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Abstract: Surface roughness measurements of machined parts are usually performed off-line after
the completion of the machining operation. The objective of this work is to develop a surface
roughness prediction method based on the processing of vibration signals during steel end milling
operation performed on a vertical CNC machining center. The milling cuts were run under varying
conditions (such as the spindle speed, feed rate, and depth of cut). This is a first step in the
attempt to develop an online milling process monitoring system. The study presented here involves
the analysis of vibration signals using statistical time parameters, frequency spectrum, and time-
frequency wavelet decomposition. The analysis resulted in the extraction of 245 features that were
used in the evolutionary optimization study to determine optimal cutting conditions based on the
measured surface roughness of the milled specimen. Three feature selection methods were used to
reduce the extracted feature set to smaller subsets, followed by binarization using two binarization
methods. Three evolutionary algorithms—a genetic algorithm, particle swarm optimization and
two variants, differential evolution and one of its variants, have been used to identify features that
relate to the “best” surface finish measurements. These optimal features can then be related to cutting
conditions (cutting speed, feed rate, and axial depth of cut). It is shown that the differential evolution
and its variant performed better than the particle swarm optimization and its variants, and both
differential evolution and particle swarm optimization perform better than the canonical genetic
algorithm. Significant differences are found in the feature selection methods too, but no difference in
performance was found between the two binarization methods.

Keywords: differential evolution; end milling; evolutionary algorithm; genetic algorithm; particle
swarm optimization; surface roughness; vibration

1. Introduction

Surface roughness is an important quality characteristic for machined mechanical parts.
Recent advancements in automated manufacturing and the increasing implementation of
advanced manufacturing necessitates the use of nonintrusive surface roughness monitoring
and predictive systems in machining operations. These systems are supported by modern
artificial intelligence (AI) and machine learning (ML) techniques. In the past two decades,
there has been a growing number of studies with focus on metal cutting parameters
optimization and surface roughness prediction using AI techniques. The following is a
brief review of the application of AI methods for surface roughness condition monitoring
and optimization in end milling of steel parts.

A neural-fuzzy-based approach for in-process surface roughness recognition (ISRR)
using vibration signals and cutting conditions is described in [1]. The support vector
machine (SVM) algorithm is proposed in [2] to capture characteristics of surface rough-
ness. It is then incorporated in a particle swarm optimization (PSO) algorithm to find
optimum milling process parameters. A surface roughness model based on the back-
propagation artificial neural network (BPANN) along with a genetic algorithm (GA) was
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used to optimize the cutting parameters in order to lower surface roughness [3]. In [4],
two empirical models—one for cutting forces and another for surface roughness—were
established with the help of ANOVA and range analysis methods. It was indicated that a
linear model was a best fit for the variation of cutting forces while a quadratic model best
described the variation of surface roughness. A review of the studies and investigation
on the application of artificial neural networks (ANN) in the milling process for a period
(1999–2010) was presented in [5]. Taguchi’s signal-to-noise ratio, L25 array, and ANOVA
methods were employed in [6] to determine the effects of the spindle speed, feed rate,
and depth of cut on the surface roughness in end milling of hardened AISI D2 steel. The
results showed the spindle speed to be the most influencing parameters. In [7], singular
spectrum analysis (SSA) is applied to investigate the relationship between cutting tool
vibration and surface roughness in the precision end-milling process of hardened steel
SCM440. Various architectures of the BPANN and the radial basis function neural network
(RBFANN) have been investigated for surface roughness prediction [8]. A multi-criteria
genetic algorithm (GA) optimization approach to minimize poor surface roughness and
minimize electrical energy consumption during machining of AISI D2 steel was developed
in [9]. The response surface methodology (RSM) has been used to develop mathematical
models for predicting surface finish, tool vibration, and tool wear with different combina-
tions of cutting parameters during end milling of EN-31 tool steel [10]. The experimental
results show that the feed rate is the most dominating parameter. Various artificial neural
network types are evaluated for the prediction of surface roughness [11]. The propagation
Levenberg–Marquardt algorithm, back propagation Bayesian algorithm, and radial basis
function neural networks are examined. An in-process intelligent neural-fuzzy surface
roughness prediction and decision-making (INF-SRM) system for an end milling operation
was developed in [12]. A Grey online modeling surface roughness monitoring (GOMSRM)
system was proposed in [13]. This method utilized the Grey theory GM(1, N) with bilateral
best-fit method with no training required. It was shown that the GOMSRM system had
better accuracy with fewer samples for modeling than a neural network model. In [14],
three models—fast Fourier transform long short-term memory network (FFT-LSTM), fast
Fourier transform-deep neural networks (FFT-DNN), and one-dimensional convolutional
neural network (1-D CNN)—are used to explore the prediction of surface roughness. Based
on this experimental study, the FFT-LSTM or 1-D CNN is recommended to develop an
intelligent system for surface roughness prediction based on vibration signals. Predic-
tion models were developed using multiple regression analysis and an artificial neural
network (ANN) modeling approach. The surface roughness and machining vibration
levels were modeled with nonlinear quadratic forms based on the cutting parameters and
their interactions through multiple regression analysis methods [15]. Analysis of variance
(ANOVA) was employed to determine the significance of cutting parameters on surface
roughness. The comparison between the prediction performance of the multiple regression
and neural network-based models reveal that the ANN models achieve higher prediction
accuracy for all training compared with regression models. An experimental model for
estimating the surface roughness using artificial neural networks (ANN) and response
surface methodology (RSM) has been improved for the dry milling of AA6061 alloy [16].
Analysis of variance (ANOVA) method was also used to study the influence of the cutting
parameters on surface roughness. For this study, ANOVA results showed that the depth of
cut is the most effective parameter on surface roughness.

This study demonstrates the use of evolutionary algorithms for the optimization
of steel end milling based on surface roughness and using process features extracted
from vibration measurements. The remaining sections of the paper are organized as
follows: Section 2 describes the experimental setup for vibration measurements and the
processing of the acquired signals; in Section 3, the evolutional algorithms used in this
study are described; the results and discussions are presented in Section 4 followed by the
conclusions in Section 5.
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2. Experiment Setup and Feature Extraction

Figure 1 shows a schematic of the experimental setup for the end milling test. Several
hot rolled low carbon steel (AISI A36) plates measuring 12.7 mm × 100 mm × 100 mm
were used for this research work. Appendix A includes data on the composition (Table A1),
mechanical properties (Table A2), and physical properties (Table A3) of the hot rolled low
carbon steel (AISI A36). A 4-fluted helical uncoated carbide end mill cutter with diameter
(D = 12.7 mm), shown in Figure 2a, was used in all tests. All tests were run on a 3-axis Hass
minimill CNC vertical milling machine with a maximum spindle speed of 5000 rpm. An
ICP 607A61 accelerometer mounted on the workpiece was used for measuring vibration in
this test (with sensitivity of 100 mV/g and a frequency band of 0.5 to 10 kHz). The sensor
was mounted on the center of the workpiece and cutting paths of equal length radiating
from the center were machined as shown in Figure 2b. For each set of milling process
parameter combinations, the vibration signals were sampled at 30 kHz for a duration of
3 s each and then recorded via a National Instruments USB-6211 data acquisition device.
The sampling rate was chosen at three times higher than the maximum frequency of the
accelerometer to allow for high frequency components within the signal to be captured.
The surface roughness parameter (Ra), in µm, was selected as the measure for the surface
roughness quality state in this study, measured using the Handysurf E-35A for each run.
Ra was measured along the direction of cut (i.e., feed direction) and averaged over several
milling runs for each parameter combination. The surface roughness parameter Ra is the
most common parameter used to determine surface roughness and one of the common
industry practices. Recently, 3D surface roughness data have been determined and can
provide a thorough examination of a surface if needed. However, this process is costly and
time consuming. On the other hand, the measurement of the Ra value is quick and can be
completed on site. Adamczak et al. [17] performed a comparative study of 2D (Ra) and 3D
surface roughness of bearing raceways on the vibration level and concluded that the Ra
value provided better correlation with the vibration signal and the analysis of the 2D profile
was adequate. Hence, the 3D surface analysis could be appropriate on a case-by-case basis.
The focus of this investigation was to demonstrate the use of evolutionary algorithms for
the optimization of surface roughness. Therefore, the most common industry practice was
chosen to measure the surface roughness parameter.

Table 1 shows the averaged surface roughness data for all combinations of end milling
parameters used in this work. The surface cutting speed Vc in meters per minute (m/min)
and the spindle speed (N) in revolutions per minute (RPM) are both presented. In this
experiment, the spindle speed has been set and the surface sitting speed has been calculated
as Vc = πDN. Additionally, the feed rate f, presented in millimeters per tooth (mm/tooth),
was calculated from the machine feed rate Vf in millimeters per minute (mm/min) using
the relation f = Vf/ntN, where nt = 4 is the number of cutter teeth. The axial depth of cut
(ap) is listed in mm and the radial depth of cut (ae) is fixed at 12.5 mm since the full cutter
diameter is engaged during milling.

Statistical features were extracted from the raw time domain signals and from the ex-
tracted approximations and details signals using the Coiflet wavelet transform as described
in [18]. The root-mean-square (RMS) is calculated by:

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (1)

where xi is the data sample and N is the number of data points in the interval of interest.
The RMS value is an indication of the amount of energy in the vibration signal. The crest
factor is defined as the ratio of the peak value to the root-mean-square (RMS) value of the
vibration signal in this test and is calculated by:

Crest factor = Xpeak/RMS (2)
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Figure 1. Schematic diagram of the end milling experimental set-up.

Figure 2. (a) End milling cutter, (b) milling paths, and (c) machined workpiece sample.
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The variance is a statistical indicator of the data spread from the mean and is calculated

as the average of the squared deviations in a data set from its mean value x = 1
N

N
∑

i=1
xi as

given by:

σ2 =
1

N − 1

N

∑
i=1

(xi − x)2 (3)

Kurtosis is a measure of the frequency of occurrence of major peaks or outliers in the
data and is therefore a representation of the statistical distribution of the amplitude of the
signal. Kurtosis is defined as the fourth moment of the probability density curve about the
mean and is given by:

K =
1
N

N

∑
i=1

(xi − x)4

σ4 (4)

Skewness is a measure of symmetry or lack of symmetry of the data distribution
about the mean. The skewness of a normal distribution is zero and the skewness of any
symmetrical distribution about the mean is close to zero. The skewness is calculated as:

S =
1
N

N

∑
i=1

(xi − x)3

σ3 (5)

In addition to the statistical quantities, 32 averaged frequency bands of the FFT
(fast Fourier transform) of each signal segment and 64 averaged scalograms of the wavelet
scalogram using the Coiflet and the Mexican Hat wavelets were taken as additional features
in this study.

Table 1. Average surface roughness measures Ra for the steel milling test.

Axial depth of cut (ap) = 0.381 mm

Speed
N = 1500 rpm N = 2000 rpm N = 3000 rpm

Vc = 59.847 m/min Vc = 79.796 m/min Vc = 119.695 m/min

f (mm/tooth)
Vf (mm/min)

0.0127
76.2

0.0169
101.6

0.0212
127.0

0.0095
76.2

0.0127
101.6

0.0159
127.0

0.0085
101.6

0.0106
127.0

0.0127
152.4

Ra (µm) 0.416 0.302 0.326 0.328 0.304 0.454 0.364 0.314 0.414

Speed
N = 4000 rpm N = 5000 rpm -

Vc = 159.593 m/min Vc = 199.491 m/min -

f (mm/tooth)
Vf (mm/min)

0.0079
127.0

0.0095
152.4

0.0111
177.8

0.0076
152.4

0.0089
177.8

0.0102
203.2 - - -

Ra (µm) 0.392 0.282 0.328 0.302 0.424 0.448 - - -

Axial depth of cut (ap) = 0.762 mm

Speed
N = 1500 rpm N = 2000 rpm N = 3000 rpm

Vc = 59.847 m/min Vc = 79.796 m/min Vc = 119.695 m/min

f (mm/tooth)
Vf (mm/min)

0.0127
76.2

0.0169
101.6

0.0212
127.0

0.0095
76.2

0.0127
101.6

0.0159
127.0

0.0085
101.6

0.0106
127.0

0.0127
152.4

Ra (µm) 0.93 0.852 0.558 0.64 0.896 0.902 0.494 0.418 0.482

Speed
N = 4000 rpm N = 5000 rpm -

Vc = 159.593 m/min Vc = 199.491 m/min -

f (mm/tooth)
Vf (mm/min)

0.0079
127.0

0.0095
152.4

0.0111
177.8

0.0076
152.4

0.0089
177.8

0.0102
203.2 - - -

Ra (µm) 0.834 0.678 0.384 0.864 1.048 1.638 - - -
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Table 1. Cont.

Axial depth of cut (ap) = 1.524 mm

Speed
N = 1500 rpm N = 2000 rpm N = 3000 rpm

Vc = 59.847 m/min Vc = 79.796 m/min Vc = 119.695 m/min

f (mm/tooth)
Vf (mm/min)

0.0127
76.2

0.0169
101.6

0.0212
127.0

0.0095
76.2

0.0127
101.6

0.0159
127.0

0.0085
101.6

0.0106
127.0

0.0127
152.4

Ra (µm) 1.186 0.814 0.726 0.596 0.838 0.868 1.34 1.108 1.01

Speed N = 4000 rpm N = 5000 rpm -
Vc = 159.593 m/min Vc = 199.491 m/min -

f (mm/tooth)
Vf (mm/min)

0.0079
127.0

0.0095
152.4

0.0111
177.8

0.0076
152.4

0.0089
177.8

0.0102
203.2 - - -

Ra (µm) 0.82 1.612 1.49 2.084 1.98 1.79 - - -

3. Methods

The problem of identifying optimal cutting conditions is cast as an optimization
problem and solved using evolutionary computational techniques. A total of 245 features
were extracted from the raw data (see Table 2 for description). Some of the features are
highly correlated to other features and therefore by themselves have low discriminatory
power. Reduced subsets of uncorrelated features are created by employing feature selection
process. In a related work [19], we used a supervised recursive feature selection (RFE)
method which produced the smallest subsets of features [20]. We also used a modified
version of the Relief feature selection method called ReliefF [21]. Both RFE and ReliefF are
supervised techniques employing class labels from surface roughness data. While RFE is a
wrapper method, ReliefF is a filter method. In this paper, both RFE and ReliefF are used to
produce reduced feature subsets using the Feature Selection Library (FSLib 2018), a publicly
available MATLAB library for feature selection [22]. For comparison, 16 features are also
used (kurtosis, skewness, rms, and crest factors of the top-two coefficients for wavelet
approximations and details). The feature set will be referred to as the Statistical Features of
Approximations and Details (SFAD) for the remainder of this paper. The original features
and the reduced subsets are shown in Table 2. Before feature selection, all feature values
within each type are normalized in the range 0–1.

Table 2. Features extracted from vibrations data.

Feature Name Original Size ReliefF RFE SFAD

Fast Fourier Transform Averages 32 4 2 0
Mean of raw time series 1 1 1 0
Skewness of raw time series 1 1 0 0
Standard deviation of raw time series 1 0 1 0
Kurtosis of raw time series 1 0 0 0
Variance of raw time series 1 0 0 0
Mexican Hat coefficients 64 8 5 0
Coiflet wavelet coefficients 64 6 2 0
Kurtoses of wavelet approximations 10 1 1 2
Skewness of wavelet approximations 10 1 0 2
Kurtoses of wavelet details 10 1 0 2
Skewness of wavelet details 10 0 1 2
RMS of wavelet approximations 10 1 0 2
RMS of wavelet details 10 1 1 2
Crest factors of wavelet approximations 10 1 1 2
Crest factors of wavelet details 10 0 0 2
Total 245 26 15 16
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3.1. Genotype and Candidate Fitness

The use of binary encoding is preferred for its many advantages (in reproduction and
exploration of solution spaces) in evolutionary algorithms. The normalized features after
feature selection are binarized using two techniques—binarization by k-means clustering
(BKMC) and binarization across multiple scales (BASC) [23]. The reduced feature set can
then be represented as a binary-encoded string. The SFAD feature set is a binary string of
length 16, while the RFE feature set is a binary string of length 15 and the ReliefF feature set
is a binary string of length 26. They can be thought of as genetic expression with a high/low
or an on/off scale (high/on: 1, low/off: 0). Each binary string will have a surface roughness
label associated with it (as determined experimentally). The fitness of a binary string will
correspond to its measured surface roughness, which will be used as its fitness value for
selection during reproduction in the evolutionary algorithms. Due to effects of binarization
and a limited experimental dataset, two or more individuals in a population could have
the same binary-coded genotype but different surface roughness (and therefore correspond
to different cutting conditions). We use the average value of the surface roughness as
the fitness value of such individuals. For example, in the SFAD feature set, there are
65536 possible binary individuals; however, there are only 45 combinations for which
surface roughness measurements are known. In case an individual in an evolutionary
population has no associated fitness value, we use the Euclidean distance measure to find
the nearest individual for which a surface roughness measure is known and assign that
surface roughness value to the individual in question. There are multiple combinations
of cutting conditions that provide good surface finish (small values of Ra); therefore, the
prediction problem can be used to suggest optimal cutting optimizations, i.e., the cutting
speed and feed rate for a given axial depth of cut. The good surface finish is not always
the smallest. The current study was not specific to any application, rather to report a
general trend of surface roughness based on different milling parameter. Therefore, it was
taken into consideration that as the Ra value decreases, the surface finish improves, and
vice versa.

3.2. Evolutionary Algorithms

Evolutionary algorithms are population-based metaheuristic optimization algorithms
used to solve complex optimization problems. The problem of identifying optimal cut-
ting parameters that minimize surface roughness, a population of potential solutions are
evolved starting from random for a fixed number of generations. The evolutionary process
is guided by fitness—in this case, minimizing surface roughness. The potential solutions
in the population are binary-encoded strings and are representations of the reduced fea-
ture sets. In this paper, a genetic algorithm with tournament selection, three particle
swarm optimization algorithms and two differential evolution algorithms are used as
evolutionary algorithms.

3.2.1. Genetic Algorithm (GA)

The genetic algorithm used in this paper is described below:

(1) A random population of P individuals is initialized; each individual is a binary string
of size corresponding to the size of the reduced feature set. Parameters such as the
number of generations, G; and probabilities of mutation and crossover, pm and pc,
respectively, are predetermined. Generation counter is initialized to 0. Values of these
parameters can be found in Table 3.

(2) A mating pool is created using a tournament selector operator of size 2; two individ-
uals are picked at random from the parent population and the one with the higher
fitness (lower surface roughness value) is inserted into the mating pool. The size of
the pool is the same as the population size.

(3) A pair of individuals is then picked sequentially from the mating pool and two
offspring individuals created using a single point recombination operator with bit-
wise mutation with probabilities pc and pm.
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(4) The offspring population is merged with the parent population and the combined
population is ranked according to individual fitness. The top half of the population is
retained as the next generation.

(5) Generation counter is incremented, and steps 2–5 are repeated until generation
counter = G.

3.2.2. Particle Swarm Optimization (PSO)

PSO is a population-based stochastic optimization technique inspired by the swarm
flocking behavior in nature [24]. A population of potential solutions is first initialized and
updated every generation by following two “best” values—the first best value is the best
location an individual has achieved till the present generation, also called personal best,
and the other best value is the best location any individual has achieved till that generation,
also called global best. An individual’s location is updated by first updating their velocity
based on their current location in the search space, the personal best, and the global best.
This location is then updated based on the newly updated velocity. At generation i, let the
current position and velocity of individual j be pj(i) and vj(i), respectively. Let individual
j’s personal best position be bj and let the global best of the entire population be b. In the
standard PSO (SPSO), the position and velocity of j are then updated in generation i + 1 as:

vj(i + 1) = ω(i) vj(i) + c1r1[bj − pj(i)] + c2r2[b − pj(i)] (6)

pj(i + 1) = pj(i) + vj(i + 1) (7)

Here, ω(i) is the inertial weight at the ith generation and determines the contribution
of the previous velocity of an individual to its current one; r1 and r2 are uniformly dis-
tributed random variables in the range (0,1); c1 and c2 are constant parameters called
acceleration coefficients, which define the magnitude of the influence of individual velocity
in the direction of local and global optima, respectively. In this paper, the inertial weight
and acceleration factors are linearly varied between fixed values at start and finish (see
Table 3). For an implementation over G generations (1 ≤ i ≤ G), the inertial weight and the
acceleration factors at generation i are given by:

ω(i) = [ω(0)− ω(G)]
G − i

G
+ ω(G) (8)

ck(i) = [ck(0)− ck(G)]
G − i

G
+ ck(G); k = 1, 2 (9)

Variants of the standard PSO use various definitions and bounds for the acceleration
coefficients and inertial weights. In this paper, a benchmarked variant of the PSO called the
standard PSO-2011 or SPSO [25], the adaptive PSO or APSO [26], and the comprehensive
learning PSO or CLPSO [27] are used.

3.2.3. Differential Evolution (DE)

DE algorithms are population-based metaheuristic optimization algorithms which,
unlike genetic algorithms, were specifically designed to work with real-valued strings.
The algorithms use a recombination operator called the differential operator to create
new candidate solutions [28]. This operator is a combination of mutation and crossover
operators. The operator picks two candidates from the current generation and uses the
difference between the two as the source of variation for a third candidate called the target
vector. A mutant vector is created as:

mj(i + 1) = r1(i) + F[r2(i)− r3(i)] (10)
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Here, r1(i) is the target vector, [r2(i)− r3(i)] is the difference between two randomly
selected candidates, and F is the scale factor that controls the scale of the differential
variation. The trial vector is defined component-wise as a binomial crossover operator,

tjk(i + 1) =

{
mjk(i + 1) if η ≤ pc or k = rand_int(1, N)

pjk(i) otherwise
(11)

where η is a random number in (0,1) and pc is the probability of crossover. In (11) tjk,
mjk, and pjk refer to the jth candidate’s kth bit in the target, mutant, and candidate vector,
respectively. The random integer rand_int is an integer in the range (1, N) and is used
to ensure that at least one mutant vector bit goes into constructing the trial vector. A
tournament selection operator such as a one-to-one comparison operator is used to evolve
the candidate vector. The trial vector replaces the candidate vector if it is better, as measured
by the fitness function as:

pj(i + 1) =

{
tj(i + 1) if f (tj(i + 1) < f (pj(i))

pj(i) otherwise
(12)

The performance of DE depends on the strategy used to generate trial vectors and
how well the control parameters are tuned to solve the specific problem. A variant of the
differential evolution algorithm called the composite differential evolution (CoDE) [29]
combines the three most popular trial candidate generation strategies with three control
parameter settings, which are used in a random manner to generate trial candidates. It has
a simple structure and is easy to implement. The three trial vector generation strategies
for CoDE used in this paper are rand/1, best/1, and current-to-best/2. The parameters
discussed in this section for the three algorithms and their variants are presented in Table 3.
Some of these parameters were tuned in a test environment prior to deployment, while
other parameters were assigned based on information in literature.

Table 3. Parameters for the evolutionary algorithms.

GA PSO APSO CLPSO DE CoDE

Population size P 25 25 25 25 25 25
Max generations G 40 40 40 40 40 40
Crossover probability pm 0.9 - - - 0.9 0.9
Mutation probability pc 0.05 - - - - -
Inertial weight ω (start, end) - 0.9, 0.4 0.9, *1 0.9, 0.4 - -
Acceleration weight 1, c1 (start, end) - 0.5, 2.5 2.0, *2 - - -
Acceleration weight 2, c2 (start, end) - 2.5, 0.5 2.0, *2 - - -
Acceleration coefficient, c - - 1.5 - -
Scale factor F - - - 0.9 0.9

*1 Adaptive—monotonic with evolutionary factor f. *2 Adaptive—strategy 1 till generation 15, then strategy 2 till
convergence [26].

4. Results

The parameters of the algorithms used are provided in Table 3. The algorithms
are run for a total of 10 times each for every feature set and the results presented in
this section are an average of the 10 runs. The individual with the highest fitness is
chosen as the solution of a particular run. Performance of the evolutionary algorithms is
evaluated based on (1) maximum individual fitness in the terminating generation, and
(2) average fitness of the terminating population. The maximum individual fitness for the
six evolutionary algorithms with the three feature sets and two binarization schemes is
tabulated in Table 4 and the average fitness of the terminating population is presented in
Table 5. The convergence of the algorithms to the best individual is also tracked. The same
best solution as listed in Table 4 is tracked and the earliest generation to feature the best
solution is reported. This is reported in Table 6. As can be seen, the best solution is found
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consistently at earlier generations with DE and CoDE compared to PSO and its variants.
The GA does not converge in many of the test cases. The quality of the solution is also
significantly better using DE and CoDE algorithms. Among the reduced feature sets, the
RFE performed marginally better than ReliefF and both RFE and ReliefF were significantly
better than SFAD. Among the two binarization methods, there was no easily discernable
difference between BKMC and BASC, although the BKMC produced solutions that had
better fitness, BASC converged sooner in most cases to the best solution compared to
BKMC binarized feature sets. The average fitness of the populations starting from the same
initial population is tracked till the termination generation (G = 40) in Figure 3. ReliefF
and RFE feature sets for both binarizations are shown. APSO, CLPSO, and CoDe converge
quicker to a stable final population while the canonical versions of PSO and DE are slower
to converge; in some cases, the GA did not converge to a stable solution (compared to the
best performing algorithm that converged in half the time).

Table 4. Maximum individual fitness (individuals with smallest surface roughness) in terminating generation.

Evolutionary Algorithms

Feature Sets Binarization GA PSO APSO CLPSO DE CoDE

ReliefF BKMC 0.375 0.326 0.302 0.318 0.298 0.292
ReliefF BASC 0.392 0.338 0.322 0.329 0.309 0.301

RFE BKMC 0.357 0.302 0.302 0.302 0.311 0.302
RFE BASC 0.382 0.329 0.329 0.329 0.329 0.314

SFAD BKMC 0.428 0.389 0.372 0.370 0.358 0.328
SFAD BASC 0.440 0.402 0.398 0.382 0.369 0.364

Table 5. Average population fitness (average surface roughness) in terminating generation.

Evolutionary Algorithms

Feature Sets Binarization GA PSO APSO CLPSO DE CoDE

ReliefF BKMC 0.395 0.366 0.359 0.371 0.371 0.321
ReliefF BASC 0.409 0.387 0.381 0.418 0.362 0.334

RFE BKMC 0.432 0.353 0.357 0.352 0.361 0.331
RFE BASC 0.408 0.344 0.340 0.402 0.398 0.362

SFAD BKMC 0.488 0.431 0.421 0.479 0.388 0.377
SFAD BASC 0.540 0.501 0.476 0.424 0.404 0.374

Figure 3. Cont.
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Figure 3. (a) Average population fitness as a function of the number of generations for ReliefF-
BKMC. (b) Average population fitness as a function of the number of generations for RFE-BKMC.
(c) Average population fitness as a function of the number of generations for ReliefF-BASC.
(d) Average population fitness as a function of the number of generations for RFE-BASC.
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Table 6. Earliest generation to converge to best solution.

Evolutionary Algorithms

Feature Sets Binarization GA PSO APSO CLPSO DE CoDE

ReliefF BKMC 40 * 32 28 27 22 20
ReliefF BASC 40 * 29 25 20 18 17

RFE BKMC 38 26 22 24 23 22
RFE BASC 37 28 29 28 26 23

SFAD BKMC 40 * 31 30 29 27 27
SFAD BASC 40 * 35 32 27 29 27

* does not converge.

5. Discussion

All the evolutionary algorithms tested here are able to converge to a reasonable
terminating population; the best individual in the population is very close to the average
fitness (with some exceptions). The solutions in the converged final population encode for
favorable values of surface finish (low surface roughness Ra). In most cases, that might
be desirable; however, in some cases, the intention might be create a rough surface. The
framework presented here can be used to converge to a population of individuals with
high values of Ra by changing the fitness function to reward high values of Ra instead of
low values. Although, the individual with the best fitness is reported here (in Table 4),
in practice, the average population fitness of the terminating population and the average
change in fitness between the initial and the final populations are of more interest. The
individuals in the terminating population can be decoded and their cutting parameters
(cutting speed, feed rate, and axial depth of cut (ap)) can be found. It is not the objective
of the paper to locate the absolute values of the “best” cutting parameters but instead to
provide a framework to find a population of decoded parameters that correspond to a set
of preferred cutting parameters (instead a single “best” parameter set).

6. Conclusions

In this paper, we have demonstrated the applicability of evolutionary algorithms to
optimize cutting conditions for milling. The cutting conditions are optimized indirectly by
driving the evolutionary algorithms towards solutions in a reduced feature space based on
measured values of surface roughness. The feature space includes raw time series statistical
quantities, frequency spectrum bands, and time-frequency wavelets decompositions and
their statistical parameters such as the kurtosis, skewness, and RMS values. Three feature
selection techniques followed by two binarization methods on the reduced feature sets are
used to create candidate solutions for the evolutionary algorithms. All algorithms tested
here—genetic algorithm (GA), particle swarm optimization (PSO) and its two variants
(APSO and CLPSO), and a differential evolution (DE) algorithm and its variant (CoDE)—
were initialized with the same random initial population and then evolved using a fitness
function based on measured surface roughness values. The populations are shown to
converge quickly to stable populations with low average and minimum (optimal) values of
surface roughness. DE and CoDE are also shown to be more effective than PSO, APSO, and
CLPSO. All five of these algorithms work better than the canonical GA. However, the GA
is easier to tune and therefore remains a viable option. The framework presented in this
paper can be easily scaled up, either by using a model-driven fitness function or if more
experimental data were available. The procedure can also be applied to other machining
processes where feature-rich sensor data are collected in real time during machining. In
future work, we will use statistical measures to compare significance of results and ascertain
if any feature selection technique, binarization method, or evolutionary algorithms are
statistically superior to other techniques and methods used in this paper.
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Appendix A

Work piece: Hot rolled Low Carbon Steel (AISI A36).

Table A1. Composition of Hot rolled Low Carbon Steel (AISI A36).

Element Weight %

Carbon (C) 0.26
Copper (Cu) 0.2
Manganese (Mn) 0.75
Phosphorous (P) 0.04 max
Sulphur (S) 0.05 max
Iron (Fe) Balance

Table A2. Mechanical Properties of Hot rolled Low Carbon Steel (AISI A36).

Property Value

Tensile Strength (annealed) 400–545 MPa
Ductility 22%
Hardness 140 BHN

Table A3. Physical Properties Hot rolled Low Carbon Steel (AISI A36).

Property Value

Density, g/cm3 7.87
Melting point 1421–1465 ◦C
Thermal conductivity (W/m·K) 89.0 (20 ◦C)
Coefficient of thermal expansion, (10−6/K) 12.4 (20–100 ◦C)
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