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Abstract: Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the
transmission in developing countries is dominated by fecal-oral route via drinking contaminated
water, the zoonotic transmission is the major route of HEV infection in industrialized countries.
The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic
infection. However, the exact mechanism and the determinant factors of zoonotic infection are
not completely understood. This review will discuss the current knowledge on the mechanism of
cross-species transmission of HEV infection, including viral determinants, such as the open reading
frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host
cellular factors and the host immune status, which possibly play pivotal roles during this event.
The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of
this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in
pregnant women.

Keywords: hepatitis E virus; pathogenesis; cross-species transmission; ORF1; codon usage; adaptive
evolution; host cellular factor

1. Introduction

Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus that belongs to
the family Hepeviridae [1]. HEV is the leading cause of acute hepatitis around the world.
The World Health Organization (WHO) estimated that there are 20 million HEV infections
worldwide with approximately 44,000 deaths in 2015 [2]. HEV is known to cause acute
hepatitis, rarely leading to fulminant hepatitis. However, chronic hepatitis has increasingly
been reported in immunocompromised patients, including organ transplant recipients,
as well as patients with hematological malignancy and human immunodeficiency virus
(HIV) infection [3–5]. Besides manifesting as typical hepatitis, HEV infection can also cause
extrahepatic manifestations, including neurological manifestations [6,7], kidney injury, and
hematological disorders [8,9].

Among the five known hepatitis viruses, HEV has unique transmission routes ranging
from the fecal-oral route, as its classical mode of transmission, and the zoonotic route,
to less frequent routes such as via organ transplantation, transfusion of blood or blood
products, or vertical transmission from mother to fetus [3,10–14]. Although the overall
mortality rate is low, it could reach as high as 30% in infected pregnant women entering
their third trimester of pregnancy [14].

HEV infection is globally distributed. In developing countries, HEV has caused
multiple outbreaks where the virus is transmitted via the fecal-oral route by drinking
contaminated water. Meanwhile, HEV infections in industrialized countries are mainly
associated with zoonotic causes [15]. The isolation of the first HEV strain in an animal,
in swine [16], opened the door to the discovery of more HEV strains and their variants
in animal species. The report by the same research group in the following year showed
evidence that some HEV strains recovered from patients with acute hepatitis E are closely
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related to swine HEV, which can cross the species barrier to infect humans [17,18], proving
an HEV zoonosis event.

Isolation of new HEV strains in a growing number of animal species poses a risk to
zoonotic infection and has become a public health concern. Despite the inevitable risk
of zoonotic infection, many questions surrounding the mechanism of the cross-species
transmission in HEV infection remain unanswered and will be discussed in this review,
encompassing the viral and host factors involved in the event, such as the viral adaptive
evolution and host cellular factors, as some of the determinants of host species tropism.
In addition, the pathogenesis of hepatitis E infection will be briefly described in this
review, including special forms of the disease, such as chronic infection, extrahepatic
manifestations, and the severe cases in pregnant women.

2. Genome and Classification

HEV is a single-stranded positive-sense RNA virus. Its genome ranges from
6.4 kilobases (kb) to 7.3 kb with three major open reading frames (ORFs; ORF1–ORF3)
(Figure 1A). The genome has a short 5′ untranslated region (5′ UTR) capped at its 5′

end and a short 3′ UTR terminated by the poly(A) tract [19,20]. ORF1 is translated
from genomic RNA, while ORF2 and ORF3 are translated from a subgenomic RNA
strand [21,22]. ORF1 covers two-thirds of the genome, and encodes a non-structural
polyprotein containing multiple functional domains involved in viral replication. However,
whether the ORF1 product functions as a single polyprotein or whether it needs to be
further processed into smaller units by viral or cellular proteases following translation
remains to be elucidated [23,24]. Notably, however, in a recent hemagglutinin (HA)-tagged
full-length HEV replicon system, only an uncleaved ~190 kDa ORF1 product was de-
tected [25]. ORF2 encodes capsid protein, which is essential during virion assembly and
viral attachment to host cells, and is a major target for neutralizing antibodies [26–28].
Recently, it has been reported that HEV produces three forms of ORF2 capsid proteins: the
infectious/intracellular ORF2 (ORF2i), which is associated with infectious particles, as well
as glycosylated ORF2 (ORF2g) and cleaved ORF2 (ORF2c), which are not associated with
infectious particles [29]. Another study determined the initiation codons for the secreted
form of the ORF2 product and the actual capsid protein [30]. The secreted form of the ORF2
product (ORF2s) is initiated from the previously presumed start codon (Met 1) and its
N-terminal 23 amino acids are cleaved by signal peptidase, while the actual capsid protein
(ORF2c) is initiated from an internal AUG (Met 16) located 16 codons downstream of the
first AUG (Figure 1B). Between the two studies, functionally, the ORF2s and ORF2c may
correspond to ORF2g and ORF2i, respectively, with the absence of the cleaved form ORF2c,
presumably due to its lower level [29]. ORF3 encodes a multifunctional phosphoprotein
required for virion egress [31–33] and has been reported to be a functional ion channel, as
viroporin [34].

Exclusively in genotype 1 HEV (HEV-1), ORF4 codes for a novel protein identified in
the coding sequence of ORF1. It is synthesized only under the condition of endoplasmic
reticulum (ER) stress and is a short-lived protein. ORF4 protein is reported to enhance the
replication of HEV-1 by promoting the viral RNA-dependent RNA polymerase (RdRp)
activity of ORF1 [35]. A recent report demonstrated that ORF4 provided in trans enhances
the viral replication of genotype 3 HEV (HEV-3) although it does not naturally encode
ORF4 in its genome [36].
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Figure 1. The genomic organization and translation of HEV. (A) Genome map of HEV. MeT, Methyltransferase; Y, Y 
domain; PCP, Papain-like cysteine protease; HVR, Hypervariable region; X, macro domain; Hel, Helicase; RdRp, RNA-
dependent RNA polymerase; JR, junction region having the stem-loop structure and playing a critical role in HEV repli-
cation [19–21,26]. (B) A schematic representation of two major forms of ORF2 protein. The actual capsid protein (ORF2c) 
is initiated from an internal AUG (Met 16) located 16 codons downstream of the first AUG, while the secreted form of the 
ORF2 product (ORF2s) is initiated from the previously presumed start codon (Met 1) and its N-terminal 23 amino acids 
are cleaved by signal peptidase [30]. 
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well as a broad range of animal species [15]. This family is divided into genus Or-
thohepevirus which consists of HEV strains from mammals and birds, and genus Pisci-
hepevirus with its single species, Piscihepevirus A. The genus Orthohepevirus consists of spe-
cies Orthohepevirus A, Orthohepevirus B, Orthohepevirus C, and Orthohepevirus D. To date, 
there are eight genotypes within Orthohepevirus A species which infect humans, pigs, wild 
boars, rabbits, deer, camels, and other animal species. Species Orthohepevirus B is only 

Figure 1. The genomic organization and translation of HEV. (A) Genome map of HEV. MeT, Methyltransferase; Y, Y domain;
PCP, Papain-like cysteine protease; HVR, Hypervariable region; X, macro domain; Hel, Helicase; RdRp, RNA-dependent
RNA polymerase; JR, junction region having the stem-loop structure and playing a critical role in HEV replication [19–21,26].
(B) A schematic representation of two major forms of ORF2 protein. The actual capsid protein (ORF2c) is initiated from
an internal AUG (Met 16) located 16 codons downstream of the first AUG, while the secreted form of the ORF2 product
(ORF2s) is initiated from the previously presumed start codon (Met 1) and its N-terminal 23 amino acids are cleaved by
signal peptidase [30].

HEV is a member of family Hepeviridae [1], which has been identified in humans
as well as a broad range of animal species [15]. This family is divided into genus Ortho-
hepevirus which consists of HEV strains from mammals and birds, and genus Piscihepe-
virus with its single species, Piscihepevirus A. The genus Orthohepevirus consists of species
Orthohepevirus A, Orthohepevirus B, Orthohepevirus C, and Orthohepevirus D. To date, there
are eight genotypes within Orthohepevirus A species which infect humans, pigs, wild boars,
rabbits, deer, camels, and other animal species. Species Orthohepevirus B is only identified
in birds, species Orthohepevirus C is identified in rodents, while species Orthohepevirus D is
identified in bats [1].

Orthohepevirus A has been assigned to eight distinct genotypes (HEV-1–8) [1]. While
HEV-1 and HEV-2 have only been isolated in humans, HEV-3 and HEV-4 have been iden-
tified in humans as well as several animal species, including pigs, wild boars, deer, and
rabbits [37–42]. HEV-5 and HEV-6 have only been detected from wild boars in Japan [43–46].
HEV-7 has been isolated in dromedary camels and a human [47–49]. Finally, HEV-8 has
been detected in Bactrian camels [50,51]. In addition, there are many as-yet unclassi-
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fied HEV strains identified from moose [52,53], tree shrew (GenBank accession number
KR905549), sparrow [54], silkie fowl [55], little egret [56], hamster [57], voles [58,59], and
various bats [60].

3. Modes of Transmission

In developing countries, HEV is mainly transmitted via the fecal–oral route and has
been associated with multiple outbreaks due to poor sanitary conditions (e.g., contaminated
drinking water). Meanwhile, sporadic cases and clusters in industrialized countries are
often reported where the routes of transmission are more variable and are dominated by
zoonotic infection [6,61–65]. Although less frequent than the two main transmission routes,
HEV can also be transmitted through organ transplantation or the transfusion of blood or
blood products where it can cause chronic HEV infection or from an infected mother to the
fetus [3,10–14].

Zoonotic HEV is mainly transmitted via foodborne routes, such as from the con-
sumption of undercooked meat or milk products of infected animals. Another possible
route is associated with occupational risk among workers, including veterinarians, forestry
workers, slaughterhouse workers, or animal farm workers [66–68] as they are continuously
in direct contact with probably infected animals.

HEV is excreted in feces where the viral particles can reach the environment and
contaminate water sources and irrigated food. HEV in environmental samples can reach the
food chain (e.g., in mussels and contaminated pork products, such as sausages or meat) [69].
Besides being detected in packaged sausages and liver samples from processing sites and
supermarkets in Spain, Italy, and Czech Republic, HEV is also detected from environmental
samples collected in production farms and processing plants and at the points of sale of
items such as knives, flooring, belt surfaces, workers’ hands, and toilets [69,70]. Foods
other than pork products have also been implicated, where HEV is isolated from shellfish,
fruits, and vegetables [71]. This is likely due to pig slurry contaminating watercourses or
being used as fertilizer [72]. Coastal water may be contaminated with HEV, leading to
the accumulation of the virus in the digestive tissue of shellfish due to filter-feeding [69].
An outbreak of hepatitis E on a cruise ship was linked to the consumption of shellfish
while on board [73]. HEV has also been detected in sewage and run-offs, where the
virus is concentrated in waste products generated during sewage and drinking water
treatment. The following land application of the waste can cause the contamination of
water in aquifers, can contaminate irrigated vegetables, and can therefore be a risk factor
for HEV infection [69,74–76]. Another transmission route that warrants further exploration
is through contact with an environment contaminated with the droppings or body fluid of
infected animals.

4. Pathogenesis

The HEV particles in bile and those shed in the feces are non-enveloped. Meanwhile,
the particles in circulating blood and culture supernatants are in membrane-associated form,
which is different from classical enveloped viruses due to the absence of viral glycoproteins
in the surrounding lipid bilayer in which membrane-associated HEV particles seem to
be completely covered with a lipid membrane [31,77,78]. These findings have led to the
designation of the membrane-associated form of HEV as quasi-enveloped HEV [79,80].
Although a primary site of HEV propagation in humans remains undetermined, it is
tempting to speculate that HEV replicates primarily in the liver (not in the gut) and that
the non-enveloped virions entering via the gastrointestinal tract will be neutralized by
immune sera before reaching the liver via the portal vein. This can explain how humans
who were immunized with a recombinant ORF2-based vaccine can be protected against
infection with enterically-transmitted HEV [78,81].

Previously, it was hypothesized that lipid-associated HEV is released from both
infected cultured cells (in vitro) and infected hepatocytes (in vivo) as lipid-associated
virions, accompanied by ORF3 protein, and that the quasi-envelope is dissociated from
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the virion after shedding the lipid in the bile duct, which contains detergent (deoxycholic
acid), and shedding the ORF3 protein in the duodenum, which contains protease (trypsin)
secreted from the pancreas [82–84]. In support of this hypothesis, Capelli et al. [85] utilized
F2 cells (subclone of the human hepatocarcinoma cell line HepG2/C3A, which grew as a
polarized monolayer culture and had better HEV production than the mother cell line) in a
cell culture due to the polarized nature of hepatocytes, which have exosomal pathways
(basolateral, oriented toward the blood; and apical, oriented toward the bile). In this study,
they showed that irrespective of the virus form (naked or membrane-associated), and
whether HEV-3 or HEV-1 is used as inoculum, the polarized cells released around 95% of
the HEV RNA from their apical sides as lipid-associated particles. The ratios of infectious
particles to HEV RNA copies on the apical were higher in comparison to the basolateral
side, suggesting that the apical pathway is the main release route and that the majority of
infectious HEV particles are released from the bile sides of hepatocytes while the small
fraction released into the bloodstream could spread HEV throughout the host [85].

Although most HEV infections are self-limiting, infections in immunosuppressed pa-
tients may progress into chronic disease or may cause extrahepatic manifestations [6–9,86].
The host innate immune system is the first line of defense against viral infection. Dysregula-
tion of this system can cause severe pathogenesis. In HEV infection, host innate immunity
has shown to involve an active response in experimental models and patients [87–91].
HEV has also developed strategies to counteract the host immune system where recent
knowledge mainly outlines the interactions between HEV viral proteins with the host
innate immunity, as reported for ORF1 (e.g., the papain-like cysteine protease (PCP) and
X domains of ORF1 inhibit the activation of retinoic acid-inducible gene I (RIG-I) and
TANK-binding-kinase 1 (TBK-1), as well as the phosphorylation of interferon regulatory
factor 3 (IRF3)) [92], ORF2 (e.g., ORF2 suppresses nuclear factor-kappa B (NF-κB) activity
by blocking the ubiquitination of inhibitor (IκBα) of NF-κB alpha) [93], and ORF3 (e.g.,
ORF3 inhibits the phosphorylation of signal transducer and activator of transcription 1
(STAT1) and the expression of interferon-stimulated gene (ISG) upon HEV infection) [94].

Extrahepatic manifestations reported in HEV-infected patients are possibly associated
with either direct viral effects due to cytopathic tissue damage caused by extrahepatic
replication in affected tissues, or with indirect effects related to the immunological processes
induced by a cross-reactive host immune response to HEV [95]. Besides being detected in
various tissues in vivo, the ability of HEV to cause extrahepatic manifestations has also
been demonstrated in vitro, where HEV can infect a range of cell types (e.g., human lung
epithelial cells, human colon epithelial cells, human neuronal-derived cells, and human
placental cells) [95,96].

HEV infection is associated with a high mortality rate in pregnant women, particu-
larly those in their third trimester of pregnancy, where the highest incidence is reported
for HEV-1 [14,97,98]. The alteration of the immune system during hormonal changes
in pregnancy has been reported as a potential pathogenic mechanism of HEV infection,
which is related to cellular immunity [14,99]. A recent study by Gong et al. [100] indicated
that HEV infection significantly inhibits the signaling pathways of cyclic adenosine 3′, 5′-
monophosphate/protein kinase A/response element-binding protein (cAMP/PKA/CREB)
and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin
(PI3K/AKT/mTOR). The increasing estrogen levels and high activation of estrogen recep-
tor alpha (ER-α) during pregnancy aggravates HEV replication. The exacerbation of HEV
replication inhibits the expression of ER-α and suppresses the cAMP/PKA/CREB and
PI3K/AKT/mTOR signaling pathways [100]. Another factor that might enhance the viru-
lence of HEV in pregnant women is the presence of the ORF4 protein, which is exclusively
found in HEV-1. The ORF4 protein is only synthesized under the condition of ER stress and
is essential to stimulate the RdRp of HEV-1, which causes enhanced virus replication [35].
Since pregnancy can induce ER stress and fulminant hepatitis E in pregnant women is
mostly caused by HEV-1, it can be hypothesized that ER stress caused by pregnancy can
induce the synthesis of ORF4, thereby causing higher viral replication (in comparison to
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non-pregnant patients) and consequently leading to the development of fulminant HEV
infection.

Most chronic HEV infections are associated with HEV-3, with a single case of HEV-
1 [101] or HEV-7 [49], which to date, are only anecdotal and unique; and HEV-4, which
has been described in small numbers of reports [102]. Viral and host factors are likely
the determinants of the chronicity of HEV infection [103]. Viral factors, such as genotype,
zoonotic potential, specificity, and adaptability to a host play important roles in the es-
tablishment of persistent infection. Meanwhile, host factors, such as the immune state
and the nutritional health of the patient can also determine the course of HEV infection.
The type of immunosuppressive drugs is reported to affect the progression to chronic
infection, with patients treated with calcineurin inhibitors (e.g., tacrolimus, cyclosporin A)
or mTOR inhibitors (e.g., everolimus, sirolimus), reported to be more prone to persistent
HEV infection [3,103].

5. Zoonotic HEV Infection

HEV infection caused by zoonotic HEV-3 or HEV-4 has increased in industrial coun-
tries, including Japan and several European countries such as France, the Netherlands,
Spain, and UK [69,104–106]. It is also found to be endemic in the US population and
circulates abundantly among North American pig herds [37,106]. Zoonotic transmission is
responsible for the sporadic cases and clusters of human infection caused by HEV-3 and
HEV-4, and chronic infection reported in immunocompromised patients is mostly linked
to zoonotic HEV-3 [37].

Swine are the primary reservoir of HEV; in swine, infection is subclinical [107]. Most
animal strains of HEV have been isolated from swine. Soon after the report of the first
known zoonotic infection related to HEV [17], the number of zoonotic HEV infections
continued to increase, particularly in industrialized countries. Within species Orthohepevirus
A, HEV strains of five genotypes (HEV-1, -2, -3, -4, and -7) are capable of infecting humans
(Table 1). While HEV-1 and HEV-2 are restricted to humans, HEV-3, -4, and -7 are capable
of crossing the species barrier to cause zoonotic infection in humans. Besides HEV-3 and
HEV-4 strains from pigs, wild boars, and deer, variants of HEV-3 in rabbits were also found
to be capable of causing human infection [42,108].

Under experimental conditions, swine HEV-3 and HEV-4 infected rhesus monkeys
and, conversely, HEV-3 and HEV-4 of human origin infected pigs [17,109,110]. However,
HEV-1 and HEV-2 failed to infect pigs under experimental conditions [18], indicating that
HEV-1 and HEV-2 have a limited host range [111].

To date, only a single case of human infection related to HEV-7 has been reported. It
is a chronic case in an immunocompromised patient caused by the regular consumption
of milk and meat products of dromedary camels [49]. The risk of zoonotic infection was
also suggested in HEV-5 (from wild boar) and HEV-8 (from a Bactrian camel) as they
were successfully transmitted to cynomolgus macaques in experimental settings [112–114].
Besides the members of species Orthohepevirus A, rat HEV, which is a member of species
Orthohepevirus C, is also capable of infecting humans, as was recently reported in both
immunocompromised and immunocompetent patients [115–117]. With growing numbers
of isolated rat HEV strains from around the world [118], as well as evidence of human
infection by rat HEV [115–117]—in limited areas—the number of cases of human infection
by rat HEV may increase in the future.
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Table 1. Reported cross-species transmission of genus Orthohepevirus.

Species Genotype Experimental Infection Zoonotic Potential

Orthohepevirus A

Human HEV-1 Non-human primate [119,120] No

Human HEV-2 No

Human HEV-3 Rabbit [121]

Swine HEV-3 Non-human primate [17] Yes [16,122–126]

Wild boar HEV-3 Pig [127,128]
Rabbit [129]

Yes [38,130–132]
Pig [127,133]

Deer HEV-3 Yes [39]

Rabbit HEV-3 Pig [134,135]
Non-human primate [135] Yes [42,108]

Human HEV-4 Pig [110]

Swine HEV-4
Non-human primate [109,136]

Rabbit [137,138]
Mongolian gerbil [139,140]

Yes [123,141–143]

Wild boar HEV-4 Yes [144,145]

Wild boar HEV-5 Non-human primate [112] Likely

Wild boar HEV-6 Unknown

Dromedary camel HEV-7 Non-human primate [113] Yes [49]

Bactrian camel HEV-8 Non-human primate [114] Likely

Orthohepevirus B Avian HEV Turkey [146,147] Unlikely

Orthohepevirus C Rat HEV Yes [115–117]

Orthohepevirus D Bat HEV Unlikely

6. Mechanism of Cross-Species Transmission in HEV Infection

The key event in zoonosis is when an animal virus starts replicating in the first
human subject. Here, the virus will experience the selective environment of the human
body, possibly rendering viral adaptation and refinement for humans [148]. The processes
responsible for cross-species transmission and the emergence of viruses in natural systems
are diverse, involving ecological, evolutionary, and genetic factors. Several evolutionary
mechanisms have been reported [149–152]. Among them, molecular adaptation by natural
selection is an important occurrence that requires the generation and spread of beneficial
mutations to increase virus fitness in a specific environment [153]. Viruses with frequent
cross-species transmission events might exhibit parallel evolution (independent evolution
of the same genotype or phenotype from distinct ancestors) as a result of adaptation to
new host environments [153].

One of the efforts to demonstrate the broad range of HEV hosts was reported by
Shukla et al. [154]. HEV-3 Kernow-C1 strain was semi-purified from the feces of a chronic
hepatitis E patient co-infected with HIV [155]. Other than infecting human hepatoma cells
(HepG2/C3A) and pig kidney cells (LLC-PK1), the fecal virus was surprisingly able to
infect a variety of non-primate cells, including deer, cow, mouse, chicken, cat, dog, and
rabbit cells. Meanwhile, the HEV-1 strains (Sar-55 and Akluj) used in this study successfully
infected not only HepG2/C3A cells but also LLC-PK1 cells, albeit less efficiently. The HEV-
3 Kernow-C1 strain was also serially passaged six times (p6). The p6 virus was shown to
infect LLC-PK1 more efficiently than it did HepG2/C3A, suggesting that despite adaptation
to grow in human HepG2/C3A cells, it still infected more pig cells than human cells [154].

The precise mechanism of cross-species transmission in HEV infection is not fully
understood. The establishment of cross-species transmission requires the interaction of
viral determinants and host determinants. Within the past decade, progress has been made
regarding the viral and host determinants involved in the cross-species transmission of
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HEV, among which the HEV ORFs and evolutionary events have become the most studied
to date (Table 2).

Table 2. Possible viral and host factors involved in cross-species transmission of HEV.

Determinants Remarks References

Viral
factors

ORF1 (unknown
domain)

Chimeric viruses where 5′ UTR, ORF1 and/or JR in the backbone of
human HEV-4 were swapped with the corresponding regions of swine
HEV-3 successfully infected pigs, suggesting that the 5′ UTR and ORF1

may be involved in cross-species transmission.

[111]

Only chimeras with the swine HEV-4 ORF1 region either alone or in
combination with the 5′ UTR were able to infect pig kidney cells in vitro,

supporting the possible role of ORF1 in cross-species transmission.
[156]

Adaptive evolution
and codon usage

Observed bias against Sar-55 of HEV-1 ORF2 production in deer cells and
its amelioration following the introduction of a short 5′ RNA sequence
from the Kernow-C1 strain of HEV-3 suggests that the modulation of

translation from closely spaced codons can differ significantly according
to host species, and this difference may provide one mechanism for

restricting the host range.

[154]

A lower codon usage bias was observed for zoonotic HEV (HEV-3 and
HEV-4). The codon adaptation index calculated with the general codon
usage table for humans and swine indicates the good adaptation of HEV
to its hosts. Thus, it can be assumed that the gene expression of human
and zoonotic genotypes is very well adapted to the translational kinetics

in humans.

[157]

Codon adaptation may be the essential factor in determining the viral
host tropism. [158]

The genotype-specific codon usage bias in HEV-1 is generally stronger
than that of HEV-3 and HEV-4. Unlike the unique codon usage pattern of
HEV-1, HEV-3 and HEV-4 strains derived from either humans or swine

have more diverse codon usage patterns in ORFs.

[159]

In a correspondence analysis based on the relative synonymous codon
usage data, the different HEV genotypes appeared to cluster (in

particular, HEV-1, and HEV-3 and HEV-4), and based on ORF1, HEV-1 is
clearly separated from the other groups, partially reflecting that HEV-1 is
restricted to human hosts, while HEV-3 and HEV-4 strains were found in
various animal species and were capable of cross-species transmission.

[160]

Host
factors Host cellular factors

The inability of several intergenotypic chimeras (with HEV-1 as the
genomic backbone where various genomic regions were replaced with

the corresponding regions of HEV-3 or HEV-4 to infect swine either
in vitro or in vivo, excluding chimeras with swapped ORF1) showed

that—other than the role of the viral factor itself—swine cells might lack
the essential host factors required by HEV-1 to establish successful

infection in pigs. In addition, it may also reflect the functional
importance of species-specific protein-protein interactions during

HEV replication.

[111,156,161]

The ability of human HEV-1 to infect pig kidney cells suggests that
human and swine HEV might share at least one cell receptor. [154]

Host immune status

The Kernow-C1 strain of HEV-3 isolated from an immunocompromised
host (HIV-infected patient) demonstrated an extraordinary ability to
infect cells from a broad spectrum of species ranging from rodents

to primates.

[154]

Most cases of human infection with rat HEV involved
immunocompromised individuals. [115,116]
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6.1. The HEV ORFs

When the ORFs were analyzed separately, ORF1 and ORF3 were demonstrated to
more efficiently separate the HEV strains into anthropotropic and enzootic genotypes,
suggesting their evolutionary role in host species tropism [157,158,162]. Consistent with
the broad host range of enzootic HEV genotypes, the HVR of ORF1 in HEV-3 and HEV-4
is around two-fold more heterogenous than that in HEV-1 [162], and the analysis of the
relative synonymous codon usage values of ORF3s showed that the HEV strains were
grouped into only two clusters consisting of the HEV-1 and HEV-2 strains (anthropotropic
genotypes), and a cluster of the remaining strains (HEV-3–8, enzootic genotypes) [158]. On
the other hand, ORF2 was previously thought to be the viral determinant of host tropism,
since it encodes the capsid (the only structural protein) that possibly binds to unknown
host cell receptors [141,163–165].

To unveil the viral determinant of species tropism in HEV cross-species transmis-
sion, several research groups have been utilizing the intergenotypic chimeric virus strat-
egy. The potential role of ORF2 in HEV cross-species infection was investigated by
Feagins et al. [111] and Cordoba et al. [161]. Feagins et al. [111] constructed intergeno-
typic chimeric viruses by swapping the ORF2 capsid gene, either alone or in combination
with its adjacent junction region (JR) and the 3′ UTR, between HEV-1 and human HEV-4,
swine HEV-3 and human HEV-4, and HEV-1 and swine HEV-3 (Figure 2A). Their infectivity
was tested in vitro and in pigs. Three chimeric viruses containing the JR, ORF2, and 3′

UTR of swine HEV-3 or human HEV-4 in the backbone of HEV-1 failed to infect pigs.
However, the other two chimeric viruses containing the ORF2 capsid gene either alone or
in combination with its adjacent 5′ JR and the 3′ UTR from human HEV-4 in the backbone of
swine HEV-3 were replication-competent in Huh7 cells and infectious in both HepG2/C3A
cells and pigs, suggesting that the 5′ UTR and ORF1 may be involved in cross-species
transmission [111].

Following this, Cordoba et al. [161] constructed four intergenotypic chimeric clones
by swapping the ORF2 gene along with its JR, ORF3, and 3′ UTR between HEV-1 and
HEV-4 of human origin, and HEV-1 and swine HEV-3 (Figure 2B). Only two chimeras with
sequences swapped between HEV-1 and HEV-4 of human origin successfully established
infection in HepG2/C3A cells. The inability of chimeras with sequences swapped between
HEV-1 and swine HEV-3 to produce infectious viral particles may be due to incompatibility
of viral genes from HEV-1 with those from swine HEV-3. The cDNA clone of human HEV-4
used in this study was confirmed to be capable of infecting pigs. However, none of the four
chimeras were able to establish robust infection in pigs [161].

It was demonstrated that ORF2 and ORF3 are not involved in HEV cross-species infec-
tion, as evidenced by the failure of host range expansion of chimeric viruses in which the
ORF2 or ORF3 gene was swapped [111,161], suggesting that other genomic regions (5′ UTR
and ORF1) may play a role in determining the HEV host tropism. Chattarjee et al. [156]
reported the construction of 12 different HEV-1–HEV-4 chimeric full genome clones with
HEV-1 as the backbone, where the structural (ORF2 and ORF3), non-structural (ORF1), or
UTRs were replaced by the corresponding segments from swine HEV-4 clone (Figure 2C).
Although all chimeric clones were able to replicate in S10-3 of human hepatoma cells, only
two chimeric clones (HEV-1 as the backbone where the ORF1 either alone or in combination
with its 5′ UTR was swapped with those of swine HEV-4) were able to replicate in PK-15 of
pig kidney cells. This shows the crucial role of the ORF1 polyprotein in crossing the species
barrier at the cellular level [156].

Although the available evidence suggests that ORF1 may contribute in HEV cross-
species transmission, the exact region within ORF1 that is essential in determining the
host tropism is still unknown. Insertion and/or deletion in ORF1 have been demonstrated
to affect not only virus replication but also host tropism [166,167]. The insertion of the
host ribosomal protein sequence (RPS17) within the HVR of ORF1 led to expanded host
adaptability, where the RPS17-inserted mutant was able to establish infection in cell lines of
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multiple animal origins in vitro [154,166], suggesting a potential role of ORF1, particularly
HVR, in interspecies infection.

To determine which viral genetic element in the ORF1 is essential in determining
host tropism, Tian et al. [168] utilized genomic backbone of HEV-1 which only infects
humans to construct a panel of intergenotypic chimeras in which the entire ORF1 gene
or its functional domains were swapped with the corresponding regions from swine
HEV-3, which infects both humans and pigs (Figure 2D). Although the chimeric HEVs
were replication-competent in Huh7 (S10-3) cells (a human liver cell line) and swine HEV-
3 parental clone-inoculated pigs developed viremia, the RNA transcripts subsequently
inoculated intrahepatically into pigs did not confer the ability to infect pigs in the chimera;
this can be partially linked to the limitation of this study, where the HEV-1 backbone
used here technically has low virus replication efficiency [168]. The results from this
study may also suggest that—in addition to the unidentified viral genetic element within
ORF1—determinants (e.g., host factors) may play a role in host tropism, either alone
or in association with the viral genetic element itself. In addition, Tian et al. [168] also
investigated the role of the human ribosome protein sequence S17, which expanded the host
range in cultured cells [154,166], in HEV cross-species infection. The results demonstrated
that the insertion of S17 in the HVR of ORF1 did not abolish HEV replication competency
in vitro and that it did not expand HEV host tropism in vivo, suggesting that S17 is not a
determinant factor for HEV cross-species infection in vivo [168].

6.2. Adaptive Evolution and the Codon Usage of HEV

The common ancestor of the modern HEV strains emerged approximately 6800 years
ago, following the domestication of pigs and intensification of agriculture. Domestica-
tion caused adaptive changes in the common ancestor leading to the emergence of both
human-restricted (HEV-1 and HEV-2) and zoonotic (HEV-3 and HEV-4) strains [158]. An
analysis performed before the identification of the wild boar- and camel-derived genotypes
(HEV-5 to HEV-8) indicated that the ancestor of all Orthohepevirus A was enzootic [169]. The
same study also mentioned that the ancestors of HEV may have adapted to a succession of
animal hosts, leading to humans. In contrast, a recent study suggested that the Orthohepe-
virus A species originated from humans and subsequently evolved into the zoonotic and
human-restricted genotypes [170]. However, this study group also mentioned that their
inference of an ancestral human host for extant Orthohepevirus A strains did not exclude
the possibility that humans might have acquired HEV through cross-species transmission
from other animals.

Synonymous codon usage is the non-random selection of frequently used codons.
This type of selection is limited by codon bias for different genes. Determinant factors for
synonymous codon usage bias include natural selection, mutational pressure, and transla-
tional efficiency, as well as compositional constraints of the mammalian genome [160,171].
It is widely known that the synonymous codon usage in viral coding sequences serves
as an important mediator in viral adaptation to the host [172]. Both restricted and broad
host HEV infection can provide strong natural selection leading to the shaping of the
codon usage pattern of different genotypes of HEV. Viral adaptation to the host in codon
usage is a long-term evolutional feedback, which is derived from the host-range of HEV
infection [159].

Codon adaptation may be the essential factor in determining the viral host tropism [158].
The evolving process embodies coherent patterns of synonymous codon usage that have
been established between the virus and the host. This process assists the virus in adapting
to susceptible hosts and expanding the scope of zoonosis not only by specifying amino acid
usage and translation dynamics but also by controlling gene expression levels [173,174].

Natural selection was identified as a major factor affecting codon usage patterns in
HEV ORFs that may explain the wide range of HEV hosts, while still being influenced by
mutational pressure as part of the evolution process [157,158]. In a correspondence analysis
based on relative synonymous codon usage data, different HEV genotypes appeared to
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cluster (in particular, HEV-1, and HEV-3 and HEV-4). The analysis showed that—based
on ORF1—HEV-1 is clearly separated from the other groups [160]. Considering that ORF1
encodes an essential non-structural polyprotein that controls the life cycle of HEV, these
results may partially reflect the fact that HEV-1 is restricted to human hosts, while the
HEV-3 and HEV-4 strains were found in various animal species with the capability of
cross-species transmission [160]. Factors such as natural selection and mutational pressure
enabled significant adaptation changes in the ORF1 of HEV-1 to humans, rendering ORF1
the evolutionary indicator of host speciation [157,158].
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Figure 2. A schematic diagram of the genomic organization of HEV and its intergenotypic chimeric constructs summarized
from four relevant papers. (A) Intergenotypic chimeric viruses where the ORF2 capsid gene—either alone or in combination—
was swapped with its adjacent JR and 3′ UTR, between HEV-1 and human HEV-4, swine HEV-3 and human HEV-4, and
HEV-1 and swine HEV-3 [111]. (B) Intergenotypic chimeric viruses where the ORF2 gene along with its JR, ORF3, and 3′

UTR were swapped between HEV-1 and human HEV-4, and between HEV-1 and swine HEV-3 [161]. (C) Twelve different
HEV-1–swine HEV-4 intergenotypic chimeric viruses with HEV-1 as the backbone where ORF2, ORF3, ORF1, or UTRs
were replaced by corresponding segments from swine HEV-4 [156]. (D) The genomic backbone of HEV-1 was used to
construct a panel of intergenotypic chimeras in which the entire ORF1 gene or its functional domains were swapped with
the corresponding regions from swine HEV-3 [168].

The genotype-specific codon usage pattern that results from the balance between
mutational and natural selection provides an evolutionary pathway where HEV-1—with
neutral evolution caused by synonymous mutations—is able to sustain its stable genetic
characterization by strong natural selection. In contrast, the synonymous codon usage
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patterns of HEV-3 and HEV-4 may not be caused by neutral evolution. Obvious divergence
of codon usage bias in a four-fold degenerate codon family was identified in HEV ORFs
between HEV-1, and HEV-3 and HEV-4 [159]. The genotype-specific codon usage bias in
HEV-1 is generally stronger than that of HEV-3 and HEV-4 [159]. Unlike the unique codon
usage pattern of HEV-1, the HEV-3 and HEV-4 strains derived from either humans or swine
have more diverse codon usage patterns in the ORFs. These can serve as evolutionary
monuments and may explain the transmission from swine to human [159].

In a study by Bouquet et al. [157], although codon preferences of humans and swine
are very close, a lower codon usage bias was observed for zoonotic HEV (HEV-3 and HEV-
4). The codon adaptation index (CAI) in this study was calculated with the general codon
usage table of humans and swine. The index is >0.5, which indicates good adaptation
of HEV to its hosts; thus, it can be assumed that the gene expression of HEV of human
and zoonotic genotypes is very well adapted to the translational kinetics in humans [157].
In another study, Shukla et al. [154] inoculated Sar-55 of HEV-1 and the Kernow-C1 of HEV-
3 onto deer cells to study host-range restriction. Immunofluorescence staining of ORF2
protein showed that in comparison to Kernow-C1, Sar-55 was deficient in the production
of ORF2 capsid protein. The introduction of the first 29 nucleotides of Kernow-C1 at the
translation initiation site increased the ORF2 production of Sar-55 in deer cells, suggesting
that the modulation of translation from closely spaced codons can differ significantly
according to host species, and this difference may provide one mechanism for restricting
the host range [154].

Synonymous codon usage patterns of HEV that are constantly modified by mutation
pressure and natural selection from the host are important for the zoonotic nature of this
virus. Various synonymous codon usage patterns of HEV strains may reflect the viral
requirement of evolutionary adaptation to the host.

6.3. Interaction between HEV and the Host Cell

One of the major obstacles to interspecies virus infection is the difference between
cell-receptor sequences. The primary structure of the receptor protein can affect the host
susceptibility to cross-species viral infections. A virus can only adapt to a new host if the
similarity between the receptor proteins present in the potential host species is high enough
for them to cross the species barrier [175].

Receptor differences—either quantitative or qualitative—offer an alternative expla-
nation for differences in host range. Supporting the hypothesis of receptor-determined
host range, Shukla et al. [154] reported that the fecal Kernow-C1 p6 virus maintained a
higher titer in pig cells than in human cells even though it was adapted to grow in human
cells [154]. They also stated that there are 54 amino acid differences in the capsid protein
between Sar-55 of HEV-1 and Kernow-C1 of HEV-3, while there are only five between the
fecal and p6 Kernow-C1 strains, suggesting that the adapted virus may have retained the
receptor-interacting specificity of the fecal virus [154].

Nguyen et al. [176] compared the ability of HEV-1 and HEV-3 to infect or transfect
cultured human HepG2/C3A cells and swine LLC-PK cells. Immunofluorescence mi-
croscopy showed that the HEV-1 isolate infected disproportionately fewer swine cells
than human cells. This study group also utilized the virus replicons of HEV-1 and HEV-3
containing the Gaussia luciferase gene in place of the viral ORF2 gene and showed that
the luciferase expression from the HEV-1 replicon is limited and may reflect the kidney
cell origin of the swine LLC-PK cells used in the study. When a kidney cell line of rhesus
macaques was used for comparison, the luciferase expression patterns demonstrated that
the translation of the ORF2 capsid gene of HEV-1 is inhibited in swine kidney cells in
comparison to its translation in rhesus macaque kidney or human liver cells, suggesting
that this virus may produce insufficient capsid protein for optimal assembly in swine cells.
The severely restricted ability of both HEV-1 and its intergenotypic chimera (consisting
of 450 nucleotides encoding the putative receptor-binding region of HEV-3 in place of the
corresponding region of HEV-1) to infect swine kidney cells in comparison to their ability
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to infect human hepatoma cells supports the notion that amino acids 456 to 605 of the virus
capsid protein encompass the receptor-binding region and suggests that HEV-1 may be
prevented from infecting swine cells due to the absence of a suitable cellular receptor or
co-receptor [176].

Although the ORF2 capsid protein was thought to play an important role in HEV
attachment and entry [177], earlier studies utilizing HEV-1 as the backbone, where the
ORF2 capsid gene was replaced with that of swine HEV-3 or human HEV-4, showed that
HEV-1 did not acquire the ability to infect pigs [111,161]. In fact, binding to cells followed
by virus entry is only the first step in virus replication. After entering the cell, the virus
must interact correctly with host cellular factors to reproduce its genome and package
the progeny virions [178–180]. Inability of the intergenotypic chimeras to infect pigs in
the study by Cordoba et al. [161] showed that other than the role of viral factor itself,
swine cells might lack the essential host factors required by HEV-1 to establish successful
infection in pigs. Furthermore, the inability of the chimeras to infect pigs in the study by
Cordoba et al. [161] may also reflect the functional importance of species-specific protein-
protein interactions during HEV replication, considering that the stem-loop within the JR
and 3′ UTR of HEV is known to interact with viral RdRp (and possibly with the host cellular
factors) required for viral replication. In addition, the viral mechanism to counteract the
host immune response can be species-specific and can partially explain the unsuccessful
infection in pigs as species-specific amino acid residues that are important for evading the
immune response in pigs may be absent in this setting [161]. Supporting this hypothesis,
the successful replication of intergenotypic chimeras in pig kidney cells in the study by
Chaterjee et al. [156] indicates that besides the importance of the interaction between ORF1
protein domains and host cell-specific factors during replication (as described above),
cellular factors might play a critical role in virus establishment as a post-entry barrier.

It has been demonstrated that Sar-55 and Akluj, human strains of HEV-1, can infect
LLC-PK1 swine cells [154], suggesting that human and swine HEV may share at least one
cell receptor. In addition, the species-specific interactions between viral and cellular
proteins may be one of the determinants of the successful replication of HEV in the
host [161,181]. For instance, ORF3 is known to interact with a host cellular factor, tumor
susceptibility gene 101 (Tsg101), through its PSAP motif to promote virion egress [33,182]
and, thus, successful viral replication. This motif is well conserved in the HEV-1–8 strains
of Orthohepevirus A species (Figure 3, second PSAP). In addition to this motif, JE03-1760F
of HEV-3 (used in our lab) and several other isolates of HEV-3 have one additional PSAP
motif located at the N-terminal, while in other HEV-3 isolates, excluding HEV-3ra, the
PXXP motif is highly conserved (Figure 3, first PSAP). Besides the highly conserved PSAP
motif which interacts with the host cellular factor to facilitate virion release, the highly
conserved motifs of CCC and IFI of the ORF3 in Orthohepevirus A species (Figure 3) were
recently reported to promote HEV release and ion fluxes [34]. Of note, HEV-4 has CFC in
place of CCC, while HEV-5 and HEV-6 have IFT or IST in place of IFI (Figure 3). Because
these motifs are highly conserved, it is possible that a host cellular factor might be the other
determinant of successful viral replication.

The co-evolution of virus and the hosts often leads to species specificity. The presence
of specific attachment proteins/receptors and availability of a complex pool of cellular
factors required for viral replication can contribute to the host specificity [156].
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6.4. The Host Immune Status

The immune state of the host may also be a possible determinant in HEV cross-species
transmission. In most cases, humans infected with rat HEV were in an immunocompro-
mised state [115,116]. Host adaptation after cross-species transmission is associated with
rapid amino acid sequence changes of viral genes, typically those associated with receptor
interactions and the evasion of innate immunity but often pervasive throughout the entire
virus genome [183]. As described above, Shukla et al. [154] demonstrated the extraordinary
ability of the Kernow-C1 strain to infect cells from a broad spectrum of species, ranging
from rodents to primates. This probably reflects a high titer and a complex quasi-species
generated during prolonged infection in an immunocompromised host. This possibility
and the demonstration that HEV can acquire new information through recombination with
host cell sequences leads to the conclusion that chronic HEV infection of a patient has
important implications for the evolution of this emerging virus [154].

7. Conclusions

Knowledge on the mechanism of HEV cross-species transmission has improved dras-
tically within the past decade. However, several important questions remain to be clarified.
Based on the available data to date, ORF1 has been demonstrated as an essential viral
determinant in cross-species transmission of HEV; thus, dissection of the precise domain in
ORF1 that confers the ability to cross the species barrier may answer one of these important
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questions. In addition, as the presence and interaction of viral and host determinants are
essential to enable cross-species transmission, the discovery of HEV attachment protein and
its interaction with host cellular receptors will greatly help in elucidating the mechanism
of HEV cross-species infection.
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