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Abstract

Background

Sorghum bicolor (SB) is rich in protective phytoconstituents with health benefits and

regarded as a promising source of natural anti-diabetic substance. However, its comprehen-

sive bioactive compound(s) and mechanism(s) against type-2 diabetes mellitus (T2DM)

have not been exposed. Hence, we implemented network pharmacology to identify its key

compounds and mechanism(s) against T2DM.

Methods

Compounds in SB were explored through GC-MS and screened by Lipinski’s rule. Genes

associated with the selected compounds or T2DM were extracted from public databases,

and the overlapping genes between SB-compound related genes and T2DM target genes

were identified using Venn diagram. Then, the networking between selected compounds

and overlapping genes was constructed, visualized, and analyzed by RStudio. Finally,

affinity between compounds and genes was evaluated via molecular docking.

Results

GC-MS analysis of SB detected a total of 20 compounds which were accepted by the Lipins-

ki’s rule. A total number of 16 compounds-related genes and T2DM-related genes (4,763)

were identified, and 81 overlapping genes between them were selected. Gene set enrich-

ment analysis exhibited that the mechanisms of SB against T2DM were associated with 12

signaling pathways, and the key mechanism might be to control blood glucose level by acti-

vating PPAR signaling pathway. Furthermore, the highest affinities were noted between four

main compounds and six genes (FABP3-Propyleneglyco monoleate, FABP4-25-Oxo-27-

norcholesterol, NR1H3-Campesterol, PPARA-β-sitosterol, PPARD-β-sitosterol, and

PPARG-β-sitosterol).
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Conclusion

Our study overall suggests that the four key compounds detected in SB might ameliorate

T2DM severity by activating the PPAR signaling pathway.

1. Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disease triggered by the complex interaction

between genetic and/or environmental associations. Patients with T2DM have either insulin

resistance (sugar transfer dysregulation into cells) or lack of optimal insulin secretion to

sustain natural glucose levels [1]. T2DM can affect at all ages, 1 in 3 adults has prediabetes,

causes serious physiological complications, and brings diabetes diagnosis economic difficul-

ties [2–4]. The typical signs of T2DM patients include recurrent urination, increased thirst,

exhaustion, increased appetite, and indistinct vision. The main etiology for T2DM is persis-

tent hyperglycemia which provokes mitochondrial dysfunction that stimulates to abundant

reactive oxygen species (ROS) formation in several tissues and pancreatic β cells [5, 6]. Such

ROS accumulation in pancreatic β cells causes irreparable mitochondrial damage, resulting

inhibition of insulin synthesis, and thus leading to diabetes progression by failing to produce

enough level of insulin [7, 8]. However, the anti-diabetic drug pathways include stimulating

the insulin synthesis, inhibiting the production of endogenous glucose, and blocking carbo-

hydrate absorption from intestine [9, 10]. Currently, six classes of oral antidiabetic drugs,

including Metformin, Glimepiride, Repaglinide, Pioglitazone, Sitagliptin, and Acarbose [11]

are available which are reported to have serious side effects such as anorexia, nausea, dyspep-

tic episodes, and diarrhea [12, 13]. Hence, the quest for potential drugs has now become

more concentrated. In this regard, a rich source of phytoconstituents with health benefits

may be the prospective candidate for T2DM intervention.

For the past few years, a report has shown that wholegrains including sorghum (Sorghum
bicolor (L.) Moench) are the potential alternatives to ameliorate T2DM symptoms [14]. Sor-
ghum bicolor (SB) contains a number of secondary metabolites which are reported to be

effective in preventing various metabolic diseases, such as cancers, T2DM, obesity, and hyper-

glycemia [15, 16]. A recent research demonstrated that oral treatment of SB (0.5% and 1%)

noticeably reduced the low density lipoprotein cholesterol, triglycerides, and glucose level via

PPARG in mice fed a high-fat diet, conversely, expression level of PPARG elevated to 1% [17].

Some reports expound that sorghum extracts at 1.0 mg/ml activates PPAR binding in mouse

macrophage cell line; subsequently, PPAR agonists have been emerged as candidates against

metabolic dysfunctions with T2DM [18, 19]. Lecka-Czernik B reported that Aleglitazar, being

developed by Roche Holding, is a dual agonist for PPARD and PPARA for the promising mul-

tiple treatment of hyperglycemia and dyslipidemia with T2DM patients [20]. It is evident that

a dual PPAR agonist treatment is more potent than a single agonist treatment. A human study

on sub-health condition with prediabetes confirmed that SB administration significantly

decreased the level of glucose by 35% [21]. Although literature survey revealed that diabetes

and obesity complications can be controlled upon consumption of SB [22, 23]; however, its

mechanism(s) against T2DM has not been explored to date. Therefore, the research on bioac-

tive compound(s) and pathways of SB against T2DM should be justified in scientific testing, in

order to maintain its pharmacological complements for T2DM.

Network pharmacology is a structured methodical mode, which can investigate the interac-

tive networking elements such as compounds, genes, proteins, and diseases [24, 25]. Network
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pharmacology can decode the mechanism of compounds with a multifunctional point of view,

which highlights the interaction of diverse factors, instead of “one target, one compound” [26].

The network pharmacology is therefore a valuable approach to identify potential lead com-

pounds (from natural sources) with specific mechanism of action for the prevention of various

disease, and mostly to elucidate the synergistic impact of bioactive compounds [27]. Zhang B.

et al. reported that the rapid development of bioinformatics, systems biology, and poly-phar-

macology contributes greatly to network-based drug discovery, which is regarded as a cost-

effective drug development method [28]. A report explicates that the network pharmacology is

used as a powerful tools to identify the mechanisms of actions between traditional Ge-Gen-

Qin-Lian decoction (GGQLD) formula and target genes [29]. In our study, network pharma-

cology was used to evaluate the bioactive compounds and mechanism(s) of SB against T2DM.

Firstly, GC-MS analysis of SB was conducted to identify the bioactive compounds and their

“drug-likeness” property was screened by Lipinski’s rule [30]. Secondly, genes related to

selected compounds or T2DM were identified using public databases, and overlapping genes

between genes related to SB and T2DM target genes were also identified. Thirdly, genes related

to a hub signaling were selected by analyzing gene set enrichment analysis. Finally, the selected

genes were implemented for molecular docking analysis to find the most potent candidates of

SB against T2DM.

2. Materials and methods

2.1 Plant preparation, extraction

The Sorghum bicolor (SB) was purchased from Chuncheon local market, Korea. The collected

SB was dried and powdered using electric blender. Approximately 500 g of SB powder was

soaked in 500 mL of 100% methanol (Daejung, Korea) for 3 days and repeated for 3 times to

collect extraction. The solvent extract was collected, filtered, and evaporated using a vacuum

evaporator (IKA- RV8, Japan). The evaporated sample was dried under a boiling water bath

(IKA-HB10, Japan) at 40˚C to obtain yield.

2.2 GC-MS analysis

Agilent 7890A was used to carry out GC-MS analysis. GC was equipped with a DB-5

(30m×0.25mm×0.25μm) capillary column. Initially, the instrument was maintained at a tem-

perature of 100˚C for 2.1 minutes. The temperature was risen to 300˚C at the rate of 25˚C/min

and maintained for 20 minutes. Injection port temperature and helium flow rate were ensured

as 250˚C and 1.5 ml/min, respectively. The ionization voltage was 70 eV. The samples injected

in split mode at 5:1. MS scan range was set at 35–550 (m/z). The fragmentation patterns of

mass spectra were compared with those stored in the using W8N05ST Library MS database.

The percentage of each compound was calculated from the relative peak area of each com-

pound in the chromatogram. The concept of integration used the ChemStation integrater

algorithms.

2.3 Chemical compounds database construction, drug-likeness, and oral

bioavailability filtering

The information of chemical compounds from SB was identified by utilizing GC-MS analysis

which were filtered according to the Lipinski’s rule through SwissADME (http://www.

swissadme.ch/) to identify “Drug-likeness” property and oral bioavailability score. The Pub-

Chem (https://pubchem.ncbi.nlm.nih.gov/) was utilized for identification of the SMILES (Sim-

plified Molecular Input Line Entry System) of compounds.
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2.4 Target genes related to selected compounds or T2DM

Based on the SMILES, target genes linked to the compounds were selected through both Simi-

larity Ensemble Approach (SEA) (http://sea.bkslab.org/) and Swiss Target Prediction (STP)

(http://www.swisstargetprediction.ch/) with "Homo Sapiens” mode. T2DM related genes were

identified by DisGeNET (https://www.disgenet.org/search) and OMIM (https://www.ncbi.

nlm.nih.gov/omim) databases. The overlapping genes between compounds of SB and T2DM

target genes were identified and visualized by VENNY 2.1 (https://bioinfogp.cnb.csic.es/tools/

venny/).

2.5 Network construction of interacted overlapping genes

Through STRING (https://string-db.org/) analysis, the overlapping genes were closely corre-

lated, and the signaling pathways of overlapping genes were analyzed by RStudio bubble chart.

Networking between bioactive compounds and genes of SB against T2DM identified a hub sig-

naling pathway.

2.6 Preparation for molecular docking of ligand molecules

The ligand molecules were converted.sdf from PubChem into.pdb format using Pymol, and

the ligand molecules were converted into.pdbqt format through Autodock.

2.7 Preparation for molecular docking of target proteins

Six target proteins of T2DM i.e. FABP3 (PDB ID: 5HZ9), FABP4 (PDB ID: 3P6D), NR1H3

(PDB ID: 2ACL), PPARA (PDB ID: ASP6), PPARD (PDB ID: 5U3Q), PPARG (PDB ID: 3E00)

were selected on STRING via RCSB PDB (https://www.rcsb.org/). The proteins selected as.

PDB format converted into.pdbqt format via Autodock (http://autodock.scripps.edu/).

2.8 Ligand- protein docking

The ligand molecules were docked with target proteins utilizing autodock4 by setting-up 4

energy range and 8 exhaustiveness as default to obtain 10 different poses of ligand molecules

[31]. The 2D binding interactions was identified through LigPlot+ v.2.2 (https://www.ebi.ac.

uk/thornton-srv/software/LigPlus/). After docking, ligands of lowest binding energy were

selected to visualize the ligand-protein interaction in Pymol.

3. Results

3.1 Potential bioactive compounds from SB

A total of 20 compounds in SB were detected by the GC-MS analysis (Fig 1), and the name of

compounds, retention time, peak area (%) are enlisted in Table 1. All 20 compounds were

checked and accepted by Lipinski’s rule (Molecular Weight� 500g/mol; Moriguchi octanol-

water partition coefficient�4.15; Number of Nitrogen or Oxygen�10; Number of NH or OH

�5), and all compounds have satisfactory “Abbott Bioavailability Score (> 0.1)” identified

through SwissADME (Table 2).

3.2 Overlapping genes between SEA and STP linked to 20 compounds

Based on the SMILES, a total of 308 genes from SEA and 324 genes from STP linked to 20

compounds were extracted (S1 Table). The result of Venn diagram exhibited that 118 genes

were overlapped between the two public databases (Fig 2).
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Fig 1. A typical GC-MS chromatogram of the chemical compounds of the methanol extract of SB with indication of 4 main chemical

constituents.

https://doi.org/10.1371/journal.pone.0240873.g001

Table 1. A list of the identified 20 chemical compounds from SB through GC-MS.

No. Compound Pubchem ID Retention time Area (%)

1 Glycerin 753 3.606 2.34

2 Glyceraldehyde 751 4.222 0.19

3 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-2-one 67452387 4.76 0.35

4 β-D-ribofuranosyl-cytosine 596 7.039 3.25

5 Butanoic acid, ethyl ester 7762 7.318 0.11

6 2-Propanol, 1-chloro-3-(1-methylethoxy) 94290 7.818, 7.847 0.84

7 Oxazole, 5-hexyl-2,4-dimethyl- 573438 8.222 0.15

8 Hexadecanoic acid, methyl ester 8181 8.76 0.24

9 Palmitic acid 985 8.991,9.270,9.308 13.67

10 Methyl linoleate 5284421 9.424 2.38

11 Linoleic acid 5280450 10.106,10.414,10.943 68.2

12 2-Stearoylglycerol 79075 10.943 0.72

13 Propyleneglycol monoleate 5365625 11.741 3.02

14 25-Oxo-27-norcholesterol 165617 11.837 0.95

15 Cholesterol 5997 12.279 0.14

16 5,8-Dimethyltocol 86052 14.01 0.26

17 Campesterol 173183 16.058 0.77

18 Stigmasterol 5280794 16.356 0.42

19 β-sitosterol 222284 17.164 1.52

20 4,5-Dihydroxycoumarin 54690194 19.991 0.28

https://doi.org/10.1371/journal.pone.0240873.t001
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3.3 Overlapping genes between T2DM-related genes and the 118

overlapping genes

A total of 4,736 genes related to T2DM were sorted by retrieving DisGeNET and OMIM data-

bases (S2 Table). The result of Venn diagram unveiled that 81 overlapping genes was identified

between 4,763 genes related to T2DM and the 118 overlapping genes (Fig 3), (S3 Table). As

shown in S4 Table, a total of 81 overlapping genes linked to 16 compounds from aforemen-

tioned 20 compounds were identified, retrieving from both SEA and STP public databases,

and no genes were found associated with other 4 compounds (Glycerin; Glyceraldehyde;

2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-2-one; and 2-propanol, 1-chloro-3-(1-methy-

lethoxy)) in the two databases.

3.4 Gene-gene network analysis of 16 compounds of SB against T2DM

The final overlapping 81 genes were closely linked to each other with 81 nodes and 347 edges

(Fig 4). The interaction between 16 compounds and 81 genes resulted with 97 nodes and 347

edges (Fig 5), which indicated that the therapeutic efficacy of SB on T2DM. The 16 compounds

were classified as five steroid derivatives (25-Oxo-27-norcholesterol, Cholesterol, Campesterol,

(E)-23-ethylcholesta-5,22-dien-3β-ol, and β-sitosterol), four fatty acyls (Palmitic acid, Methyl

lineoleate, Linoleic acid, and Propylengeglycol monoleate), two fatty acid esters (Butanoic

acid-ethyl ester and Hexadecanoic acid-ethyl ester), one organooxygen (Propanal,

Table 2. Physicochemical properties of the 20 compounds for good oral bioavailability.

No. Compounds Lipinski Rules Lipinski’s Violations Biavailability Score

MW HBA HBD MLog P

< 500 < 10 � 5 � 4.15 �1 > 0.1

1 Glycerin 92.09 3 3 -1.51 0 0.55

2 Propanal, 2,3-dihydroxy- 90.08 3 2 -1.66 0 0.55

3 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-2-one 144.13 4 2 -0.96 0 0.55

4 β-D-ribofuranosyl-cytosine 243.22 6 5 -2.29 0 0.55

5 Butanoic acid, ethyl ester 116.16 2 0 1.27 0 0.55

6 2-Propanol, 1-chloro-3-(1-methylethoxy) 152.62 2 1 0.96 0 0.55

7 Oxazole, 5-hexyl-2,4-dimethyl- 181.27 2 0 1.92 0 0.55

8 Hexadecanoic acid, methyl ester 270.45 2 0 4.44 1 0.55

9 Palmitic acid 256.42 2 1 4.19 1 0.85

10 Methyl lineoleate 294.47 2 0 4.70 1 0.55

11 Linoleic acid 280.45 2 1 4.47 1 0.85

12 2-Stearoylglycerol 358.56 4 2 3.63 0 0.55

13 Propyleneglycol monoleate 340.54 3 1 4.37 1 0.55

14 25-Oxo-27-norcholesterol 386.61 2 1 5.1 1 0.55

15 Epicholesterol 386.65 1 1 6.34 1 0.55

16 5,8-Dimethyltocol 416.68 2 1 5.94 1 0.55

17 Campesterol 400.68 1 1 6.54 1 0.55

18 (E)-23-ethylcholesta-5,22-dien-3β-ol 412.69 1 1 6.62 1 0.55

19 β-sitosterol 414.71 1 1 6.73 1 0.55

20 4,5-Hydroxycoumarin 178.14 3 1 1.04 0 0.55

MW, Molecular Weight (g/mol); HBA, Hydrogen Bond Acceptor; HBD, Hydrogen Bond Donor; LogP, Lipophilicity; Bioavailability Score, the ability of a drug or

other substance to be absorbed and used by the body.

https://doi.org/10.1371/journal.pone.0240873.t002
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2,3-dihydroxy-), one prenol lipid (5,8-Dimethyltocol), one pyrimidine nucleoside (β-D-ribo-

furanosyl-cytosine), one azole (Oxazole, 5-hexyl-2,4-dimethyl), and one coumarin derivative

(4,5-Dihydroxycoumarin).

3.5 Signaling pathways and finding of a hub signaling of SB against T2DM

The result of KEGG pathway enrichment analysis demonstrated that 81 genes were related to

12 signaling pathways (False Discovery Rate< 0.05). The 12 signaling pathways were directly

related to the progression of T2DM and indicated that these 12 signaling pathways might be

the key pathways of SB against T2DM. The description of 12 signaling pathways is shown in

Table 3. Additionally, a bubble chart suggested that PPAR signaling pathway might be a hub

signaling pathway of SB against T2DM (Fig 6).

3.6 Molecular docking investigation of 6 genes and 4 compounds related to

PPAR signaling pathway

From the SEA and STP databases, it was revealed that FABP3 gene is associated with six com-

pounds (Methyl lineoleate, Linoleic acid, Hexadecanoic acid-methyl ester, Palmitic acid, Pro-

pyleneglycol monoleate, and 25-Oxo-27-norcholesterol), FABP4 gene is related to six

compounds (Methyl linoleate, Linoleic acid, Hexadecanoic acid-methyl ester, Palmitic acid,

Propyleneglycol monoleate, and 25-Oxo-27-norcholesterol), NR1H3 gene is involved with 8

Fig 2. Overlapping genes (118genes) between SEA (308 genes) and STP (324 genes).

https://doi.org/10.1371/journal.pone.0240873.g002
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compounds (β-sitosterol, Campesterol, 25-Oxo-27-norcholesterol, Cholesterol, Methyl line-

oleate, 5,8-Dimethyltocol, Linoleic acid, and Stigmasterol), PPARA gene is related to 7 com-

pounds (Palmitic acid, Hexadecanoic acid-methyl ester, Linoleic acid, Methyl linoleate,

Propyleneglycol monoleate, β-sitosterol, and 25-Oxo-27-norcholesterol), PPARD gene is asso-

ciated with 8 compounds (Hexadecanoic acid-methyl ester, Linoleic acid, Methyl linoleate,

Stigmasterol, 25-Oxo-27-norcholesterol, Palmitic acid, Cholesterol, and β-sitosterol), PPARG

gene is linked to 7 compounds (Methyl linoleate, Linoleic acid, Palmitic acid, Propyleneglycol

monoleate, β-sitosterol, Hexadecanoic acid-methyl ester, and 25-Oxo-27-norcholesterol) (Fig

7). Also, each six proteins have strong molecular interactions on PPAR signaling pathway (Fig

8). The nominated compounds to dock with six proteins were selected via both SEA and STP.

The molecular docking analysis was performed to evaluate the binding energy of these six

genes against their related each gene, respectively, and the docking figures are depicted in Fig 9.

Molecular docking score of A1-A6 on FABP3 protein (PDB ID: 5HZ9) is analyzed in the

“Homo Sapiens” mode. Docking simulation of the affinity between A1-A6 and FABP3 protein

in the “Homo sapiens” setting was analyzed. Based on the docking score, the order of the

priority of binding energy is given: A5>A6>A2>A3>A1>A4. The six-binding energy of

A1-FABP3, A2-FABP3, A3-FABP3, A4-FABP3, A5-FABP3, and A6-FABP3 demonstrated -6.6,

-7.4, -6.7, -6.5, -8.4, and -7.8 kcal/mol, respectively. Interaction analysis of the best-docked com-

pound namely “propyleneglycol monoleate” showed several hydrophobic bonds on FABP3

Fig 3. Overlapping genes between 118 overlapping genes (A) and T2DM related genes (4,736 genes).

https://doi.org/10.1371/journal.pone.0240873.g003
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protein (PDB ID: 5HZ9). The hydrophobic amino acid residues are Thr-57, Phe-58, Val-33,

Met-36, Gly-27, GLy-25, Phe-28, and Gln-32. The detailed information is enlisted in Table 4.

The Propyleneglycol monoleate (A5) had the strongest affinity on FABP3. Docking simulation

of the affinity between B1-B6 and FABP4 protein (PDB ID: 3P6D) in the “Homo sapiens” setting

revealed promising binding affinity, and the order of the priority of binding energy is as follows:

B6>B5>B2>B1>B3>B4. The six-binding energy of B1-FABP4, B2-FABP4, B3-FABP4,

B4-FABP4, B5-FABP4, and B6-FABP4 revealed -4.6, -4.9, -4.5, -4.4, -5.6, and -7.2 kcal/mol,

respectively. The 25-Oxo-27-norcholesterol (B6) had the strongest affinity on FABP4. Interac-

tion analysis of best-docked compound namely “25-Oxo-27-norcholesterol” resulted one

Fig 4. Gene-gene interaction of final overlapping 81 genes (81 nodes and 301edges) in SB against T2DM.

https://doi.org/10.1371/journal.pone.0240873.g004
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Fig 5. The interaction between 16 compounds and 81 genes (94 nodes and 356 edges) on T2DM.

https://doi.org/10.1371/journal.pone.0240873.g005

Table 3. Target genes in 12 signaling pathways enrichment related to T2DM.

KEGG ID Target genes False Discovery

Rate

hsa04933:AGE-RAGE signaling pathway in diabetic

complications

AKT1,NFKB1,PRKCA,PRKCE 0.0075

hsa04920:Adipocytokine signaling pathway AKT1,PPARA,NFKB1 0.0208

hsa04917:Prolactin signaling pathway ESR1,ESR2,AKT1,NFKB1,CYP17A1 0.00031

hsa04915:Estrogen signaling pathway AKT1,GABBR1,ESR1,PGR,ESR2 0.0028

hsa04664:Fc epsilon RI signaling pathway AKT1,ALOX5,PLA2G4A,PRKCA 0.0021

hsa04660:T cell receptor signaling pathway AKT1,NFKB1,PTPRC 0.0408

hsa04370:VEGF signaling pathway AKT1,PRKCA,PLA2G4A 0.0155

hsa04152:AMPK signaling pathway AKT1,HNF4A,PPARG,HMGCR 0.013

hsa04071:Sphingolipid signaling pathway ADORA1,S1PR1,AKT1,NFKB1,PRKCA,

PRKCE

0.00029

hsa04021:cAMP signaling pathway ADORA1,GABBR1,AKT1,PTGER3,

PPARA,NFKB1

0.0022

hsa03320:PPAR signaling pathway FABP3,FABP4,NR1H3,PPARA,PPARD,

PPARG

0.0000419

hsa04066:HIF-1 signaling pathway GAPDH,AKT1,NFKB1,PRKCA 0.0075

https://doi.org/10.1371/journal.pone.0240873.t003
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hydrogen bond (Ser-1) and seven hydrophobic bonds (Gly-88, Leu-86, Met-0, Val-44, Cys-1,

Gly-46, and ASP-47). The detailed information is enlisted in Table 5. Docking simulation of the

affinity between C1-C8 and NR1H3 protein in the “Homo sapiens” setting displayed promising

binding affinity, and the order of the priority of binding energy is as follows:

C2>C8>C3>C4>C1>C7>C6>C4. The eight-binding energy of C1-NR1H3, C2-NR1H3,

C3-NR1H3, C4-NR1H3, C5-NR1H3, C6-NR1H3, C7-NR1H3, and C8-NR1H3 exhibited -7.3,

-10.6, -7.9, -7.6, -4.9, -5.7, -5.9, and -8.3 kcal/mol, respectively. The campesterol (C2) has the

strongest affinity on NR1H3. Interaction analysis of best- docked compound namely “campes-

terol” showed several hydrophobic bonds on NR1H3 protein (PDB ID: 2ACL). The hydropho-

bic amino acid residues are Gly-328, Arg-248, Leu-329, Gln-330, Val-331, Ile-299, Arg-302,

Val-298, Asp-295, Leu-294, and Gln-429. The detailed information is enlisted in Table 6. Dock-

ing simulation of the affinity between D1-D8 and PPARA protein in the “Homo sapiens” setting

revealed promising binding affinity, and the order of the priority of binding energy is as follows:

D6>D7>D3>D5>D2>D1>D4. The eight-binding energy of D1-PPARA, D2-PPARA,

D3-PPARA, D4-PPARA, D5-PPARA, D6-PPARA, and D7-PPARA exhibited -4.9, -5.2, -6.0,

-4.8, -5.8, -6.6, and -6.1 kcal/mol, respectively. The β-sitosterol (D6) has the strongest affinity

on NR1H3. Interaction analysis of best- docked compound namely “β-sitosterol” displayed sev-

eral hydrophobic bonds on PPARA protein (PDB ID: 3SP6). The hydrophobic amino acid resi-

dues are Glu-462, Ser-588, Leu-392, Asn-303, Val-306, Thr-307, Lys-310, Tyr-311, Gly-390,

Pro-389, Arg-465, and Asp-466. The detailed information is enlisted in Table 7. Docking simu-

lation of the affinity between E1-E8 and PPARD protein in the “Homo sapiens” setting dis-

played promising binding affinity, and the order of the priority of binding energy is as follows:

The eight-binding energy of E1-PPARD, E2-PPARD, E3-PPARD, E4-PPARD, E5-PPARD,

E6-PPARD, E7-PPARD, and E8-PPARD exhibited -3.8, -5.2, -4.2, -7.3, -7.3, -4.6, -7.3, and -7.4

Fig 6. Bubble chart of 12 signaling pathways linked to the occurrence and progression of T2DM.

https://doi.org/10.1371/journal.pone.0240873.g006
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kcal/mol, respectively. The β-sitosterol (E8) has the strongest affinity on PPARD. Interaction

analysis of best-docked compound namely “β-sitosterol” revealed one hydrogen bond (Met-

440) and seven hydrophobic bonds (Ala-414, Thr-411, Tyr-441, Asp-360, Pro-362, Tyr-284,

and Val-410). The detailed information is enlisted in Table 8. Docking simulation of the affinity

between E1-E8 and PPARD protein in the “Homo sapiens” setting displayed promising binding

affinity, and the order of the priority of binding energy is as follows: The seven-binding energy

of F1-PPARG, F2-PPARG, F3-PPARG, F4-PPARG, F5-PPARG, F6-PPARG, and F7-PPARG

exhibited -5.2, -5.4, -5.2, -5.9, -7.9, -4.0, and -7.8 kcal/mol, respectively. Interaction analysis of

best- docked compound namely “β-sitosterol” exposed several hydrophobic bonds on PPARG

protein (PDB ID: 3E00). The hydrophobic amino acid residues are Tyr-169, Tyr-189, Leu-167,

Thr-168, Lys-336, Arg-350, Glu-351, Lys-354, Gln-193, and Tyr-192. The β-sitosterol (F5) has

the strongest affinity on PPARG. The detailed information is enlisted in Table 9. This result

suggested that each compound of the highest affinity score on each gene might be significant

ligand to control glucose homeostasis (Fig 10).

Fig 7. Interaction of 11 compounds and 6 genes on PPAR signaling pathway.

https://doi.org/10.1371/journal.pone.0240873.g007
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4. Discussion

Compounds-genes networking system unveiled that therapeutic effect of SB against T2DM

was related to 16 compounds out of 20 compounds detected by GC-MS, including five steroid

derivatives, four fatty acyls, two fatty acid esters, one organooxygen, one prenol lipid, one

pyrimidine nucleoside, one azole, and one coumarin. The proportion of steroid derivatives to

16 compounds was close to 30%, implying that steroid derivatives was the most essential than

any other sorts of compounds for the amelioration effect of SB on T2DM.

It was reported that some steroid derivatives have strong effect on hypoglycemic activity

based on lipophilic properties [32]. Noticeably, a report showed that β-sitosterol (steroid deriv-

atives) controls the glycemic level through regulation of IR (insulin receptor) and GLUT4 (glu-

cose transporter 4) proteins in adipocytes of high fat and sucrose treated type 2 diabetic rats,

interestingly, the in vivo result was in line with in silico analysis [33]. In addition, researchers

found that campesterol (steroid derivatives) decreases the LDL (Low Density Lipoprotein)

level, associated with the occurrence and development of T2DM [34, 35]. A patent revealed

that propyleneglycol monoleate is an agent for treatment or amelioration of diabetes, obesity

or arteriosclerosis [36]. Another report suggested that 25-Oxo-27-norcholesterol interrupts

cholesterol oxidation, which is related to insulin resistance [37, 38]. These results coincide

Fig 8. Interaction among 6 genes on PPAR signaling pathway.

https://doi.org/10.1371/journal.pone.0240873.g008
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with our findings of SB on T2DM, suggesting that the quantity of the four compounds in SB is

greatly enough to exhibit anti-diabetic efficacy.

Compounds-genes networking also specified that the pharmacological effect of SB on

T2DM was directly associated with 81 genes. The results of KEGG pathway enrichment analy-

sis of 81 genes showed that 12 signaling pathways were directly linked to the occurrence and

progression of T2DM, demonstrating that these signaling pathways might be the key pathways

of SB against T2DM. The 12 signaling pathways with T2DM were succinctly discussed as

follows.

PPAR signaling pathway: PPAR ligands are the potential therapeutic candidates against

T2DM, also, alleviate metabolic syndrome including obesity and insulin resistance [39]. Fur-

thermore, dual agonists approach with both PPARA agonists (such as fibrates) and PPARG

agonists (such as thiazolidinediones) can have better metabolic efficacy and less side effects

than its single administration [40]. cAMP signaling pathway: cAMP signaling pathway modu-

lates glucose homeostasis with insulin and glucagon secretion, glucose uptake, gluconeogene-

sis, glycogen synthesis and breakdown of glucose [41]. HIF-1 signaling pathway: Inhibition of

HIF-1 signaling caused by diabetes is associated with hypoxia and high degradation of HIF-1α

Fig 9. Molecular docking interaction between best docked compounds from SB and target proteins. (A) Propyleneglycol monoleate on 5HZ9 (B) 25-Oxo-

27-norcholesterol on 3P6D (C) Campesterol on NR1H3 (D) β-sitosterol on 3SP6 (E) β-sitosterol on 5U3Q (F) β-sitosterol on 3E00.

https://doi.org/10.1371/journal.pone.0240873.g009
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Table 4. Binding energy and interactions of potential active compounds on FABP3 (PDB ID: 5HZ9).

Hydrogen Bond Interactions Hydrophobic Interactions

Protein Ligand PubChem ID Symbol Binding energy(kcal/mol) Amino Acid Residue Amino Acid Residue

5HZ9 Methyl lineoleate 5284421 A1 -6.6 n/a Phe-58,Lys-22,

Gly-25,Phe-28,

Gln-32, Ala-29

Linoleic acid 5280450 A2 -7.4 Lys-22 Ala-29,Gln-32,

Phe-28, Gly-25,

Gly-27

Hexadecanoic acid, methyl ester 8181 A3 -6.7 n/a Phe-28, Gln-32,

Phe-58, Ala-29,

Lys-22

Palmitic acid 985 A4 -6.5 n/a Val-33, Gln-32,

Ala-29, Phe-58,

Lys-22, Thr-57

Propyleneglycol monoleate 5365625 A5 -8.4 n/a Thr-57, Phe-58,

Val-33, Met-36,

Gly-27, Gly-25,

Phe-28, Gln-32

25-Oxo-27-norchoresterol 165617 A6 -7.8 Ser-35, Met-36 Asp-18, Phe-28,

Met-36 Ala-29, Val-33,

Asp-99, Gln-32

Lys-10

https://doi.org/10.1371/journal.pone.0240873.t004

Table 5. Binding energy and interactions of potential active compounds on FABP4 (PDB ID: 3P6D).

Hydrogen Bond Interactions Hydrophobic Interactions

Protein Ligand PubChem ID Symbol Binding energy (kcal/mol) Amino Acid Residue Amino Acid Residue

3P6D Methyl linoleate 5284421 B1 -4.6 n/a Ser-1,Cys-1

Leu-86, Asp-47

Leu-66, Ile-49

Linoleic acid 5280450 B2 -4.9 Leu-86 Thr-85, Leu-66

Asp-47, Cys-1

Hexadecanoic acid, methyl ester 8181 B3 -4.4 n/a Gly-88, Leu-86

Ser-1, Gly-46

Asp-47, Leu-66

Met-0

Palmitic acid 985 B4 -4.4 Glu-72,Val-80 Lys-79, Asp-71

Val-73,Glu-61

Thr-60

Propyleneglycol monoleate 5365625 B5 -5.6 Gly-88, Leu-86 Asp-87, Met-0

Ser-1, Cys-1

Asp-47, Leu-66

Ile-65

25-Oxo-27-norchoresterol 165617 B6 -7.2 Ser-1 Gly-88, Leu-86

Met-0, Val-44

Cys-1, Gly-46

Asp-47

https://doi.org/10.1371/journal.pone.0240873.t005
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protein [42]. Sphingolipid signaling pathway: Sphingolipid is a significant class of signaling lip-

ids, have been recognized as vital players in the progression and pathogenesis of insulin resis-

tance and T2DM [43]. AMPK signaling pathway: The activation of AMPK enhances

homeostasis of glycemic level, lipid concentration, and blood pressure in insulin-resistant

Table 6. Binding energy and interactions of potential active compounds on NR1H3 (PDB ID: 2ACL).

Hydrogen Bond Interactions Hydrophobic Interactions

Protein Ligand PubChem ID Symbol Binding energy (kcal/mol) Amino Acid Residue Amino Acid Residue

2ACL β-sitosterol 222284 C1 -7.3 n/a His-395,Pro-396

His-397, Gln-243

Pro-242, Asp-398

Ser-244, Glu-346

Asp-241, Gln-348

Asn-394

Campesterol 173183 C2 -10.6 n/a Gly-328, Arg-248

Leu-329, Gln-330

Val-331, Ile-299

Arg-302, Val-298

Asp-295, Leu-294

Gln-429

25-Oxo-27-norchoresterol 165617 C3 -7.9 Glu-339, Arg-404 Asp-379, Glu-390

Ala-343, Asp-241

Pro-242, Leu-347

Pro-240, Glu-346

Pro-386

Cholesterol 5997 C4 -7.6 Asn-385 Trp-236, Ala-391

Pro-237, Ile-238

Glu-394, Pro-242

Asp-241, Pro-240

Glu-322, Lys-395

Lys-326, Glu-388

Methyl linoleate 5284421 C5 -4.9 Arg-342 Ile-238, Pro-378

Ala-387, Pro-386

Glu-390, Ser-411

Phe-340, Asp-379

Glu-339

5,8-Dimethyltocol 222284 C6 -5.7 n/a Leu-347, Pro-242

Ser-244, Asp-241

Glu-291, Gln-348

Gln-243, Glu-346

His-397, Asp-398

Met-401

Linoleic acid 5280450 C7 -5.9 Gly-328, Gln-422 Leu-329, Gln-330

Gln-429, Asp-295

Val-331, Lys-381

Ile-299, Ala-303

Arg-302, Glu-332

Gly-382, Ala-425

Val-298

https://doi.org/10.1371/journal.pone.0240873.t006
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rodents, which is considered as an important therapeutic target against T2DM [44]. VEGF sig-

naling pathway: VEGF is related deeply to the development of T2DM. High content of VEGF

is generally detected in plasma of T2DM patients [45]. T cell receptor activation: Overactivated

T cells with T2DM patients might be an indication of losing the natural regulatory mechanism,

Table 7. Binding energy and interactions of potential active compounds on PPARA (PDB ID: 3SP6).

Hydrogen Bond Interactions Hydrophobic Interactions

Protein Ligand PubChem ID Symbol Binding energy (kcal/mol) Amino Acid Residue Amino Acid Residue

3SP6 Palmitic acid 985 D1 -4.9 n/a Glu-251, Val-332

Ile-241, Ala-333

Thr-279, Val-255

Tyr-334, Leu-258

Cys-275

Hexadecanoic acid, methyl ester 8181 D2 -5.2 n/a Ile-317, Ser-323

Phe-218, Met-220

Asn-221, Val-324

Asn-219, Tyr-334

Ala-333, Thr-279

Leu-331, Leu-321

Met-320, Thr-283

Linoleic acid 5280450 D3 -6 Ser-323 Asn-221, Met-320

Tyr-214 Val-324, Met-220

Asn-219, Tyr-334

Thr-279, Leu-331

Leu-321, Thr-283

Ile-317

Methyl linoleate 5284421 D4 -4.8 n/a Glu-286, Asn-219

Gly-335, Tyr-334

Thr-279, Val-324

Leu-331, Leu-321

Ile-317, Met-320

Met-220, Phe-218

Thr-283

Propyleneglycol monoleate 5365625 D5 -5.8 n/a Glu-251, Ala-250

Val-255, Ala-333

Met-220, Val-324

Met-320, Tyr-334

Thr-279, Cys-275

Leu-254

β-sitosterol 222284 D6 -6.6 n/a Glu-462, Ser-688

Leu-392, Asn-303

Val-306, Thr-307

Lys-310, Tyr-311

Gly-390, Pro-389

Arg-465, Asp-466

25-Oxo-27-norchoresterol 165617 D7 -6.1 Lys-345 Asp-360, Glu-356

Pro-357, Glu-439

His-440, Leu-443

Asp-353

https://doi.org/10.1371/journal.pone.0240873.t007
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thus, intervention of T cells by T2DM might down T cell receptor sensitization [46]. Fc epsilon

RI signaling pathway: Fc epsilon RI- mediated signaling in mouse bone marrow is potentiated

by insulin [47]. Estrogen signaling pathway: In a research of postmenopausal mice and human

cells, the report demonstrated that estrogen is related to lower risk of T2DM by targeting par-

ticular cells in the pancreas and gut to improve tolerance to glucose [48]. Prolactin signaling

pathway: A normal range of prolactin concentration is linked to a lower T2DM risk, which

may play an inhibitory effect on the development of T2DM [49]. Adipocytokine signaling

pathway: Adipocutokines leptin and adiponectin might be significant biomarkers for first pre-

diction on T2DM, which is further associated with diabetic microvascular complications [50].

Table 8. Binding energy and interactions of potential active compounds on PPARD (PDB ID: 5U3Q).

Hydrogen Bond Interactions Hydrophobic Interactions

Protein Ligand PubChem ID Symbol Binding energy (kcal/mol) Amino Acid Residue Amino Acid Residue

5U3Q Hexadecanoic acid, methyl ester 8181 E1 -3.8 n/a Pro-362, Tyr-284

Arg-407, Glu-288

Arg-361,Met-440

Val-410, Thr-411

Linoleic acid 5280450 E2 -5.2 n/a Val-410, Arg-407

Met-440, Asp-439

Thr-411, Tyr-441

Tyr-284, Asp-360

Pro-362, Arg-361

Glu-288

Methyl linoleate 5284421 E3 -4.2 n/a Arg-407, Glu288

Tyr-284, Pro-362

Met-440, Thr-411

Val-410

Stigmasterol 5280794 E4 -7.3 Met-440 Ala-414, Thr-411

Tyr-441, Asp-360

Pro-362, Tyr-284

Val-410

25-Oxo-27-norchoresterol 165617 E5 -7.3 Met-440 Ala-414, Thr-411

Tyr-441, Asp-360

Pro-362, Tyr-284

Val-410

Palmitic acid 985 E6 -4.6 n/a Tyr-441, Pro-362

Arg-361, Val-410

Tyr-284, Glu-288

Met-440, Thr-411

Ala-414, Arg-407

Cholesterol 5997 E7 -7.3 Met-440 Val-410, Ala-414

Tyr-441, Tyr-284

Asp-360, Arg-361

Pro-362, Thr-411

Val-410

β-sitosterol 222284 E8 -7.4 Met-440 Ala-414, Thr-411

Tyr-441, Asp-360

Pro-362, Tyr-284

Val-410

https://doi.org/10.1371/journal.pone.0240873.t008
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AGE-RAGE signaling pathway in diabetic complications: The activation of receptor for AGE

(RAGE) is a noticeable pathological consequence on T2DM, and thus the design of antagonist

for the AGE(RAGE) receptor might be a therapeutic strategy against T2DM [51].

Collectively, this study suggests that 12 signaling pathways with 81 genes are linked to the

development of T2DM. In addition, rich factor defines that the proportion of the DEGs num-

ber and the number of genes have been annotated in pathway [52]. In other words, the higher

of the rich factor is, the higher the degree of enrichment. The rich factor of PPAR signaling

Table 9. Binding energy and interactions of potential active compounds on PPARG (PDB ID: 3E00).

Hydrogen Bond Interactions Hydrophobic Interactions

Protein Ligand PubChem ID Symbol Binding energy (kcal/mol) Amino Acid Residue Amino Acid Residue

3E00 Methyl linoleate 5284421 F1 -5.2 Tyr-169, Gln-193 Leu-167, Asp-337

Lys-336, Val-372

Lys-373, Glu-369

Tyr-189, Thr-168

Tyr-192, Arg-350

Glu-351

Linoleic acid 5280450 F2 -5.4 Thr-162, Leu-167 Arg-202, Asp-166

Lys-336, Glu-369

Glu-369, Val-372

Arg-350, Glu-351

Gln-193, Lys-354

Tyr-192

Palmitic acid 985 F3 -5.2 Ser-342, Glu-343 Leu-333, Arg-288

Glu-291, Glu-295

Met-329, Ala-292

Pro-227, Phe-226

Ile-341, Leu-228

Propyleneglycol monoleate 5365625 F4 -5.9 Ser-332, Tyr-222 Lys-230, Phe-295

Glu-295, Ile-296

Ala-292, Arg-288

Leu-333, Leu-228

Met-329, Thr-229

β-sitosterol 222284 F5 -7.9 n/a Tyr-169, Tyr-189

Leu-167, Thr-168

Lys-336, Arg-350

Glu-351, Lys-354

Gln-193, Tyr-192

Hexadecanoic acid, methyl ester 8181 F6 -4.0 Glu-343, Ser-342 Leu-340, Leu-228

Ile-341, Met-329

Phe-226, Ala-292

Glu-295, Pro-227

Arg-288, Leu-333

25-Oxo-27-norchoresterol 165617 F7 -7.8 Asn-375 Asn-335, Lys-336

Asp-166, Arg-164

Glu-208, Glu-207

Val-63, Arg-202

Glu-203, Val-372

https://doi.org/10.1371/journal.pone.0240873.t009
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pathway was the highest degree among 12 signaling pathways. Reports indicated that PPAR

agonists are insulin sensitizers and improve insulin resistance with T2DM patients [53]. To

sum things up, a hub mechanism of SB against T2DM might be to maintain glucose homeosta-

sis by activating PPAR signaling pathway.

5. Conclusion

Sorghum bicolor (SB) is rich in beneficial phytoconstituents and seen as a possible source of

natural antidiabetic agents. However, in this report, its comprehensive bioactive compounds

and T2DM pathways were firstly investigated using the network pharmacology. The findings

of this study indicate that the antidiabetic ability of the SB could be attributed to four main

compounds (β-sitosterol, campesterol, propyleneglycol monoleate, and 25-Oxo-27-norcholes-

terol) that were strongly related to PPAR signaling pathway. Therefore, our study suggests that

the four key compounds of SB might ameliorate T2DM by activating the PPAR signaling

pathway.
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Fig 10. Regulation of glucose homeostasis by potential bioactive compounds of SB.
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