools relevant to the cancer research community.
Keywords: cancer, epitope analysis, database (all types), neoantigen, bioinformatics
INTRODUCTION

Recent years have witnessed a dramatic rise in interest towards
cancer epitopes, studies that have been greatly facilitated by the
dramatic decrease in the cost of whole-exome and transcriptome
sequencing, as well as advances in mass spectrometry that has
resulted in the generation of large datasets of candidate T cell
epitopes that are naturally processed and presented (1). This
resurgence of interest is linked to the exceptional success of
immune checkpoint blockade therapies that disengage immune
suppressive mechanisms and enable cancer antigen-specific T
cells to recognize and attack tumor cells expressing those
antigens (2–4). Additionally, current research suggests that
combining checkpoint blockade treatment and neoantigen-
directed therapies, such as vaccines or adoptive T cell transfer,
can enhance treatment efficacy (5). More recently, checkpoint
blockade therapies have been expanded to the neoadjuvant pre-
surgical setting, where the aim is to enhance systemic immunity
against a broader set of tumor antigens to eliminate micro-
metastatic tumors that would otherwise be the source of a relapse
(6). Despite these advances, only a subset of patients benefits
from these immunotherapies.

Comprehensively catalogingall cancer epitope-relateddata linked
to the biological, immunological, and clinical contexts will aid in
understanding the biological mechanisms associated with efficacy
and developing more effective therapeutic approaches. In parallel,
researchers need access to computational epitope prediction and
analysis tools but also need resources to aid in objective evaluation of
the performance of different predictive strategies.

There have been several recent efforts to address these needs.
The TANTIGEN 2.0 database (7) contains curated epitope and
ligand elution data for many different cancer antigens, such as
neoantigens and differentiation antigens. However, TANTIGEN
does not include peptides that were shown to be ineffective and
also lacks any association with clinical data. Similarly, The Cancer
Antigenic Peptide Database (https://caped.icp.ucl.ac.be) also only
includes curated epitope data for several different cancer antigens.
NEPdb (8) contains curated neoantigens but lacks any other types
of cancer antigens. For cataloged neoepitopes, associated receptor
information and clinical data are also provided if available. It is
possible to query NEPdb for an epitope sequence of interest, but
there is no option to search for receptors. dbPepNeo (9) only
contains curated HLA class I restricted neoantigens and ligand
elution data. Importantly, while all resources provide some basic
tools to query the databases for cancer types and peptide
sequences, it is not possible to perform specific and granular
queries. These resources do also not allow the user to perform any
predictions for peptides of interest.

To fill these gaps, we here describe the plans and blueprint to
develop a new resource, the Cancer Epitope Database and
org 2
Analysis Resource (CEDAR). CEDAR is envisioned as a
comprehensive bioinformatics resource, which will provide access
to curated cancer epitope data, including mutated and non-mutated
cancer epitopes, and bioinformatics tools for epitope and receptor
analysis and prediction. The work proposed here will build on the
Immune Epitope Database (IEDB), in existence since 2003, fully
operational and independently funded until at least 2025 by the
National Institute of Allergy and Infectious Diseases (NIAID) (10).
The IEDB’s focus isonallergy, infectiousdisease, transplantation, and
autoimmunity but does not include cancer. Analogous to the IEDB,
CEDAR will include all cancer-specific epitope data from various
T cell and B cell experiments, MHC binding assays, and MHC
ligandomics by mass-spectrometry. CEDAR will also include results
from in vivo experiments such as tumor rejection and/or tumor
control data. The granular curation of the data and the flexible query
structure of CEDARwill allow the user to performdetailed queries to
retrieve epitopes supported by different experimental data.

We believe that CEDAR will address an existing need because
there is currently no comprehensive informatics resource available
to the scientific community that stores data on cancer epitopes, the
receptors that recognize them, and the immunological, clinical, and
biological context in which they are recognized. In addition to a
database of cancer epitopes, CEDAR will provide a set of analysis
and prediction tools that will enable cancer researchers to predict
putative epitope targets in a tumor sample of interest and also
predict the likely specificity of T cell receptors (TCR) or B cell
receptors (BCR) identified in single-cell sequencing data. CEDAR
will also include benchmarking of existing epitope prediction tools
and provide side-by-side comparisons of performance. The
significance of these features lies in their utility for the broader
community of cancer researchers. Currently, many cancer
researchers are using the IEDB and its related tools to attempt to
answer questions like this, which is suboptimal given that the IEDB
was designed for applications outside of cancer (11).
RESULTS

A Plan to Define the CEDAR Database
Scope Based on the Salient
Characteristics of Cancer Epitope
Data and Metadata
Following initial interviews with cancer experts, we identified the
elements relating to an epitope that should be captured in CEDAR
(Figure 1), including seven main “field groups”, namely (1) related
to the structure of the epitope, (2) the protein/antigen source from
which the epitope is derived, (3) the host associated with the
identified epitope responses, (4) the features of the tumor sample,
isolate or model, (5) the effectors of the immune responses (both B
August 2021 | Volume 12 | Article 735609
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and T cell responses), (6) the ability and modality of the effector
responses to recognize the epitope and cancer cells, and (7) the
source of the information that is captured. CEDAR will also identify
whether the information captured is derived from a scientific
publication, through a direct submission to CEDAR, or gathered
from other online resources, and in each case, clearly state the
provenance information.
Structure and Antigen Source of the
Epitope and Type of Cancer Mutations
Different fields and subfields were defined to enable capturing
information in a granular yet searchable and accurate fashion.
First, we designated fields to capture the amino-acid sequence of
the epitope together with associated post-translational
modifications such as phosphorylation and glycosylation. In the
case of non-peptidic epitopes, such as, for example, CHO epitopes
recognized by antibody responses or ceramides used to expand
natural killer (NK) T cells, the structures are captured following
the format of ChEBI (12) and PubChem (13) resources.

We next defined a set of fields to indicate the general
characteristics of the antigen. Specific fields distinguish and
classify mutated epitopes (neoepitopes), tumor-associated
antigens (TAA) such as differentiation or tissue-specific
antigens (e.g., Melan-A, PSA), overexpressed antigens (e.g.,
HER-2, Muc-1), or cancer-germline antigens (e.g., MAGE, NY-
ESO1). For peptidic antigens encoded in the host genome, we
defined subfields to capture the gene and protein names of the
unmodified antigen, the type [e.g., a self-protein or endogenous
retroelement antigens such as long terminal repeats (LTR) or
endogenous retroviruses (ERVs) (14)], and its frequency and
magnitude of expression in healthy tissues for different tissue and
cell types, as well as developmental stages (15). For non-peptidic
self-antigens such as carbohydrates or gangliosides, we defined
fields to record their presence in different tissues. Similarly, for
epitopes derived from non-self-tumor-associated antigens,
Frontiers in Immunology | www.frontiersin.org 3
specific antigens are captured (e.g., protein from HPV). We
designated a final set of fields to capture normal properties
associated with the antigen, such as subcellular location and
involvement in biological functions based on GeneOntology (16,
17), and whether the antigen is a driver gene, known to be
causally linked to cancer progression (i.e., oncogene, tumor
suppressor gene). A set of subfields also captures expression in
pre-malignancies and the frequency and magnitude of
expression in various tumor types (18, 19) and cancer cell
lines (20).

We designated a distinct but equally important set of fields to
capture the type of cancer mutations in the source antigen and
their impact on the antigen, including the mutation type, such as
single or multi nucleotide variants, frameshift, or non-frameshift
indels and chromosomal rearrangements. The effect of the
mutation (coding: missense or premature stop codon,
frameshift, synonymous; non-coding: splice sites, UTR or
other), and the outcome of the mutation on the antigen,
distinguishing dysregulated expression, functional impact of
the mutation on source antigen (21, 22), structural localization
of mutation impact (23), localization in functional domains (21,
24), and known or predicted surface accessibility (23) are
captured in additional subfields.

Fields Related to the Host Organism
We designated a set offields and subfields to capture the organism
associated with the epitope response in terms of species (most
references will either be related to human responses or tumor
animal models, primarily mice or rats), age, sex, strain or ethnicity,
and the major histocompatibility complex (MHC). A separate set
of fields was defined to capture the general feature of the cancer,
such as natural occurrence and known associated risk factors
versus induced cancers (genetically engineered organism with
spontaneous tumor, xenograft, cancerogenic treatment induced).
Cancer classification and diagnosis are captured in designated
subfields as well, including anatomical site, histology, tumor stage,
FIGURE 1 | Summary of salient characteristics of cancer epitope data and metadata for CEDAR.
August 2021 | Volume 12 | Article 735609

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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and any type of pre-treatment. Additional subfields capture
relevant characteristics of the host, such as microsatellite
instability (MSI) and HPV status. If the subject from which the
responses were derived was vaccinated, the specifics of such
treatment are captured in terms of the vaccine antigen delivery
format (synthetic peptide, mRNA, DNA plasmid, viral vector, and
so on), adjuvant used, administration specifics, and formulation
details. Additional fields were designated to capture other types of
immunotherapies such as adoptive cell therapy (tumor-infiltrating
lymphocytes (TIL) therapy, engineered TCR therapy, chimeric
antigen receptor (CAR) T cell therapy, natural killer (NK) cell
therapy), and checkpoint blockade therapy (e.g., anti-PD-1, anti-
CTLA-4 therapy). If available, doses and dose sizes, information
about targeted antigens, corresponding TCR sequences, 3D
structures, and therapeutic interventions such as treatments with
chemotherapy, radiation, surgery, or oncolytic viruses can be
captured as well. Defined subfields will also capture clinical
outcome, such as complete response, partial response, or cancer
progression, and overall or progression-free survival, as well as
reduction of tumor burden, change in tumor markers, and any
adverse events of therapy, including autoimmune reactions.

We also designated fields to document the sample, isolate, or
model associated with the source antigen of the epitope.
Specifically, the sample nature (primary sample/short-term line
vs. stable cell line), its occurrence (primary, metastasis,
recurring), and whether the sample was obtained pre- or post-
treatment. If available, tumor sample purity is also captured
(from histology or predicted from sequencing data), as well as
the overall mutational burden of the sample. Any available
evidence for epitope/antigen expression in terms of frequency
and magnitude of epitope/antigen expression in the sample is
also documented. Importantly, CEDAR has designated fields to
capture the evidence type for the epitope/antigen as detected in
whole-genome, whole-exome, transcriptome, or targeted gene
panel sequencing, together with the depth and coverage at the
epitope site. In the event of a mutated antigen, details related to
the mutation are stored, such as its origin (somatic/germline),
tools that reported the mutation, read depth at the mutation site,
and variant allele frequencies in the tumor DNA sample and
RNA sample, if available. Supporting mass-spectrometry elution
data are also be captured if available. A separate set of fields was
defined to document features related to the tumor environment,
including the presence of T cells and characterized subsets.

CEDAR will also include results from in vivo experiments
such as tumor rejection and/or tumor control data. In such cases,
details about the used mouse models or the patients from clinical
trials will also be captured.

Fields Related to Capturing
Immune Responses
CEDAR aims to capture the general features of the effector
material, including the source of effector cells or antibodies,
whether they were (ex vivo) T cells, short-term cultured or
stable cell lines that were isolated from a tumor-affected host, or
whether they were induced/engineered cell lines. Information
related to antibody class and subclass and cell phenotypes,
Frontiers in Immunology | www.frontiersin.org 4
including CD4/CD8/NKT subset data and expression of
phenotypic markers, is also captured. If available, corresponding
TCR and antibody sequences, as well as 3D structures, will also be
documented, considering the different levels of resolution
associated with various techniques such as targeted sequencing
of CDR3 regions and full-length TCR sequencing. We also
designated subfields for possible synonymous TCR or BCR
sequences encoded by different V(D)J sequences, with the
opportunity to capture evidence of immunoediting or antigen
loss, if available.

In addition to this, CEDAR also documents the specific assays
performed to measure recognition. Examples include ELISPOT,
intracellular cytokine staining (ICS) or tetramer assays for T
cells, ELISA, antibody-dependent cell-mediated cytotoxicity
(ADCC), and fluorescence assays for antibodies. A separate
series of fields were defined to capture the effector mode of
recognition, namely the capacity to recognize tumor cells
directly, cell lines transfected with RNA, or cell lines pulsed
with peptides. Particularly relevant for MHC class II-restricted
responses is the curation of the type of antigen-presenting cell
(APC) involved in the assay determination. A final and most
crucial set of fields was defined to capture the results of the
assessment, as available in qualitative (positive/negative) and
quantitative (magnitude) terms. Importantly, the quality of
negative controls associated with the assay, such as data related
to MHC and antigen expression, will be carefully curated because
a negative result is not valid if the MHC or antigen is not
expressed. CEDAR will also capture the number of subjects
tested/responded, the type of tested ‘target’, and in the case of
mutated epitopes, whether both mutated and wildtype peptides
were tested, and the associated outcomes.

Mapping Database Fields to Community-
Supported Standards/Ontologies
In our planning and blueprint development for CEDAR, we have
drawn on our experience operating the Immune Epitope
Database (IEDB). Our extensive experience with the IEDB,
which we initiated in 2003 and have been maintaining and
enhancing over the past 18 years, has provided us with
important lessons on what to do and, more importantly, what
not to do when designing and maintaining an epitope database
and analysis resource. By multiple metrics, the IEDB is a success,
with >4,000,000 experiments characterizing >1,300,000 epitopes
from >22,000 references curated; a monthly rate of >30,000
unique visitors, and over >3,900 citations per year (based on
2020 data). Importantly, even though the IEDB is currently not
funded to respond to the needs of the cancer community, up to
one-third of current IEDB users are applying its functionality in
a cancer research setting. As part of our outreach activities, we
have gathered requests from these users on how the IEDB could
be improved for cancer researchers.

To accurately represent epitope information, the IEDB has
developed a semantically well-defined data structure, which
utilizes community-supported ontologies for most of its specific
fields (Figure 2). The core of this data structure has proven to be
remarkably flexible and robust, as it has been used to capture over
August 2021 | Volume 12 | Article 735609
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4 million assay records to date, enabling powerful aggregate
queries on epitope information gathered in diverse settings. For
example, for epitopes derived from viruses, the NCBI taxonomy is
used to capture the particular virus that the epitope is known to
originate from. This enables us to capture all synonymous names
used to refer to that particular entity (“Human Papillomavirus
16” or “HPV16” or “Human Papillomavirus type 16”). It also
allows storing and querying for information at different levels of
granularity, such as obtaining all epitopes derived from viruses in
the genus “Alphapapillomavirus” or specifying that an epitope
was found in a particular isolate of HPV16. As other knowledge
resources use the same NCBI taxonomic framework to represent
organisms, it makes our data FAIR (findable, accessible,
interoperable, and reusable) (25), which is particularly
important for the (re-)use of IEDB data by the broader science
community (26).

We plan to follow the same paradigm in CEDAR and will
ensure that each database field can be mapped to an accessible,
community-supported ontology. For fields where the scope
overlaps with the IEDB, the same standards can simply be re-
used. For database fields that are specific to cancer, standards/
ontologies will need to be identified to curate them accurately.
Frontiers in Immunology | www.frontiersin.org 5
We have already identified the need for additional cancer-specific
disease terms, including disease states and stages. Disease states
will continue to be described using Disease Ontology (DO) (27)
terms, which will be expanded and refined to include all cancer
terms. Additionally, all cancer-related disease terms will be
grouped under the parent term ‘neoplasm’, which aligns with
the classification of cancers in the National Cancer Institute
Thesaurus (NCIT) (28). Similarly, the NCIT terms will be used
to specify cancer stages and link these terms to their official NCIT
definitions and identifiers. Our team is proficient in working with
vocabulary providers and standardization efforts, and we will
enthusiastically embrace recommendations and/or participate in
efforts to develop data standards within the ITCR and general
cancer research community.

Development and Implementation
of a Web-Enabled Query and
Reporting Interface
One of the challenges for biomedical community databases is to
ensure that the query interfaces are intuitive and that the
generated reports provide understandable and scientifically
accurate results. An initial design for the CEDAR web query
FIGURE 2 | IEDB high-level structure and ontological backbone.
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interface (Figure 3) focuses on making the most requested pieces
of information immediately accessible. This query interface
shares fields with those present in the IEDB for epitope
structure, host, assays used to characterize the response, and
MHC-restriction. At the same time, it enables the direct query
for the source of the epitope as it is relevant to cancer, namely
source antigen, neoplasm, immune response induction, and
treatment. We anticipate adding antigen subtypes, a
characterization of the neoplasm/tumor, the ability to select
methods used to induce immune responses, and information
on the treatment a host was undergoing. It will, for example, be
possible to search for all epitopes in a given cancer type or
epitopes associated with a specific mutation or gene of interest.
The granular curation of the data and the flexible query structure
of CEDAR will allow for example to retrieve data related to either
natural presentation, recognition of synthetic antigens or both.
More detailed searches will also be possible, such as searching for
a specific type of assay or for instances where a specific type of
treatment occurred.

Background on the IEDB Curation Process
To identify and curate relevant publications that contain
experimental cancer epitope data, CEDAR will utilize the
validated curation approach established and optimized for the
IEDB and modify specific steps where required. Over the last 18
years, we have developed, implemented, and continuously
optimized the process to identify relevant journal articles for
Frontiers in Immunology | www.frontiersin.org 6
the IEDB and extract information from them, as outlined in
Figure 4. Scientific literature is constantly monitored by
querying the PubMed database on a biweekly basis with broad
keyword queries, purposely designed to be comprehensive, in
order to retrieve a broad universe of papers that should include
all references describing immune epitopes. Over time, these
specialized, broad queries have selected over 244,000 references
from over 32 million papers available in PubMed.

Based on the abstract, automated text classifier tools and
human experts then narrow these references down to those with
likely relevance (29–31). The criteria for passing this initial
selection require that the reference is within the scope of the
database, provide novel data (for example, review papers and use
of epitopes as a mere marker or tag are excluded), and describe
the epitope molecular structure in sufficient detail and
granularity (reports of simple reactivity against whole proteins
or undefined structures are excluded). Following these
determinations, the reference is classified as “relevant”, and
further subdivided into a specific disease category. The full text
of relevant articles is then retrieved and assigned to a doctoral-
level curator who extracts the data and enters it into the IEDB
database curation system. The curated records are peer-reviewed,
and once accepted, become visible to the public. The general
curation processes are described in detail in previous
publications (30, 32–34) and have been continuously adapted
as new assay types are established, as has been done to capture
receptor data from high throughput sequencing (35).
FIGURE 3 | Draft of cancer-specific query interface for CEDAR web portal. Highlighted in light blue are areas that include cancer-specific search parameters not
present in the current IEDB interface.
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Development of a Prioritized Queue of
Cancer-Related Articles for Curation
In preparation for cancer curation, papers that contain curatable
epitope information as part of the IEDB curation workflow were
further categorizedby theuseof automated text classifiers (29–31, 36)
andmanual inspection, in broad primary classes (Cancer, Infectious
Diseases (excluding HIV which is curated by the Los Alamos
database), Allergy, Autoimmunity, Transplantation and “Other”.
The percentage of references classified in each of these broad
categories is shown in Figure 5. Cancer references account for
10.6% of all identified and curatable epitope references. These
references were further subdivided into a set of 20 subcategories,
grouped as a function of similar antigens and/or cancer types. The
most frequent category ismelanomaantigens (MAA,20%), reflecting
Frontiers in Immunology | www.frontiersin.org 7
the prominence of these antigen types in immunological
investigations. Other frequent categories are carbohydrate antigens
such as Lewis and related antigens (LEWIS, 3.3%), and popular
antigens such as mucin (5.5%), Her2 and associated antigens (6.4%),
MAGE and associated antigens (4.8%), prostate associated antigens
(PROS,4.0%),p53 (2.6%), antigens associatedwith lymphoidcancers
(LEU, 5.6%), and CEA (2.1%). Neoepitope references were classified
separately and presently account for only 5.0%; however, the number
of papers in this category has been rapidly rising in recent years.

In addition to this, we plan to inspect and broaden the initial
PubMed query by adding keywords to ensure we capture all
cancer epitope-specific articles. Our automated document
classifier will be re-trained to specifically identify articles that
contain cancer epitope-specific information, as we have done for
FIGURE 5 | Breakdown of classified and curatable references.
FIGURE 4 | Workflow for identifying curatable journal articles.
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other categories before. Different categories will be addressed in a
sequential fashion. Our current first priority for curation
includes neoepitopes and T cell epitopes associated with
melanoma, breast, and prostate cancers, as these are among
the most frequently studied in basic investigations and clinical
trial settings.

Curating Previously Identified Relevant
Cancer Articles With Immune Epitope Data
To begin curation of cancer epitope literature, curators will
follow the curation rules encoded in the IEDB curation
manual, a living document (37), which will be expanded and
customized for CEDAR. In brief, for each epitope entered into
the database, the structure of the epitope, i.e., an amino acid
sequence for peptidic epitopes and a chemical structure for non-
peptidic epitopes, is described. If the epitope is naturally
occurring, the protein and organism from which the epitope
was derived are also entered; for example, the human melanoma
antigen recognized by T cells 1 (MART-1) protein. Additionally,
all experimental assays in which the epitope was studied are
added as T cell, B cell, or MHC ligand assays. The details of each
assay include information such as the host, whose immune
response was studied, the disease state and stage of the
individual, the type of effector cells (CD8+ T cells) or
antibodies (monoclonal IgG1) being studied, and the assay
method (ELISA, flow cytometry, etc.) that was utilized.
Curation also captures the sequences of the epitope-specific
TCRs and BCRs.

Curators capture data by entering it into dynamic and
interactive web forms designed to optimize productivity and to
ensure accurate and consistent data entry. This curation interface
enforces curation rules as the curator enters the data, which takes
advantage of the ontology-based data structure on a per-field
basis. Once the curator has completed entering the data,
additional validation rules that cross-compare the content of
different fields are checked by the system prior to allowing the
curation to be submitted. Just as development will be required on
front-end user interfaces to support cancer-specific query and
reporting better, the back-end curation system will also require
development to allow for appropriate data entry. This system will
be updated in coordination with the query and reporting
interface development described above and based on the
outreach feedback described below.

Curated Cancer Epitope Datasets for
Benchmarking Epitope Prediction Tools
The following sections describe the benchmarking, improvement
and development of epitope prediction methods. The results
epitope predictions will lead to validation experiments
determining which epitopes are actually of biological
significance, which is arguably the ultimate goal. These
results will, in a recursive modality, be fed back into training of
epitope predictions, leading to increased prediction accuracy
and significance.

Multiple computational tools and pipelines have been developed
to predict cancer epitopes in the scientific community (38). The
Frontiers in Immunology | www.frontiersin.org 8
comprehensive sets of epitopes curated in CEDAR can be used to
evaluate the performance of these tools. These benchmarking results
will inform tool developers on the most valuable prediction
approaches and tool users on which tools they can most rely on.
Moreover, the epitope datasets created in this process will be
valuable for the broader community in developing new tools.
Since many of the tools evaluated will have been trained on
subsets of existing data, ‘live benchmarks’ will also be
implemented, which consist of automated pipelines that run
predictions on epitope datasets just before they are released in
CEDAR. We have previously implemented such ‘live-benchmarks’
for MHC class I (39) and MHC class II (40) binding predictions in
the IEDB, and the framework established for these is easily
expandable for CEDAR.

We previously performed a small benchmark on the
predictability of cancer T cell epitopes with different prediction
approaches (41). More comprehensive studies can be performed
by taking advantage of the curation activities described above,
which will already have translated the free text information from
journal articles into a structured format. The granular curation in
CEDAR will allow to distinguish different datasets, such as
peptides shown to i) bind MHC, ii) be naturally processed and
presented by MHC, iii) be recognized by T cells when provided
as a synthetic antigen, and iv) be recognized by T cells as part of a
tumor cell. Providing separate datasets for separate biological
questions makes it easier for tool developers and users to
communicate what a specific algorithm was trained and
evaluated on.

We plan to extract these datasets focusing on high-quality
experimental records and will make them accessible in formats
that can be easily parsed with commonly utilized machine learning
algorithms and data analysis packages. We plan to add columns
containing additional factors that can help in the predictions. For
example, based on the tumor type, the expression level of different
source antigens can be estimated using National Cancer Institute
(NCI) databases such as cBioPortal (19, 42) and the GDC Data
Portal (43), even if that expression data is not specifically
measured in the original experiments.

Development of Novel Tools to Predict
Cancer Epitopes
While most methods for predicting cancer T cell epitopes evolve
aroundMHC binding prediction, which is a necessary step for an
epitope to be recognized by T cells, other factors, such as the
abundance of the epitope (or its precursors) in the tumor and the
availability of a TCR repertoire capable of recognizing the
epitope, influence T cell recognition. A thorough assessment of
the importance of these different features is required, and
CEDAR will provide independent datasets continuously
acquired over time through the above-described curation
process. Here we describe features that have been considered
by multiple investigators as drivers of differential immune
recognition (11, 44–49).

We and others have performed analyses correlating measures
of the abundance of an MHC ligand with its likelihood to be
recognized by T cells (11, 46–48, 50). For cancer epitopes that
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arise from a mutation (neoepitopes), the abundance is expected
to correlate with the frequency of the mutation in the tumor
DNA, as well as with the RNA expression level. Our preliminary
analysis of in-house data, as well as data recently published from
the NCI (46), showed that the variant allele frequency in the
RNA is significantly correlated with neoantigen recognition
(Figure 6). Thus, including a measure of epitope abundance
into machine learning methods is expected to improve cancer
epitope prediction. Accordingly, for non-mutated cancer
epitopes, the abundance of the associated source antigen, for
example as measured by RNA-Seq or proteomic analysis, might
improve epitope prediction and will be analyzed in detail.

The TCR repertoire is shaped by both central and peripheral
tolerance. Specifically, T cells with receptors binding to self-
peptides are expected to undergo apoptosis or adopt a
regulatory phenotype. Thus, we and others have hypothesized
that peptides with high similarity to host peptides have a lower
likelihood to be recognized by T cells (44, 49, 51, 52). For cancer
epitopes, the similarity to self-peptides is expected to be of
particular relevance, given that - by definition - cancer epitopes
are highly similar to host peptides. It will be important to develop
metrics of peptide similarity that correlate best with peptide
immunogenicity in a cancer epitope setting and determine if
they improve the performance of epitope immunogenicity
predictions (53). Furthermore, it has been hypothesized that, as
TCRs have evolved to be cross-reactive for similar epitopes in
order to provide protection from rapidly evolving pathogens (54,
55), cancer epitopes with similarity to pathogen sequences may be
more immunogenic, and this similarity may correlate with
clinical outcome (56). It was also suggested that neoantigens
from driver genes are more likely to be recognized by T cells (46).
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As entries in CEDAR will be linked to specialized databases
that host such information, we will be able to easily access all
information and include it in the training of machine learning
methods. The Cancer Genome Atlas (TCGA), the Catalogue Of
Somatic Mutations In Cancer (COSMIC) (57), and the Cancer
Gene Census (CGC) (57) are all examples of databases that can
be utilized to retrieve information about recurrent cancer
mutations and whether a mutation is affecting a driver gene or
not. Newly generated sets of experimentally validated T cell
epitopes that will become available in CEDAR will allow users to
assess specific hypotheses, such as mentioned above and in silico
prediction pipelines in general, that were created and tested on
limited datasets.

Using the newly curated datasets from CEDAR, different
combinations of features can be included in training machine
learning methods to optimize the prediction of epitope
recognition (Figure 7). The model can be trained to predict
any cancer-epitope related outcome, such as cancer epitope
recognition in vitro or in vivo activity (such as tumor regression
or experimental model outcomes). With more epitope data
becoming available, we will regularly update classifiers and
assess whether the data contains additional features (including
specificity to TCRs) that might be of relevance for predicting
cancer epitopes. We estimate that the size of the training data set
made available through the CEDAR curation of approximately
1,770 references will equal at least 50,000 epitopes, based on a
comparison of the current epitope count in the IEDB. This data
set should be sufficiently large to explore multiple training
strategies and features for consideration.
Development of Cancer Epitope
Analysis Tools
In our interactions with cancer immunologists and clinicians, it
was pointed out that immunoinformatics tools to predict MHC
binding and antigen-processing are not user-friendly, as they
often require elaborate pre- and post-processing of input and
output data to make them applicable in the cancer setting. We
identified several recurrent operations involved in analyzing
cancer epitopes, and we plan to create analysis tools that allow
automation and integration into cancer epitope-specific pipelines.

Determining what neo-peptides are generated by a given
mutation, for example, is non-trivial when complex mutations
such as frameshifts or splicing variants are involved. We plan to
provide tools to generate lists of overlapping n-mers to be
included in experiments, given a mutation of interest (e.g.,
KRAS G12V or chr:12 341234 A<T).

It is also of interest to identify if a given mutation or peptide
has already been tested for immunogenicity, and if so, in what
context. CEDAR will be interlinked with specialized databases
such as TCGA, COSMIC, the CGC, and dbSNP, as mentioned
above. We plan to develop tools to retrieve all available
information for a given mutation, including if a given peptide
has already been described in CEDAR (as a cancer epitope) or
the IEDB (e.g., for pathogen-derived epitopes) and whether it is
found elsewhere in the host proteome. Another important
analysis tool will provide MHC binding predictions for a set of
FIGURE 6 | RNA correlation with neoantigen recognition.
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mutated and associated wildtype sequences in the context of a set
of MHC alleles.

Likewise, it is of interest to determine if TCR or BCR
sequences have been described before. For CEDAR, all
published cancer-specific receptor sequences and their
recognized cancer epitopes will be curated. This combined
database will provide a comprehensive list of receptor
sequences and the epitopes they recognize. We have developed
a ‘receptor lookup’ tool (58), which accepts the TCR b chain
CDR3 sequence as an input, and identifies if TCRs with that
exact sequence (or a highly similar one) have been previously
characterized, and if so, what the previously identified epitope
specificity is. This tool was designed to handle large input
datasets, such as those generated by TCR repertoire sequencing
experiments, and will annotate for each receptor if it has been
found before and what epitopes it was previously reported to
recognize in both cancer and other disease settings.
DISCUSSION

Here we present our vision and “blueprint” to design and
implement the Cancer Epitope Database and Analysis Resource
(CEDAR), which will provide a comprehensive collection of cancer
epitopes curated from the literature, as well as cancer epitope
prediction and analysis tools. CEDAR will leverage our decades of
experience from the development of the IEDB, which is fully
Frontiers in Immunology | www.frontiersin.org 10
operational and has been funded since 2003 through a contract
from NIAID, with an extension to 2025. The IEDB focuses on
allergy, infectious disease, transplantation, and autoimmunity but
excludes cancer. Of note, the current Figures 1–3 reflect the initial
prototype based on the direct result of the input received in the
initial planning stages by our panel of experts. We however expect
that these will evolve over time as the prototypes are implemented
and additional feedback is received.

It is now well recognized that understanding the nature of
cancer epitopes and their cognate receptors enables us to answer
important scientific questions. For example, researchers are
examining how the mutation and epitope load in a given
tumor relate to the success of checkpoint blockade treatments
(4). In addition to this, current research explores epitope-based
vaccines and the transfer of epitope-specific T cells and TCRs for
use in personalized therapies (4, 5, 59, 60). Epitopes recognized
across different individuals provide ideal targets for more cost-
effective, off-the-shelf immunotherapies, re-igniting interest in
tumor-associated antigens. While mutation-based neoantigens
have received considerable attention in recent years, the CEDAR
initiative will also curate all data related to cancer-specific but
non-mutated antigens, e.g. based on cancer-specific protein
expression and processing variations, or cryptic antigens.

This interest is not limited to T cells, as several therapies also
take advantage of defined antibodies and BCRs. Moreover, the
ability to readily sequence TCRs and BCRs through single-cell
sequencing studies of tumor tissues has provided an impetus to
FIGURE 7 | Schematic of an Artificial Neural Network we could implement to learn determinants of Cancer Epitope Recognition.
August 2021 | Volume 12 | Article 735609

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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develop tools that facilitate the identification of tumor-specific T
cells and B cells in these samples. To address these needs,
CEDAR will provide a central, freely accessible catalog of
cancer epitope and receptor data linked to the biological,
immunological, and clinical contexts in which they were
described. The ultimate goal is to come “full circle” and link
epitope recognition and immunological readouts to outcomes of
disease, treatment, and vaccination. We also aim to use these
data to develop and evaluate machine learning-based epitope and
TCR/BCR specificity prediction tools for the analysis resource
component of CEDAR.

The CEDAR website will initially be developed based on our
experience in translational cancer research, as well as feedback
obtained from a diverse set of cancer experts. The website will
enable intuitive and scientifically accurate cancer-specific queries
and reports. This will be implemented by leveraging the existing
IEDB database, curation, and query and reporting infrastructure,
and expanding it to represent clinical and disease phenotypes
beyond what is currently in the IEDB. Additional fields relevant
to cancer will be accurately captured, such as different forms and
histologies of cancer and associated immunological, biological,
and clinical information. Based on our preliminary data, the
modifications required in the IEDB infrastructure to enable
CEDAR can be implemented in a period of 12 months. Once
established, subsequent modifications to CEDAR will be driven
by broader community feedback.

Curation of immune epitope data from literature, relevant to
cancer immunology, will include B and T cell epitopes associated
with cancer antigens, and in particular, naturally processed and
presented epitopes recognized in the context of a tumor, such as
the ones recognized by tumor-infiltrating lymphocytes. Epitope
data gathered in immunotherapy studies, in human clinical trials
and animal models, will also be captured along with the
sequences of both naturally occurring and engineered cancer
epitope-specific TCRs and BCRs.

Data related to cancer-specific HLA ligandomics analysis by
mass spectrometry will also be prominently curated and
displayed, as well as data demonstrating epitopes’ natural
presentation on tumor cells. Currently, natural ligand data is
already curated in the IEDB, and more than 872,001 eluted
ligands are curated and accessible through the IEDB website.
These data together with any cancer-specific data will be
accessible through both the IEDB and CEDAR webpages.

The granular curation of the data and the flexible query
structure of CEDAR will allow the user to extract the data
most relevant for different queries. For example data related to
natural presentation or recognition of tumor targets is arguably
the most important whenever available, whereas recognition of
synthetic antigens by T cells has frequently led to false positive
results. The flexible query structure of CEDAR will allow to
retrieve data related to either natural presentation, recognition of
synthetic antigens or both.

CEDAR will curate all cancer epitope data obtained either in
vivo or in vitro. Tumor rejection or tumor control data is one of
the measures of activity of cancer epitopes and will be curated as
such where available. Indeed, several studies have published data
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in mouse models and human clinical trials where the ability of
individual cancer epitopes has been tested in vivo (61–65).
Arguably, this is the most significant activity of a cancer
epitope. A number of studies also previously reported T cell
responses against cancer epitopes in vitro, which however did not
result in clinical activity when tested in vivo (66–68).
Furthermore, human studies (69, 70) and mouse studies (71,
72) have highlighted contradictions in the data on neoepitope
recognition. As CEDAR will include data from both, in vitro and
in vivo experiments, it will be possible to analyze any correlations
between T and B cell responses in vitro and associated antitumor
efficacy in vivo.

To the best of our knowledge, CEDAR would provide the first
comprehensive and curated cancer epitope database in which the
biological, immunological, and clinical context is captured with
high granularity and is retrievable for analysis with ease and
accuracy. Currently, none of the available repositories capture
comprehensive cancer epitope information with the necessary
granularity. CEDAR will provide query and reporting strategies
specifically designed to meet the needs of cancer researchers to
make cancer epitope data and metadata accessible. These
strategies are designed specifically for CEDAR and will be
developed in a timely and cost-effective manner, relying on the
existing IEDB infrastructure, which is based on over 18 years of
work experience and development.

Large efforts have been dedicated to developing novel
approaches for improved prediction and/or identification of
cancer neoepitopes (1, 41, 52, 56, 73–77). Each of these efforts
proposed different features to complement HLA binding
prediction to improve the ability of identifying cancer
neoepitopes. However, these studies are highly heterogeneous
in terms of data generation, validation techniques, and the
generality of the obtained conclusions, further challenged by
an often very limited sample size. The Tumor Neoantigen
Selection Alliance (TESLA) has provided an attempt to address
these issues by generating uniform data sets to be used by the
community for prediction of neoepitope candidates with
subsequent experimental validation (49). The main conclusion
from this work was that immunogenic tumor epitopes ‘are those
tumor peptides that have strong MHC binding affinity and long
half-life, are expressed highly and have either low agretopicity or
high foreignness’ (49).

CEDAR will further this kind of analysis and provide a
validated set of cancer epitope prediction and analysis tools.
Users will have access to implementations for published tools
that currently have no web-accessible versions and, objective and
transparent benchmarks of all tools will be performed using
literature data that becomes available in CEDAR through
ongoing curation efforts. In line with what has been the case for
general T cell epitope prediction tools, the availability of
comprehensive datasets within the IEDB and benchmarking has
been pivotal for the identification of well-performing tools,
excluding anecdotal results. Similarly, we expect that these
properties of CEDAR will allow users to identify none-dataset
specific properties and help move the field of cancer neoepitope
prediction forward. Finally, new tools will be developed
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based on lessons learned from the benchmarks that include
cancer-specific considerations, such as gene expression.
Additionally, we aim to provide a tool that will compare the
mutant and wildtype sequences in terms of their ability to bind
cognate HLA molecules and trigger T cell responses when
evaluating immunogenicity.

We will greatly expand the development, hosting, and
availability of different strategies to predict the immunogenicity
and clinical efficacy of cancer epitopes, as well as their potential as
a surrogate marker of positive clinical evolution following cancer
treatments. The availability of large, curated cancer epitope
datasets, reference implementations of prediction approaches,
and clear metrics of success is necessary to inform both the
community of tool developers on what makes a tool useful and
the community of tool users on which tool to use for their
application. Users will be provided with unbiased, objective, and
transparent evaluations of different epitope prediction tools side-
by-side, with the code being made publicly available. Cross-
comparison of prediction approaches on epitope datasets
derived from cancer versus other diseases (infection, allergy,
autoimmunity) will determine if there are predictable features of
cancer epitopes that differentiate them from other epitopes.

As the CEDAR data will be hosted side-by-side with IEDB
data, the resulting combined dataset will encompass all known
epitopes and their TCRs and BCRs, regardless of disease context.
This dataset will enable highly innovative analyses, namely the
ability to identify TCR and BCR sequences with known (or
inferred) epitope specificity from repertoire sequencing data.
With the increasing ease of isolating and sequencing TCRs, the
identified repertoire can be compared to the continuously
growing database of known TCR:epitope:MHC interactions.
This will allow identification of TCRs in tumor-associated T
cells targeting known neoepitopes or tumor-associated antigens,
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as well as TCRs targeting viral epitopes (60, 78, 79). Some studies
have reported enrichment of TCRs that recognize viral epitopes
in TIL that could be cross-reactive, as well as TCRs capable of
recognizing unmutated self-peptides expressed in normal tissue
(80, 81), which could result in autoimmune side-effects of
checkpoint blockade treatments. Ultimately, CEDAR will prove
to be a powerful resource for the cancer community and will help
advance cancer research and the development of effective
cancer therapies.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding author.
AUTHOR CONTRIBUTIONS

ZK-Y, NB, AS, and BP prepared the manuscript. HC, MN, EZ,
DK, JC-G, PR, and SPS reviewed and edited the manuscript.
All authors contributed to the article and approved the
submitted version.
FUNDING

Research reported in this publication was supported by the
National Cancer Institute of the National Institutes of Health
under award numbers U24CA248138 and U01DE028227.
REFERENCES
1. Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, et al.

Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-Allelic
Cells Enables More Accurate Epitope Prediction. Immunity (2017) 46:315–26.
doi: 10.1016/j.immuni.2017.02.007

2. Zamora AE, Crawford JC, Thomas PG. Hitting the Target: How T Cells
Detect and Eliminate Tumors. J Immunol (2018) 200:392–9. doi: 10.4049/
jimmunol.1701413

3. Topalian SL, Drake CG, Pardoll DM. Immune Checkpoint Blockade: A
Common Denominator Approach to Cancer Therapy. Cancer Cell (2015)
27:450–61. doi: 10.1016/j.ccell.2015.03.001

4. Schumacher TN, Scheper W, Kvistborg P. Cancer Neoantigens. Annu Rev
Immunol (2019) 37:173–200. doi: 10.1146/annurev-immunol-042617-053402

5. Curran MA, Glisson BS. New Hope for Therapeutic Cancer Vaccines in the
Era of Immune Checkpoint Modulation. Annu Rev Med (2019) 70:409–24.
doi: 10.1146/annurev-med-050217-121900

6. Topalian SL, Taube JM, Pardoll DM. Neoadjuvant Checkpoint Blockade for
Cancer Immunotherapy. Science (2020) 367(6477):eaax0182. doi: 10.1126/
science.aax0182

7. Zhang G, Chitkushev L, Olsen LR, Keskin DB, Brusic V. TANTIGEN 2.0: A
Knowledge Base of Tumor T Cell Antigens and Epitopes. BMC Bioinf (2021)
22:40. doi: 10.1186/s12859-021-03962-7

8. Xia J, Bai P, Fan W, Li Q, Li Y, Wang D, et al. NEPdb: A Database of T-Cell
Experimentally-Validated Neoantigens and Pan-Cancer Predicted
Neoepitopes for Cancer Immunotherapy. Front Immunol (2021) 12:644637.
doi: 10.3389/fimmu.2021.644637

9. Tan X, Li D, Huang P, Jian X, Wan H, Wang G, et al. Dbpepneo: A Manually
Curated Database for Human Tumor Neoantigen Peptides. Database (Oxf)
(2020) 2020:1–8. doi: 10.1093/database/baaa004

10. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The
Immune Epitope Database (IEDB): 2018 Update. Nucleic Acids Res (2019) 47:
D339–43. doi: 10.1093/nar/gky1006

11. Gartner JJ, Parkhurst MR, Gros A, Tran E, Jafferji MS, Copeland A, et al. A
Machine Learning Model for Ranking Candidate HLA Class I Neoantigens
Based on Known Neoepitopes From Multiple Human Tumor Types. Nat
Cancer (2021) 2:1–12. doi: 10.1038/s43018-021-00197-6

12. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, et al.
ChEBI in 2016: Improved Services and an Expanding Collection of
Metabolites. Nucleic Acids Res (2016) 44:D1214–9. doi: 10.1093/nar/
gkv1031

13. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019
Update: Improved Access to Chemical Data. Nucleic Acids Res (2019) 47:
D1102–9. doi: 10.1093/nar/gky1033

14. Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS.
Alternative Tumour-Specific Antigens. Nat Rev Cancer (2019) 19:465–78.
doi: 10.1038/s41568-019-0162-4

15. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A,
et al. Proteomics. Tissue-Based Map of the Human Proteome. Science (2015)
347:1260419. doi: 10.1126/science.1260419
August 2021 | Volume 12 | Article 735609

https://doi.org/10.1016/j.immuni.2017.02.007
https://doi.org/10.4049/jimmunol.1701413
https://doi.org/10.4049/jimmunol.1701413
https://doi.org/10.1016/j.ccell.2015.03.001
https://doi.org/10.1146/annurev-immunol-042617-053402
https://doi.org/10.1146/annurev-med-050217-121900
https://doi.org/10.1126/science.aax0182
https://doi.org/10.1126/science.aax0182
https://doi.org/10.1186/s12859-021-03962-7
https://doi.org/10.3389/fimmu.2021.644637
https://doi.org/10.1093/database/baaa004
https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1038/s43018-021-00197-6
https://doi.org/10.1093/nar/gkv1031
https://doi.org/10.1093/nar/gkv1031
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1038/s41568-019-0162-4
https://doi.org/10.1126/science.1260419
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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