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Key points

e Normal pH is crucial for proper functioning of the brain, and disorders increasing the level of
CO, in the blood lead to a decrease in brain pH.

® CO, can easily cross the barriers of the brain and will activate chemoreceptors leading to an
increased exhalation of CO,.

® The low pH, however, is harmful and bases such as HCO;~ are imported across the brain
barriers in order to normalize brain pH.

® We show that the HCO; ™ transporter NBCe?2 in the choroid plexus of the blood-cerebrospinal
fluid barrier is absolutely necessary for normalizing CSF pH during high levels of CO,.

e This discovery represents a significant step in understanding the molecular mechanisms behind
regulation of CSF pH during acid-base disturbances, such as chronic lung disease.

Abstract The choroid plexus epithelium (CPE) is located in the brain ventricles where it produces
the majority of the cerebrospinal fluid (CSF). The hypothesis that normal brain function is
sustained by CPE-mediated CSF pH regulation by extrusion of acid-base equivalents was tested
by determining the contribution of the electrogenic Na™-HCO; ™~ cotransporter NBCe2 to CSF pH
regulation. A novel strain of NBCe2 (Slc4a5) knockout (KO) mice was generated and validated.
The base extrusion rate after intracellular alkalization was reduced by 77% in NBCe2 KO mouse
CPE cells compared to control mice. NBCe2 KO mice and mice with CPE-targeted NBCe2 siRNA
knockdown displayed a reduction in CSF pH recovery during hypercapnia-induced acidosis of
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approximately 85% and 90%, respectively, compared to control mice. NBCe2 KO did not affect
baseline respiration rate or tidal volume, and the NBCe2 KO and wild-type (WT) mice displayed
similar ventilatory responses to 5% CO, exposure. NBCe2 KO mice were not protected against
pharmacological or heating-induced seizure development. In conclusion, we establish the concept
that the CPE is involved in the regulation of CSF pH by demonstrating that NBCe2 is necessary
for proper CSF pH recovery after hypercapnia-induced acidosis.

(Resubmitted 10 January 2018; accepted after revision 19 June 2018; first published online 29 June 2018)
Corresponding author H. H. Damkier: Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers alle 3,

8000 Aarhus C, Denmark. Email: hd@biomed.au.dk

Introduction

Normal neuronal function within the central nervous
system (CNS) relies on a stable and suitable internal
physico-chemical environment, where interstitial pH is
amongst the important parameters dictating neuronal
excitability (Leusen, 1972; Hladky & Barrand, 2016).
Disturbances of brain pH affect neuronal function due
to altered protonization of the proteins in the membranes
governing the electrical properties of the cells (Somjen,
1984), such that severe acidosis results in confusion,
coma, and ultimately death (Posner & Plum, 1967),
whilst brain alkalosis leads to convulsions such as febrile
seizures (Schuchmann et al. 2006). The main regulatory
systems to correct acid-base disturbances are changes in
the pulmonary ventilation (controlling Pco,) and the
renal excretion of acid-base equivalents (i.e. net NH, ™,
H* or HCO; ™ secretion) (Siesjd, 1972). The ventilatory
response depends primarily on central chemoreceptors
sensing Pco, and H within the brain interstitial fluid
(Kazemi & Johnson, 1986).

Both the blood-brain and the blood-CSF barriers
are highly permeable to CO,, but much less so to
H* and HCO;~ (Johnson et al. 1983). Increases in
arterial Pco, are therefore quickly sensed by the central
chemoreceptors enabling swift respiratory responses to
hypercapnia. Numerous classic studies, nevertheless, also
demonstrate that acute changes in blood pH during
metabolic acid-base disturbances are conveyed to the CSF
(Pappenheimer ef al. 1965; Kazemi et al. 1967; Yuan &
Desiderio, 2005). Thus, although CSF P¢o, quickly follows
plasma Pco,, transepithelial ion transport across the
blood-brain and the blood-CSF barriers enables [HCO; ™|
within the CSF to counteract the changes in Pcp, and
hence restore CSF pH even in the absence of changes
in plasma [HCO;~] (reviewed in (Siesjo, 1972)). In
dogs, Kazemi and co-workers showed that CSF pH is
normalized within 6 h of 10% CO, inhalation despite low
plasma pH, indicating that CSE, despite its low content of
protein buffers, is efficiently protected against acid-base
disturbances by either removal of acid or import of base
equivalents, such as HCO5™ into the CSF (Kazemi et al.
1967). The choroid plexus epithelium (CPE) is suggested

to mediate the blood-to-CSF transport of HT and HCO3~
in the response to acid-base disturbances. It does so by
either transporting e.g. HCO;~ from the blood to CSF
or by de novo synthesis of HCO5~ for extrusion to the
CSF (Hasan & Kazemi, 1976). The active extrusion of
HCO5™ into the CSF by the blood-CSF barrier, i.e. the
CPE, was first suggested as a compensatory mechanism
in respiratory acidosis by Maren (1971). Although there
are clear indications for a role in CSF pH regulation by
the CPE, the underlying molecular mechanisms of this
phenomenon remains elusive.

The CPEs reside in each of the four brain ventricles,
and this very active epithelial monolayer is the primary
source of intraventricular CSF (Damkier et al. 2013). The
CPE cells (CPECs) contain a number of membrane trans-
port proteins involved in secretion of electrolytes and
water, and express a variety of other proteins involved
in movement of acid-base equivalents across the plasma
membrane (Dambkier ef al. 2013). Among the transporters
expressed in the luminal (CSF-facing) plasma membrane,
the electrogenic Na™-HCO; ™ cotransporter NBCe2 is the
only known base extruder (Bouzinova et al. 2005; Millar
& Brown, 2008; Damkier et al. 2013). NBCe2 is known
to export Na™ and HCO; ™ from the epithelial cell to the
CSF with a 1:3 stoichiometry (Millar & Brown, 2008). The
localization and transport direction of NBCe2 makes it
an obvious candidate for maintenance of CSF pH during
acidosis in the brain. In the basolateral membrane, the
Na® dependent CI"/HCO;~ exchanger Ncbe (Slc4al0)
imports Na* and HCO; ™~ from the blood side (Praetorius
et al. 2004). The anion exchanger AE2 is also expressed
in the basolateral membrane where it is responsible for
extrusion of HCO; ™ from the cell (Alper et al. 1994). The
electroneutral Nat-HCO; ™~ cotransporter, NBCnl is also
expressed in the CPE (Bouzinova et al. 2005), but the
membrane localization of this transporter varies between
species (Praetorius et al. 2004). It transports Na™ along
with HCO; ™ into the cell. In the luminal membrane the
Na®/H* exchanger NHE1 extrudes H" from the cell in
exchange for Na™ (Damkier et al. 2009). The contribution
of these transporters to CSF pH regulation remains to be
quantified.

© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



J Physiol 596.19

Two previous studies have investigated the
consequences of genetically deleting NBCe2 in mice
(Kao et al. 2011; Groger et al. 2012). In the study by
Kao et al. (2011), Slc4a5 deletion was accomplished by
insertion of a gene trap vector, which integrated upstream
of exon 15. In the study by Groger et al. (2012), Slc4a5 was
deleted by insertion of loxP sites targeting exon 7. In both
cases, a frameshift mutation and following truncation of
the final NBCe2 protein resulted in deletion of NBCe2.
The effects resulting from Slc4a5 deletion differed between
the two models. In the study by Kao et al, immuno-
histochemical analysis revealed disrupted expression
of the electroneutral Na*-HCO;~ cotransporter Ncbe
(Slc4al10). This protein is normally exclusively expressed
in the basolateral membrane, but in the NBCe2 knockout
(KO) Ncbe was expressed in both membranes. In
addition, striking changes in subunit expression of the
Na™,Kt-ATPase were observed: the «1 subunit was found
in the basolateral membrane as well as in the luminal
membrane of CPECs in the NBCe2 KO mouse. The 82
subunit was absent from the NBCe2 KO CPE. Expression
of the luminal Na™-K*-2Cl~ cotransporter, NKCC1, and
the cytoskeletal protein spectrin SII was observed both
intracellularly and luminally in the knockout mice. Most
of these proteins are involved in CSF secretion by the
CPE (Damkier et al. 2013), and indeed brain ventricle
volume and intracranial pressure were dramatically
decreased in this study. Electrolyte analysis showed
that the NBCe2 KO mice had reduced CSF [HCO;™]
indicating a deficiency in acid-base regulation of the
CSE. Injections with the convulsant pentylenetetrazol
(PTZ) revealed that the NBCe2 KO mice had lower
susceptibility to chemically induced seizures. In contrast
to these findings, no difference in brain ventricle volume
was detected by Groger et al. (2012), indicating a less
severe NBCe2 KO phenotype in this mouse model. The
distribution of the CPE transporters and the electrolyte
composition of the CSF was not investigated in this
study. Nevertheless, the difference in ventricle phenotype
suggests a profound difference between the two knockout
models, which could be ascribed to differences in gene
targeting strategies. Both techniques gave rise to verified
frame shifts and truncation of the resulting proteins.
The gene trap insertion results in the expression of a
relatively large non-functional NBCe2 protein including
the first transmembrane domains that potentially could
interfere with the expression of other CPE proteins.
The exon 7 deletion approach might carry the risk of
alternative spliced NBCe2 forms being expressed, but
mass spectrometer analysis of the NBCe2 KO seems to
rule this out. Without knowing the exact reason for the
discrepancies and which knockout model most likely
reflects NBCe2 function, a novel mouse model of NBCe2
deletion, in which the potential for truncation and splice
variants can be avoided, seems warranted.

Cerebrospinal fluid pH regulation by NBCe2
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In the present study, we generated a knockout model
targeting the conserved first transmembrane segments
of NBCe2. This prevents signal peptide-mediated trans-
fer into the rough endoplasmic reticulum (RER). The
insertion of truncated protein into the membrane
was hindered, as validated using a novel antibody
directed at the N-terminal of NBCe2. We hypothesize
that HCO;~ transport via NBCe2 in the CPE is the
main molecular mechanism to modulate CSF pH in
face of acute respiratory acidosis. We exploit a novel
NBCe2 knockout mouse generated using the Cre-Lox
system, as well as a targeted siRNA NBCe2 knockdown
(KD) approach to investigate the role of NBCe2 in
the regulation and maintenance of CPE and CSF pH.
We show that knockout of NBCe2 reduces the base
extrusion rate in CPECs during recovery from intracellular
alkalization. In vivo intraventricular recordings of CSF
pH in NBCe2 KO and NBCe2 KD mice demonstrate
that NBCe2 is necessary for sustaining CSF pH recovery
from hypercapnia-induced acidification. Thus, we suggest
HCO;~ extrusion through NBCe2 as the first mechanistic
insight into local compensatory regulation of CSF pH
by the CPE. Knowledge of the molecular mechanisms
involved in CSF alkalization as well as their regulation may
prove beneficial in conditions where a pharmacological
approach to adjust CSF pH is clinically desirable, for
example during seizures or acid-base disturbances.

Methods
Ethical approval

All animal experiments conform to the national guide for
the care and use of laboratory animals and all experimental
protocols were approved by the national authority, The
Danish Animal Experiments Inspectorate. Experiments
were conducted in C57BL/6 mice (Taconic Biosciences,
Ejby, Denmark). Unless otherwise stated, only male mice
aged 8—12 weeks were used. Mice were fed a rodent pellet
diet (Altromin 1319, Brogaarden, Lynge, Denmark) ad
libitum, had free access to tap water and were housed in a
temperature-controlled room with a 12 h:12 h light-dark
cycle. All mice were killed by cervical dislocation following
the experiments. The investigators conform to the ethical
principles and animal checklist required by The Journal of
Physiology.

Generation of global S/c4a5 knockout (NBCe2 KO)

The targeting construct for creating the ‘floxed’ Slc4a5
gene encoding NBCe2, with loxP sites flanking exon 13,
was generated by insertion of PCR-amplified genomic
DNA segments spanning the Slc4a5 gene sequence into
a modified pkoScrambler (FRT-loxP) vector (Table 1,
Fig. 1A). The targeting construct was linearized and

© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Table 1. Primers for Southern blot, genotyping, and RT-PCR
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Primers

Amplification of genomic fragment 1

Amplification of genomic fragment 2

Amplification of genomic fragment 3
Probes for screening of ES clones

Mouse genotyping

Sequence Product size
cctCAATTGCAGAGCCGGGCCAGATGAAT 2380 bp
gggCAATTGACAGTCATTTGGGAGATGGGTCTCT
cccCTCGAGATAACTTCGTATAGCATACATTATACG- 697 bp
AAGTTATGACAGTTCCCACTAACCATTTCAT
99ggCTCGAGTGATTTCCCTAGAAGTCCAGCCTA
ccaATCGATGGCTAATTGTGACCTCCCTACATT 3956 bp
ccaATCGATAGCGCCTGTGGTAAGACCTCTTTAG
L: GTGAGTCTTCTCGACGGCAAATCTT 813 bp
R: GAAAAGGAGAGTGTCCCTAGCAAGC
L1: AGGCTGGACTTCTAGGGAAATCAC WT 111 bp
L2: TTCCCAATCAATCCACAAAGTCAAG FLX 133 bp
R: AATGTAGGGAGGTCACAATTAGCCA KO 188 bp

electroporated into CJ7 embryonic stem (ES) cells derived
from 129S1/Sv mice (Swiatek et al. 1994). G418-resistant
colonies were selected and expanded. The clones with
homologous recombination were identified by Southern
blot with probes flanking the targeting construct sequence.
To generate the conditional floxed Slc4a5™ ™ a]lele, the
neomycin phosphotransferase expression cassette, which
was flanked by FRT sites, was deleted by transient trans-
fection of targeted ES cells with a FLP-recombinase
expression plasmid (Fig. 1B). The neomycin-sensitive
clones were validated by Southern blotting with a probe
generated by amplification of a genomic fragment using
screening primers (Table 1). In following sections this is
called the Slc4a5™ allele.

Chimeric mice were generated by injection of the ES
cells into B6D2F2 mouse blastocysts (Wertz & Flichtbauer,
1994). Chimeric males were bred with C57BL/6 females,
and agouti offspring (indicating germ-line transmission of
the manipulated 129S1/Sv ES cells) were analysed for the
presence of the Slc4a5™ mutation by PCR using genomic
tail DNA and the primers L1 and R (Table 1). The expected
product for the wild-type (WT) allele was 111 bp and
133 bp for the Slc4a5™ allele.

The Slc4a5™IEmU KO allele was obtained by
breeding mice carrying the Slc4a5™ allele with
a tamoxifen-inducible ubiquitin  promoter-driven
Cre-recombinase expressing mouse strain, B6.Cg-Tg
(UBC-cre/ERT2)1Ejb/1]  (The Jackson Laboratory,
Scanbur, Karlslunde, Denmark). The resulting mice were
treated with intraperitoneal injections of tamoxifen in
sunflower seed oil to induce Cre-recombinase expression
and the female mice were subsequently used for breeding
full NBCe2 knockout, heterozygous NBCe2 (HZ),
and wild-type mice The deleted Slc4a5™!1Emfu jllele
lacking exon 13 is in the following called Slc4a5%!E!3,
Slc4a59E3was detected as a 188 bp PCR product using
primer pair L2 and R (Table 1, Fig. 1C). Thus, all mice used
in the experiments were on a mixed C57Bl/6]J-129S1/Sv

genetic background, and therefore littermates are
compared with NBCe2 KO mice throughout the study.

Genotyping

The genotypes of all littermates were determined by poly-
merase chain reaction (PCR) of genomic DNA from tail
biopsies. Tails were boiled at 95°C for 30 min in 25 mM
NaOH and 0.2 mm EDTA and then an equal volume of
40 mM Tris-HCl was added. For the PCR reaction, a total of
20% DNA-containing solution was mixed with 5 pmol of
each primer (Table 1) and 5x FIREPol Blend Master Mix
(Solis BioDyne, Tartu, Estonia). After activation at 95°C
for 5 min, PCR was performed for 30 cycles: Denaturation
at 95°C for 30 s, annealing at 58°C for 30 s, and elongation
at 72°C for 1 min. PCR products were visualized with
DNA gel loading dye (6x, Thermo Scientific, Waltham,
MA, USA) containing 0.05% 10000 x GelRed nucleic acid
gel stain (Biotium, Fremont, CA, USA).

Anti-NBCe2 antibodies

A 16 amino acid peptide with an N-terminal cysteine
(CMNDISHTPNTDQRKNK) corresponding to amino
acid residues 162 to 177 in the N-terminal domain of
mouse NBCe2 (Slc4a5, NP_001159539.1) was used for
immunization of rabbits (Genscript, Piscataway, NJ, USA)
and yielded an antiserum titre higher than 1:512,000 (i.e.
maximal sample/blank ELISA ratio at A450nm). The anti-
body was affinity purified with the immunizing peptide
coupled to an agarose column (SulfoLink, Thermo Fisher
Scientific, Fremont, CA, USA).

The antibodies were validated by immuno-
cytochemistry of cell cultures expressing NBCe2.
Flp-In-3T3 cells (Invitrogen, Carlsbad, CA, USA) were
transfected with wild-type NBCe2 (Genscript) in a
pcDNA™S5/FRT (Invitrogen) vector and selected with
hygromycin B. Cells were grown in Dulbecco’s modified

© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Figure 1. Generation of NBCe2 (S/c4a5) floxed and knockout (KO) mice
A, schematic drawing depicting the targeting strategy used for generation of mice with a ‘floxed’ NBCe2 gene.
The exons 11 to 15 are indicated on the S/c4a5 wild-type (WT) genomic sequence and PCR products. The positions
of the Southern probes, PCR primers, and vector restriction sites used in generation of the targeting construct
and for screening of the ES cell clones are indicated. B, similar representation of the floxed gene after removal of
the neo cassette by FLP recombination (top) and the exon 13-deleted gene after Cre-recombination (bottom). C,
schematic drawing of the annealing sites of the PCR primers used in genotyping, and the expected product sizes
of genotyping for the wild-type, floxed and deleted alleles, as indicated.
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Eagle’s medium supplemented with donor bovine serum
(10%), at 37°C with 5% CO,.

NBCe2-transfected cells were washed with a
phosphate-buffered salt solution (PBS, in mMm: 167 Na™,
2.8 H,PO,~, 7.2 HPO,*~, pH 7.4) and immersion fixed
with 4% paraformaldehyde. The cells were permeabilized
in 0.2% saponin for 10 min, and excess binding sites were
blocked with a serum solution (10% fetal calf serum, 0.1%
BSA, 0.05% saponin) and a gelatin solution (0.2% fish
gelatin, 1% BSA, 0.05% saponin, 0.05 M glycine). The
cells were then incubated with the primary antibody over
night at 4°C. A goat anti-rabbit Alexa Fluor 488 antibody
(Invitrogen) was used for visualization.

Immunoblotting

Choroid plexus was dissected from the brain of
NBCe2 KO and WT mice and transferred to sample
buffer (0.3 M sucrose, 25 mM imidazole, 1 mMm
ethylenediaminetetraacetic acid, 0.1 M sodium dodecyl
sulphate, and 0.04 M dithiothreitol, Bromophenol Blue,
pH 6.8). Samples were sonicated by 5 bursts 3 times
at 60% using a Model 150 V/T sonicator (BioLogics
Inc., Cary, NC, USA) and heated for 15 min at 65°C.
Samples were loaded on 4-12% polyacrylamide SDS gels
and separated by electrophoresis. After transfer to a poly-
vinylidene difluoride membrane (PVDE, Ambion, Foster
City, CA, USA), the membrane was blocked with 5%
skimmed milk in PBS-T (PBS with 0.1% vol/vol Tween).
The membrane was incubated with the primary antibody
in 1% BSA, 2 mM NaNj; in PBS-T overnight at 4°C. After
washing, the membrane was incubated with secondary
antibody (goat anti-rabbit HRP, 1:3000, Dako, Glostrup,
Denmark) for 1 h at room temperature. ECL Plus (GE
Healthcare) was used for visualization of immunoreactive
bands using an ImageQuant LAS4000 (GE Healthcare,
Chicago, IL, USA) chemiluminescence digital analyser.

Immunohistochemistry

Mice were perfusion fixed via the heart with 4%
paraformaldehyde in PBS. After fixation, the brain was
post-fixed for 2 h, dehydrated, and embedded in paraffin
wax, which enabled 2 pum sectioning using a rotary
microtome (Leica, Wetzlar, Germany). The sections were
de-waxed and stepwise rehydrated before epitopes were
retrieved by boiling the sections in 10 mm Tris buffer
(pH 9) with 0.5 mm EGTA. Aldehydes were quenched with
50 mm NH,Cl in PBS and unspecific binding was blocked
by washing with 1% BSA in PBS with 0.2% gelatin and
0.05% saponin. Sections were incubated overnight at 4°C
with the primary antibody diluted in 0.1% BSA in PBS
added 0.3% Triton X-100. Primary antibodies are listed in
Table 2. Positive control tissues included kidneys, brain,
vasculature, and red blood cells (not shown).
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The fluorescence visualization of the primary antibodies
was performed using AlexaFlour 488- or 555-coupled
donkey anti-goat, -sheep, -rabbit, or -mouse secondary
antibodies (Invitrogen). Cell nuclei were visualized
using Topro3 counterstaining (Invitrogen). Sections were
mounted with a coverslip in Glycergel antifade medium
(Dako) and analysed using a Leica DMIRE2 inverted
microscope with a TC5 SPZ confocal unit usinga 63 x/1.32
NA objective. Semiquantitative analysis of immuno-
fluorescence images were performed as described pre-
viously (Christensen et al. 2013).

Intracellular pH recording by live cell microscopy

Isolated CP tissues were digested into single-layered cell
clusters by 4 ug ml~! dispase (Invitrogen) and 4 g ml™!
collagenase B (Roche, Penzberg, Germany) in calcium-free
HBS (Table 3) at 37°C for 30 min. The digested cell
clusters were mounted on Cell-Tak (BD Biosciences,
Franklin Lakes, NJ, USA) coated coverslips for 10-15 min
at 37°C and loaded for 10 min with the pH sensitive
probe BCECF-AM or carboxy-SNARF (2 M, Invitrogen).
Coverslips were mounted in a closed perfusion chamber
(RC-21BR; Harvard Apparatus, Cambridge, MA, USA)
and placed on an inverted microscope stage inside a 37°C
dark box. Cells were allowed to equilibrate to a baseline
level pH in HBS before the protocols were executed as
detailed in the figures and legends.

For pH; recording using BCECE the cells were
imaged at the stage of a Nikon Eclipse microscope
equipped with a Nikon Plan Apo VC 60x/1.40 NA
oil-immersion objective. Till Vision software (Till Photo-
nics, Martinsried, Germany) was used to control mono-
chromator wavelength alternating between 490 nm and
440 nm, exposure time (20 ms), frequency (1 Hz), and
binning (to 640 x 480 pixel images). The light emission at
510-535 nm was recorded by a 12-bit cooled monochrome
CCD camera (Imago, Till Photonics) and data were
collected from user-defined regions of interest (ROIs) of
individual cells after background subtraction. Sample size
(n) refers to the mean values from at least three individual
CP cells from one mouse. In separate experiments the
excitation fluorescence ratio (490/440 nm) was calibrated
to pH by clamping pH; stepwise from pH 8 to 6 in
high-K™ HBS with 10 M nigericin (Boyarsky ef al. 1988;
Damkier et al. 2010). Each experiment was concluded
with a one-point calibration in pH 7.0, high-K* HBS with
10 uM nigericin (Table 3).

For pH; recording using SNARE the cells were
imaged using an iMic microscope (Till Photonics) with
an Olympus UApo N340, 40x/1.35 NA oil-immersion
objective. Till Vision software (Till Photonics) was used
to control monochromator wavelength for excitation
alternating between 485 nm and 555 nm, exposure
time (25 ms), frequency (0.25 Hz), and binning (to

© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Table 2. Primary antibodies
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Target Antibody Host Reference
Na*,K*T-ATPase a1 3B-0/56-0 Mouse Gift from Forbush (Kashgarian et al. 1985)
Na*t,K*-ATPase B1 SPET B1 Rabbit Gift from Martin-Vasallo (Gonzalez-Martinez et al. 1994)
AQP1 2353 AP Rabbit Praetorius, similar to Terris (Terris et al. 1996)
NKCC1 C-terminal Rabbit Gift from Turner (Kurihara et al. 1999)

AE2 C-terminal Rabbit Gift from Stuart-Tilley (Stuart-Tilley et al. 1994)
NBCe 1139 AP Rabbit Praetorius (Praetorius et al. 2004)

NBCn1 ntNBCn1 Rabbit Praetorius (Damkier et al. 2007)

al-Spectrin LS-C137722 Rabbit LifeSpan, Seattle, WA, USA

all-Spectrin sc-46696 (C-11) Mouse Santa Cruz Biotech, Dallas, TX, USA

Bl-Spectrin LS-C138700 Rabbit LifeSpan

BlI-Spectrin sc-28272 (H-125) Rabbit Novus, Biologicals. Littleton, CO, USA

Table 3. Salt solutions for live cell fluorescence microscopy

Substance (mM) HBS NH4Cl HBS Na'-free BBS BBS TMA BBS Cl~-free BBS High K* solution
Na* 145.0 125.0 0.0 145.0 135.0 145.0 10.0
K+ 3.6 3.6 3.6 3.6 3.6 3.6 138.6
Gash 1.8 1.8 1.8 1.8 1.8 1.8 1.8
MgZ+ 0.8 0.8 0.8 0.8 0.8 0.8 0.8
NHz* 20.0

Ccl- 138.6 138.6 138.6 138.6 138.6 0 138.6
SO4~ 0.8 0.8 0.8 0.8 0.8 0.8 0.8
HCO3~ 24.0 24.0 24.0 24.0

Glucose 5.5 5.5 5.5 5.5 5.5 5.5 5.5
HEPES 10.0 10.0 10.0 10.0 10.0 10.0 10.0
NMDG 121.0

Choline 24.0

PO,43~ 2.0 2.0 2.0 2.0 2.0 2.0 2.0
TMA 20.0

mOsm 308 308 308 308 308 308 308
pH 7.40 7.40 7.40 7.40 7.40 7.40 7.00
COy 5% 5% 5% 5%

HBS, HEPES-buffered solution; BBS, CO,/HCO3~-buffered solution; HEPES, (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; TMA,

trimethylamine; NMDG: N-methyl-D-glucamine.

256 x 256 pixel images). The light emission at 565—-615 nm
was recorded by a 14-bit cooled monochrome EMCCD
camera (iXon™", Andor Technology, Belfast, UK) with
4x EM gain, and data were collected from user-defined
regions of interest (ROIs) of individual cells after back-
ground subtraction. The excitation fluorescence ratio
(485/555 nm) was calibrated to pH by clamping pH;
stepwise from pH 8.4 to 7 in high-K* HBS with
10 uM nigericin. Each experiment was concluded with a
one-point calibration in pH 7.5, high-K* HBS with 10 um
nigericin (Table 3).

The rate of pH; recovery (dpH;/dt) was determined as
the pH; change in 30 s after peak or nadir pH;. The net
acid or base efflux was calculated as the product of the total
buffering capacity (Stot) and the dpH;/dz. The Btot was
calculated as the sum of the intrinsic buffering capacity

(Bint) and the contribution of the CO,/HCO;~ buffering
system (Boyarsky et al. 1988). The intrinsic buffering
capacity was determined by recording pH; changes during
stepwise decreasing NH, ™ concentrations from 20 to 0 mm
as previously described (Damkier et al. 2010).

Barometric measurements

Ventilatory responses to 5% CO, were measured using the
barometric method as previously described (Iversen et al.
2012). Awake, unrestrained mice were placed individually
in a closed thermostated chamber (1.1 1) and allowed to
acclimatize overnight. Room air was pumped (EHEIM
400, Deizisau, Germany) through the chamber at a rate
of approximately 300 ml min~'. The excurrent flow
from the chamber was connected to a gas analysing
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system measuring the fractional concentrations of O, and
CO, (Ametek, Applied Electrochemistry, CD-3A & S-3A,
Berwyn, PA, USA). A humidity sensor (Humitter 50Y,
Vaisala, Vantaa, Finland) measured the relative humidity
inside the chamber and a differential pressure transducer
(First Sensor HCLA02x5DB, Berlin, Germany) measured
the ventilation driven pressure. After approximately 16 h
the chamber was closed and ventilatory frequency and tidal
volume were measured at baseline conditions (room air)
for 5 min. The chamber was then flushed for 15 min and
closed again. Now CO, was injected into the chamber to a
final concentration of 5% and the recording of ventilator
frequency and tidal volume was repeated. Volume-related
pressure signals were collected by a BIOPAC MP 100 data
acquisition system at a sample rate of 200 Hz. Volume
calibration was performed by injecting and withdrawing
known volumes with a calibrated glass syringe. At the end
of each experiment, body temperature was measured using
a rectal thermocouple. Ventilatory pressure traces were
exported to Mathematica (Version 7.0, Wolfram Research)
followed by analysis in a script that detected all peaks
and calculated their amplitude and frequency. From these
analyses the tidal volume (V7r) for each animal could be
calculated from the equation given by Drorbaugh & Fenn
(1955):
p Tr(Pp — Pc)

Vo = Vie— )
: “Px Ta(Py — Pc) — Te(Py — Py)

Vi is the volume of the glass syringe used for calibration,
P is the amplitude of the pressure trace, Px is the
amplitude resulting from the volume injected with the
glass syringe, Ty is the body temperature of the mouse, Pg
is the barometric pressure of the day (read prior to each
experiment), Pc is the water pressure inside the chamber,
Tc is the chamber temperature, and P, is the saturated
water pressure inside the lungs of the mouse.

Blood gas analysis

Mixed arterial and venous blood samples were drawn
from the right heart atrium of isoflurane-anaesthetized
mice using heparin-containing PICO syringes (Radio-
meter, Bronshoj, Denmark) and blood gas was analysed
on an ABL80 FLEX blood gas analyser (Radiometer).

Generation of brain ventricle SIc4a5 knockdown
(NBCe2 KD) mice

Wild-type C57BL/6 mice (Taconic) were anaesthetized
using intraperitoneal injections of ketamine (100 mgkg !,
Ketaminol, MSD Animal Health, Copenhagen, Denmark)
and xylazine (10 mg kg~!, Xysol vet, ScanVet Animal
Health A/S, Fredensborg, Denmark) in saline. When
adequately anaesthetized, the mouse was mounted
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in a stereotaxic device (David Kopf Instruments,
Tujunga, CA, USA), and a microlitre Hamilton syringe
(ILS Innovative Labor Systeme GmbH, Stiitzerbach,
Germany) containing endoribonuclease-prepared siRNA
pools (MISSION esiRNA, Sigma-Aldrich, St. Louis, MO,
USA) targeting RLuc (Renilla luciferase, control) or mouse
Slc4a5 was placed in the lateral ventricle. The optimal
stereotaxic coordinates for the needle placement were
established by injecting Fast Green dye, and were set to
0.1 mm posterior, 0.8 mm lateral, 2.5 mm ventral. The
brain tissue was allowed to seal around the needle for
3 min, after which 10 ul of 200 ng ul™' siRNA was
delivered into the cerebroventricular system at a rate of
0.5 ul min~!. After the injection, the needle was left inside
the brain for 5 min to prevent backflow of CSF and siRNA.
Upon removal of the needle, the incision was sutured and
the mouse was allowed to recover under a heating lamp.
A dose of 0.05 mg kg~ ! Buprenorphine (Buprenodale vet,
Lostock Gralam, UK) was administered subcutaneously
for analgesia.

In vivo cerebrospinal fluid pH measurements
in NBCe2 KO, KD and WT mice

The in vivo cerebrospinal fluid pH measurements were
performed on anaesthetized mice by placing a pH
electrode in the lateral ventricle (as described above).
Two types of pH electrodes were tested: First, a glass
micro-electrode with a 1.1 mm diameter protective needle
(PH-N, Unisense, Aarhus, Denmark) was calibrated in
pH 4, 7, and 10 buffers (VWR chemicals, Radnor, PA,
USA) and placed in the right lateral ventricle. Then a
small (4 x 4 mm) hole was drilled on the left side
of the skull with an Ideal Micromotor drill (CellPoint
Scientific, Gaithersburg, MD, USA) and the reference
electrode (REF-100, Unisense) was slowly lowered until
it touched the brain tissue. The pH signal was measured
every 3 s with a pH/mV-Meter (Unisense) and analysed
with SensorTrace Logger software (Unisense). Second, a
needle-type optical pH microsensor (NTH-HP5, 140 um
needle tip diameter) connected to a pH-1 micro trans-
mitter (PreSens GmbH, Regensburg, Germany) was
calibrated by a multipoint calibration in pH 4, 6, 7 and
8 buffers at 22°C (for proof of concept and baseline pH
measurements) or by a one-point calibration in a pH 7
buffer at 37°C (for pH recovery measurements). The
microsensor was inserted into the right lateral ventricle
and pH was measured every 2 s. A rectal temperature
probe connected to the pH transmitter was used to
compensate for temperature-dependent pH changes. For
proof of concept experiments, both electrodes were tested
by placing a 10 u1 Hamilton syringe (ILS Innovative Labor
Systeme GmbH) parallel to the pH electrode in the left
lateral ventricle. After determining the baseline pH value,
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1 ul of 5 mMm HCI was injected and the changes in pH
were continuously monitored for 5 min. Between the two
electrodes, the chemical optical pH microsensor proved
to be more suitable for our purposes and was used in the
following experiments.

Baseline CSF pH values were determined during a
5 min period after stabilization of the pH electrode. In
the hyperapnoea experiments a gas mixture containing
5% CO, in normal air (AGA, Pullach, Germany) was
administered via a nosepiece attached to the stereotaxic
device. Mice were allowed to inhale the 5% CO, gas
mixture for a 30 min period, after which they were
switched back to inhaling normal room air. The mice
were kept anaesthetized by administration of small doses
of the ketamine/xylazine mixture described above for the
duration of the experiments. In the subsequent analysis,
CSF pH values during the last 20 min of CO, exposure
were compared. Calculations were based on averaged
pH/minute. The measurements were performed on the
NBCe2 KO and WT mice, as well as on the NBCe2 KD
mice in which baseline pH was determined 24 and 48 h
after injecting siRNA, whereas the recovery was measured
48 h after siRNA injection. All mice were killed following
the experiments.

qPCR

The choroid plexus was rapidly dissected and placed
into RNAlater Stabilization Solution (Ambion). Total
RNA was purified using GeneJet RNA purification
kit (Thermo Fisher Scientific). The concentration of
purified RNA was determined by absorbance at 260 nm
using a NanoDrop ND-2000 (Fisher Scientific). Then
80-120 ng of RNA was reverse transcribed using
iScript Reverse Transcription Supermix (BioRad). qPCR
amplification was performed with Step One Plus real
time PCR system (Applied Biosystems, Foster City, CA,
USA) using a commercially available TagMan Gene
Expression Assay (Slc4a5: Mm01190997_ml, control —
Actb: Mm00607939_s1; Applied Biosystems) and the
universal TagMan Gene Expression Master Mix. PCR
cycling conditions were 50°C for 2 min, 95°C for 10 min,
followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.
The results are presented as the relative NBCe2 expression
fold-change (2~ 22¢T method) compared to the calibrator:
the RLuc siRNA-injected mice.

Seizure induction by pentylenetetrazol
administration or hyperthermia

For pharmacological induction of seizures, mice were
inhalation-anaesthetized with isoflurane for 2 min
and given a 45 mg kg~! intraperitoneal injection of
pentylenetetrazol (PTZ; Sigma). The mice were then
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placed in separate cages and monitored by video recording
for 60 min. Seizure activity was analysed similar to
Kao etal. (2011). Briefly, seizures were classified as follows:
stage 0, no response; stage 1, facial twitching; stage 2,
myoclonic jerks without upright position; stage 3, myo-
clonic jerks and upright position with bilateral forelimb
clonus; stage 4, clonic-tonic seizures; stage 5, generalized
clonic-tonic seizures with loss of postural control. All mice
were killed when stage 5 was reached or after 60 min.

Hyperthermia-induced seizures were induced by
placing a heating lamp above a transparent cylindrical
container and heating the air inside the container to 42°C
similar to Christensen et al. (2017). The mice were placed
in the container to cause hyperventilation and thereby
reduce Pcp,. The time from the mouse being placed in
the heated container until development of seizures was
determined for each genotype. The maximum time the
mice spend in the container was 10 min. Following the
experiment the mice were killed.

Statistical analysis

Live cell imaging, blood gas, seizure data, and CSF pH
measurements were analysed by Student’s unpaired two
tailed ¢ test comparing NBCe2 KO or KD mice to wild
type. Barometric data was analysed by two-way ANOVA
comparing the two independent variables: genotype
(NBCe2 knockout versus wild type) and treatment
(normal air versus 5% CQO,). The ANOVA was followed
by Sidak’s multiple comparisons test. A P value <0.05
was considered statistically significant. QPCR data was
analysed by unpaired two tailed ¢ test and the error bars
represent RQ i, and RQp,.x values, which were defined by
the standard error of the ACr and the 95% confidence
interval.

Results
Generation and validation of full NBCe2 KO mice

Examples of genotyping in the process of generating
NBCe2 KO mice are shown in Fig. 2A. The top panel
shows the identification of both WT/flx mice and WT/KO
(i.e. HZ mice) as the offspring from crossing WT/flx males
and tamoxifen-treated WT/flx females. The bottom panel
shows genotyping results from heterozygous breeding,
which yields NBCe2 WT, KO and HZ mice. With 832 live
births, the distribution among genotypes was: 203 WT,
403 HZ, and 226 KO mice, with a gender distribution
of 441 females and 391 males. The development of body
weight over time for male and female mice of all three
genotypes is illustrated in Fig. 2B. There are no obvious
differences among genotypes, but the expected trend for
male mice to gain weight faster than the female is observed.
The only difference in body weight among genotypes was
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observed in male mice after 6 weeks (mean weight NBCe2
KO:11.1 £ 0.6 g, n=5; NBCe2 HZ: 109 = 1.3 g, n =6,
and NBCe2 WT: 19.7 £ 2.3 g, n = 3, P < 0.05), where
NBCe2 KO and HZ male mice were significantly smaller
than NBCe2 WT mice. This difference was eliminated at
week 11 and beyond.

To wvalidate the novel anti-NBCe2 antibody,
NBCe2-transfected and untransfected NIH-3T3 cells
were immunostained. Figure 3A shows that only cells
transfected with NBCe2 produced immunoreactivity,
confirming the sensitivity of the antibody. To confirm the
knockout of NBCe2, isolated CP tissues from NBCe2 WT
and KO mice were subjected to immunoblotting (Fig. 3B).
The anti-NBCe2 antibody produced prominent bands
of approximately 130 kDa and 260 kDa only in NBCe2
WT mice, which correspond to the expected molecular
weight of the monomer and dimer forms of the protein,
respectively. Immunohistochemical staining using the
same antibody revealed luminal CPE membrane domain
staining only in NBCe2 WT mice (Fig. 3C). A previously
published NBCe2 KO mouse revealed reorganization of
key proteins involved in water and salt transport, as well
as severe cytoskeletal rearrangements in the CPE (Kao
et al. 2011). This reorganization was not confirmed in our
model. The NBCe2 KO mice in our study display normal
localization of the Nat,KT-ATPase, the water channel
aquaporin 1, AQP1, and the Na*-K*-2Cl~ cotransporter,
NKCC1 (Slc12a2), in the luminal plasma membrane
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Figure 2. Basic characterization of the NBCe2 KO mouse line
A, examples of genotyping of mice in the process of establishing full
NBCe2 KO mice by crossing mice with floxed NBCe2 alleles with
tamoxifen-inducible ubiquitin-promoter driven Cre-expressing mice.
In the top panel, the WT allele product of 111 bp is found in both
mice, the floxed (FLX) allele product of 133 bp is found in mouse 1
(i.e. floxed NBCe2 on one allele), while the KO allele of 188 bp is
found in mouse 2 (heterozygous (HZ)). The bottom panel shows
genotyping of the offspring of heterozygous NBCe2 breeding. The
offspring were WT (111 bp), KO (188 bp), or FLX (133 bp),
respectively. B, weight gain of the NBCe2 KO mouse line. The figure
shows individual observations of weight for male and female mice of
each genotype NBCe2 KO, HZ and WT.
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domain where they are normally found (Fig. 4). The
bicarbonate transporters, the ClI7/HCO;~ exchanger
AE2 (Sl4a2) and the Na'-dependent Cl~/HCO;~
exchanger Ncbe (Slc4a10) showed normal localization in
the basolateral membrane domain (Fig. 5A and B). Inter-
estingly, we found that the electroneutral Na*-HCO;~
cotransporter NBCnl (Slc4a?) is expressed both in the
luminal and basolateral membrane. This localization
pattern was, however, similar in NBCe2 WT and KO
mouse CPE (Fig. 5C). The localization of the «- and
B-spectrin isoforms was also investigated and showed
similar distribution in both NBCe2 WT and KO mouse
(not shown).

The Na*-dependent acid-base transport in the CPE is
affected by NBCe2 KO

NBCe2 is known to export Nat and HCO;~ from the
CPE to the CSF with a 1:3 stoichiometry (Millar &
Brown, 2008). To investigate the contribution of NBCe2
to base extrusion, the intracellular pH (pH;) recovery was
monitored in SNARF-loaded isolated choroid plexus cell
clusters (Fig. 6A). Intracellular pH (pH;) was calibrated
in a high-[K"] solution containing nigericin with a
known extracellular pH (Table 3, Fig. 6B). We have pre-
viously determined the intracellular buffering capacity for
the choroid plexus in the low pH; ranges with BCECF
(pH 6.25-7.25) (Damkier ef al. 2009). The total buffering
capacity in the neutral-to-alkaline range is shown in
Fig. 6C. The contribution of the intrinsic buffering
capacity at the alkaline pH range was negligible compared
to the calculated buffering capacity arising from the
CO,/HCO;~ buffer system (dashed line, Fig. 6C). Intra-
cellular pH was first determined in a HEPES-buffered
solution and switched to a CO,/HCO; ™ -buffered solution
(Fig. 6D). This resulted in an initial transient drop in pH;
as a result of CO, import followed by a more sustained
increase in pH; due to the import of HCO; ™ into the cell.
The pH; increase did not differ between the two genotypes
(Fig. 6E; WT n = 6, KO n = 5, P = 0.62), indicating
that the lack of NBCe2 does not result in altered base-
line HCO; ™ transport. The cells were then alkalinized by
removal of Cl~ from the CO,/HCO; ™ -buffered solution
(Table 3). Peak pH; after alkalization was similar in the
two genotypes (NBCe2 WT 7.87 =+ 0.04, KO 7.81 % 0.06,
n =6, P=0.36). The pH; recovery rate after alkalization
was determined as the pH; change in the first 20 s after peak
alkalization, where the NBCe2 activity is expected to be
highest. The mean net base efflux was indeed significantly
higher in the NBCe2 WT mice compared to NBCe2 KO
mice (Fig. 6F; WT n =6, KO n =5, P = 0.02). The net
base efflux was also investigated in BCECF-loaded CP cells
alkalized with 20 mM tetramethylamonia (TMA). CP cells
from WT mice had similar total base efflux, as well as
numerically higher DIDS-sensitive base efflux compared
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to CP cells from NBCe2 KO mice, but the difference was
statistically insignificant (not shown).

Nat-dependent HCO;~ extrusion at baseline pH;
was determined in BCECF-loaded clusters of isolated
CP by removing Na®™ from the CO,/ HCO; -buffered
solution. Baseline pH; in the absence of CO,/HCO;™
did not differ between the genotypes (Fig. 6G (HBS);
WT n =15, KO n =6, P=0.88). Like the experiments
using SNARE, the intracellular response to switching from
the HEPES-buffered solution to a CO,/HCO;~ -buffered
solution was similar between the genotypes (Fig. 6G;
CO;-induced decrease (CO, init.): P = 0.19; BBS:
P=10.67). The acidification rate induced by the removal of
Na™ did not differ between genotypes (Fig. 6G; P = 0.48).

Another way to detect the significance of outward
transport of NBCe2 function is to assess the effect of
NBCe2 deletion on net acid extrusion. In case NBCe2
activity normally opposes the transport activities of the
acid extruders in the CPE, the net acid efflux from
acidified cells should be augmented in the isolated choroid
plexus cells from NBCe2 KO mice. Cells were loaded
with BCECF and acidified. The effect of NBCe2 deletion
on net acid extrusion was assessed by loading CPECs
with BCECF and acidifying using an NH4Cl prepulse
followed by a washout in Na™-free CO,/HCO;~ -buffered
solution (Fig. 6H). Introducing Na™ in the continued
presence of CO,/HCO;~ allowed the determination of

NBCe?2 transfected

Figure 3. Validation of the NBCe2 KO mouse line
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the Na'-dependent pH; recovery rate. This value was
determined as the change in pH; during the first 20 s after
addition of Na*. The mean Na*-dependent acid efflux was
6-fold larger in the CPE from NBCe2 KO mice compared
to WT mice (Fig. 61). This indicates that the contribution
of the base importers such as the HCO; ™ importers Ncbe
and NBCnl is increased in acidified cells when NBCe2
is absent. Taken together, the results indicate that NBCe2
is an important base extruder at high pH;, whereas at
baseline and low pH;, the contribution of NBCe2 to base
extrusion is insignificant. Augmented pH; recovery after
intracellular acidification suggests increased activity of
other HCO; ™ importers.

NBCe2 KO and WT mice display similar respiratory
response to 5% CO;

Respiratory frequency and tidal volume were determined
during hypercapnia in NBCe2 KO and WT mice using
barometric measurements. Inhalation of 5% CO, elicited
significant increases in tidal volume (Fig. 7A) and
respiratory frequency (Fig. 7B) in both the NBCe2 WT and
KO mice. There was no statistically significant difference
between the genotypes in tidal volume or respiratory
frequency either under baseline conditions or during
5% CO, exposure (n = 6, P = 0.17 and P = 0.09,
respectively). Under baseline conditions NBCe2 KO mice

\ BCez transfected

Untransfected

NBCe2 wt NBCe2 ko

A, representative anti-NBCe2 immunostaining of NBCe2-transfected and untransfected NIH-3T3 cells, as indicated.
NBCe2 immunofluorescence is shown in green, while nuclei are red. B, the same antibody was applied for immuno-
blotting choroid plexus proteins samples from NBCe2 WT and KO mice, as indicated. C, immunofluorescence
staining of NBCe2 WT and KO mouse choroid plexus using the same anti-NBCe2 antibody.
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displayed normal plasma pH compared to WT (NBCe2
WT: 7.43 £ 0.02 versus NBCe2 KO: 7.43 £ 0.01 pH units,
P = 0.88). The P,co, and standard HCO5;~ (stHCO;™)
were, however, reduced in knockout compared to wild type

Na/K ATPase a1

A Na/K ATPase o1

NBCe2-ko

Na/K'ATPasge $1 Na/K ATPase B1

NBCe2-ko

NBCe2-wt NBCe2-ko

Figure 4. Localization of Na*,K*-ATPase, AQP1 and NKCC1 in
CPE from NBCe2 WT and KO mice

The membrane localization of key transporters for CSF secretion by
the CPE was studied on sections from NBCe2 WT and KO mouse
brains subjected to immunofluorescence histochemistry. At least two
mice of each genotype were analysed. A, representative images of
the Nat,K*-ATPase a1 subunit staining in NBCe2 WT and KO
mouse brains, as indicated. B, similar staining for the Na* ,K*-ATPase
B1 subunit. C, immunostaining to determine AQP1 localization in
CPE from NBCe2 WT and KO mice. D, analysis of NKCC1 localization
in the two indicated genotypes. In all micrographs, nuclei (blue) are
stained with Topro3, arrows indicate the luminal membrane, and a
circle is placed in the interstitial tissue.
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(Paco,: NBCe2 WT 4.4 £ 0.3 kPa, NBCe2 KO 3.4+ 0.3 kPa,
P = 0.035; stHCO;: NBCe2 WT 23.1 £ 0.5 mM,
202 £ 0.7 mM, n = 5, P = 0.004; WT n = 15,
KO n=10).

NBCe2 KO and NBCe2 KD attenuate CSF pH recovery
during acute respiratory acidosis

To investigate the role of NBCe2 in regulating CSF pH
during acidification, pH sensors were placed in the
lateral ventricles of anaesthetized mice. Figure 7C shows
examples of CSF pH traces obtained in NBCe2 WT mice
before and after intraventricular injection of HCl and
during a manoeuvre for retracting and reintroducing the

NBCn1

Figure 5. Localization of AE2, Ncbe and NBCn1 in CPE from
NBCe2 WT and KO mice

The membrane localization of bicarbonate transporters in the CPE
was studied on sections from NBCe2 WT and KO mouse brains. At
least two mice of each genotype were analysed. A, representative
images of the AE2 staining in NBCe2 WT and KO mouse brains, as
indicated. B, immunostaining to determine NBCe localization in CPE
from NBCe2 WT and KO mice. C, analysis of NBCn1 localization in
the two indicated genotypes. In all micrographs, nuclei (blue) are
stained with Topro3, arrows indicate luminal membrane and a circle
is placed in the interstitial tissue.
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Figure 6. Nat-dependent acid-base transport in the CPE is affected by NBCe2 KO

A, SNARF-loaded isolated choroid plexus islets excited at 485 nm (top image) and 555 nm (bottom image) wave-
length. B, traces of SNARF calibration experiments with excitation ratio shown as a function of time. Intracellular
pH was clamped to extracellular pH as indicated by superfusing with a HEPES-buffered solution containing a high
[K*] and nigericin. The grey lines show all experimental traces from one experiment and the black line shows the
mean values. C, plot of the measured intrinsic buffering capacity (continuous line) as well as the combined intrinsic
buffering capacity and the theoretical contribution of the CO,/HCO3~ buffering system (total buffering, dashed
line) at the corresponding level of pH;. D, representative traces of intracellular pH recordings in SNARF-loaded
isolated choroid plexus cells from NBCe2 KO (grey line) and WT (black line) mice. Baseline pH; was determined
in the absence (HBS) and presence (BBS) of CO,/HCO3~. Then the cells were alkalinized by removing CI~ in the
continued presence of CO,/HCO3~. The experiment was ended by a 1-point calibration in a high-K*-nigericin
solution with pH 7.5 (Nig). Points 1 and 2 refer to the pH changes calculated in £ and D, respectively. £, mean values
of the rate of pH; increase (dpH/dt) mediated by the addition of CO,/HCOs~ (point 1 in panel D). F, mean values
of the net base efflux & SEM estimated at the peak alkalization after CI~ removal (point 2 in panel D). G, mean
values of intracellular pH; measured by BCECF fluorometry in NBCe2 KO (grey dots) and wild-type mice (black
dots) at baseline in a HEPES-buffered solution (HBS). The addition of CO,/HCO3~ induced a rapid CO,-induced
acidification (CO; init.) followed by a new steady state pH; mediated by the import of HCO3~ (BBS). Finally, Na*
was removed in the continued presence of CO,/HCOs~, which caused a decrease in pH; in both genotypes. H,
BCECF loaded CPECs were acidified by superfusion with a 20 mm NH4 Cl HEPES-buffered solution (NH4Cl) followed
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pH sensor in the ventricles. A transient and reproducible
decrease in CSF pH was observed upon HCI injection
with both glass pH electrodes and the optical microsensor,
while the removal and reintroduction of the electrode
or sensor did not affect the recordings. Inhalation of 5%
CO, causes a respiratory acidosis, which is known to
directly affect CSF pH (Wichser & Kazemi, 1975; Nattie
& Edwards, 1981). Thus, NBCe2 WT and KO mice were
subjected to 30 min inhalation of 5% CO, while CSF
pH was recorded (Fig. 7D). There was no significant
difference in baseline CSF pH between the NBCe2 WT
and KO mice (NBCe2 WT 7.19 &+ 0.24 (n = 5), NBCe2
KO 7.18 & 0.20 (n = 7), P = 0.95). The deflections in
CSF pH upon introduction and removal of 5% CO,
were also similar between the genotypes (pH decrease:
NBCe2 WT —0.018 £ 0.006 pH units, NBCe2 KO
—0.013 £ 0.002 pH units, P = 0.34; pH increase: NBCe2
WT 0.023 £ 0.003 pH units, NBCe2 KO 0.027 £ 0.003 pH
units, P = 0.39). After the rapid CO,-induced CSF pH
decrease, a slow pH recovery was observed only in the
NBCe2 WT mice (Fig. 7D). The CSF pH recovery rate
was determined over 20 min after maximal acidification
and was significantly higher in NBCe2 WT mice than
in NBCe2 KO mice (Fig. 7E; n = 5 for WT, n = 7 for
KO, P=0.01).

To support the observations from the NBCe2 KO model
and to rule out effects of NBCe2 disruption elsewhere in
the body, NBCe2 was targeted specifically in the choroid
plexus and circumventricular tissues by intraventricular
installation of Slc4a5 siRNA 48 h prior to the CSF pH
measurements. Figure 7F shows that mice injected with
siRNA targeting NBCe2 had reduced abundance of NBCe2
mRNA after 24 h compared to controls (RLuc siRNA) by
qPCR analysis (n = 4, P = 0.0497), whereas the NBCe2
mRNA level in NBCe2 siRNA-injected mice after 6 and
48 h was not different from those observed in controls
(n = 4, n.s.). At the protein level, however, a reduction
of luminal membrane NBCe2 abundance was observed
48 h after siRNA injection. Immunohistochemical staining
of mouse CPE from a similar experiment 48 h after
siRNA injection targeting RLuc and Slc4a5 (NBCe2) is
seen in Fig. 7G and H, respectively. Semiquantitative
analysis of the fluorescence intensity corresponding to
NBCe?2 protein levels in the siRNA-injected mice indicated
approximately 60% knockdown of the protein after
48 h (n = 2). Based on the protein analysis, 48 h
post-injection was chosen as the time for the functional
measurements. Similar to the NBCe2 KO mice, NBCe2
KD mice did not have significant differences in baseline
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CSF pH (control pH = 7.36 £ 0.07, n = 9; 24 h after
injection, pH = 7.35 & 0.09, n = 8; 48 h after injection
pH =7.34£0.05, n=6). The NBCe2 KD mice presented
with a practically abolished CSF pH recovery during
acidosis compared to control mice injected with RLuc
siRNA (Fig. 7I; P = 0.044, n =5 for WT, n = 8 for KD).

NBCe2 KO mice are not protected against seizure
development

During seizure attacks, brain interstitial pH is lowered
due to local hypoxia. This lowering of pH promotes
the disruption of the seizure, if the seizure is caused by
alkaline brain pH, as for instance during febrile seizures
(Schuchmann et al. 2006). Thus seizure activity seems
dependent on the ability of the brain interstitial fluid to
respond to acid-base changes. As CSF pH in the NBCe2
KO mice shows a much smaller recovery in response
to acidosis and isolated CP cells show inadequate base
extrusion in response to alkalosis, NBCe2 KO mice could
hypothetically be better protected against development
of seizures. PTZ-injected or heat-treated mice were
therefore videotaped and scored for seizure development
as described in the Methods section. In general, there was
no protection against PTZ-induced seizures in NBCe2
KO mice as judged by the time course of the seizure
development in females (n = 5; Fig. 8A) or in males
(n = 5; Fig. 8B). However, the time to development
of stage 3 seizures (myoclonic jerks/back arches) was
significantly increased in male NBCe2 KO compared
to NBCe2 WT mice (P = 0.0008). In the female group,
NBCe2 KO mice displayed a statistically significant
shorter time lag before entering stage 2 than NBCe2
WT mice, although the numerical values were very close
(P = 0.04). In the same experiments, the maximal score
obtained after 20 min was also equal between genotypes
for males and females, but there seemed to be a tendency
towards a gender difference in seizure score, with male
mice reaching a higher score than females (mean scores:
female NBCe2 WT 2.7 £ 0.85, female NBCe2 KO 3 4 0,94;
male NBCe2 WT 4.6 + 0.24, male NBCe2 KO 4.5 £+ 0.22,
P=10.12).

The time lag before seizure development in the
heat-treated hyperventilating mice tended to be longer
for NBCe2 KO mice (Fig. 8C;, n = 6 for WI, n = 7
for KO, P = 0.0935). The physical activity in the escape
behaviour, however, was significantly decreased in NBCe2
KO mice as assessed by the number of jumps per time unit
(P=0.0039).

by a washout in a CO/HCO3~ -buffered Na*-free solution (ONa™), dpHi/dt was determined following addition
of 145 mm Na* (Na*) in the presence of CO,/HCO3~ in NBCe2 KO (grey line) and WT (black line) mice. The
experiment was ended by a 1-point calibration in a high-K*-nigericin solution with pH 7.0 (not shown). /, mean
values of the net acid efflux & SEM estimated at the point of peak acidification (n = 5). *Statistical significance

(P < 0.05).
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Figure 7. NBCe2 KO mice are deficient in CSF pH restoration during hypercapnia

Tidal volume (A) and respiration frequency (B) were determined in atmospheric air (filled circles) and during
inhalation of 5% CO; (open circles) in NBCe2 KO and WT mice to ascertain that the two genotypes had similar
ventilatory responses to 5% CO; exposure (n = 6). C, validation of intraventricular CSF pH recording (raw data).
Glass electrodes (grey line) or optical electrodes (black line) were inserted into the lateral ventricles of anaesthetized
mice. Arrows indicate the times of injection of 1 ul 5 mm HCl into the contralateral ventricle. D, representative
traces of in vivo CSF pH recordings before, during and after inhalation of 5% CO, in NBCe2 KO (grey line) and WT
(black line) mice. Graphs show pH values averaged at pH/min. £, mean values + SEM CSF pH recovery rate during
the last 20 min of the recovery phase during inhalation of 5% CO, in NBCe2 KO (n = 6) and WT (n = 4). F-H,
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Discussion

By exploiting continuous in vivo CSF pH recording in
a novel NBCe2 KO mouse model, and by specifically
targeting NBCe2 in the brain using siRNA knockdown,
we identify the first acid-base transport protein involved
in CSF pH regulation at the blood-CSF barrier. Since
Husted and Reed in 1977 showed that the CSF HCO;3~
concentration is actively regulated by the CPE (Husted &
Reed, 1977), it has been suggested that acid-base trans-
port processes in the CPE would be involved in regulating
CSF pH. We hypothesized that NBCe2, being an efficient
bicarbonate extruder in the CPE, might be a suitable
mechanism for alkalizing CSF pH. We showed that NBCe2
is critically required to recover CSF pH during early
respiratory acidosis, and that this effect is not caused by
differences in gross phenotype, respiratory rate or tidal
volume.

NBCe2 is known to export Na™ and HCO;~ with a
1:3 stoichiometry from the CPECs across the luminal
(CSF-facing) plasma membrane (Millar & Brown, 2008)
and is therefore expected to be most active during e.g.
extracellular acidification or intracellular alkalization at
typical membrane potential values. Our results from
intracellular pH measurements using SNARF at alkaline
pH; in NBCe2 KO mice demonstrate a decrease in
net base excretion in the NBCe2 KO compared to
wild-type mouse CPE in the presence of CO,/HCO;™.
The manoeuvre to alkalize the cells (Cl~ removal) has
the advantage of preventing base extrusion by the anion
exchanger AE2 during the pH recovery. In experiments
with TMA alkalized BCECF-loaded cells, we observed
a numerical reduction in base extrusion in NBCe2
KO CPE that was sensitive to the stilbene derivative
DIDS (4,4’-diisothiocyano-2,2’-stilbenedisulfonic acid)
although the difference was not statistically significant.
The sensitivity of BCECF in the high pH; range is lower
than that of SNARF, which resulted in larger standard
errors. Nevertheless, the numerical value of the total
base efflux in NBCe2 WT CPE, as well as the residual
base efflux (non-NBCe2, non-AE2), was highly similar
between the two experimental approaches. Although
the lack of significantly different values by the BCECF
approach presents a weakness in our study, we believe
that the results from the SNARF experiments, isolation
of NBCe2 function by Cl~ removal and our in vivo data
strongly indicate that NBCe2 is a Na™-HCO; ™~ extruder
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thereby confirming previous studies (Millar & Brown,
2008). The contribution of NBCe2 to acid-base regulation
was investigated at baseline and in acidic conditions. In
baseline conditions, addition of CO,/HCO;~ resulted in
similar alkalization rate between genotypes. Furthermore,
the removal of Na® in the presence of CO,/HCO;~
resulted in a similar outward Na™-driven HCO;™ trans-
port in the two genotypes. In acidic conditions, the result
was less easy to interpret. A base extruder is not likely to be
active in acidic conditions, where the activity of the acid
extruders is high (Parker & Boron, 2013). Removal of a
base extruder as in the NBCe2 KO model would therefore
not be expected to result in a difference in acid extrusion.
Nevertheless, when comparing the pH; recovery of isolated
CPECs from NBCe2 WT and KO mice after acidification,
the lack of the base extruder NBCe2 seems to greatly
increase the apparent activity of the Na™-dependent acid
extruders, such as Ncbe, NBCnl and NHEs. In the
absence of compensatory changes in acid-base transporter
expression, we interpret the increased pH; recovery rate as
a functionally enhanced Na™'-dependent acid extrusion in
NBCe2 KO CPE. Taken together, we verify NBCe2 as a base
extruder in CPECs, which is detectable by pH; recordings
after alkalization. Although NBCe2 activity per se was
observed at baseline pH; by electrophysiological means
(Millar & Brown, 2008), our baseline pH; experiments
suggest that NBCe2 is not involved in setting the resting
pH,'.

As mentioned above, a mechanism for import of base
equivalents into the CSF was proposed to explain that
the changes in CSF pH do not surpass the changes
in plasma pH during systemic acid-base disturbances,
despite the lack of protein buffering in the CSF (Yuan &
Desiderio, 2005). However, the molecular identity of the
proteins mediating this transport across the blood-brain
barrier or the blood-CSF barrier has remained elusive
until now. To test whether NBCe2 is involved in CSF
pH regulation it was necessary to establish a method
for continuous CSF pH recording in vivo. To the best
of our knowledge, this is the first time this method has
been applied to assess CSF pH changes, although in vivo
pH measurements of brain tissue (Schuchmann et al.
2006) and baseline CSF pH (Mani et al. 2017) have pre-
viously been performed. With this method, we were able
to reliably detect the abrupt CSF pH changes upon HCl
injections or hypercapnia, and measure the fast CSF pH

verification of siRNA knockdown. The efficiency of the siRNA approach to knock down NBCe2 was assessed by
gPCR and semi-quantitative immunohistochemistry. £, bar graph depicting the Sic4a5 mRNA expression after 6 h,
24 h and 48 h after Slc4a5 targeted siRNA relative to control mice injected with RLuc, as indicated. Bars represent
relative quantification calculated by the comparative Ct method £+ RQ min and max (n = 4). G, representative
example of immunohistochemical staining for NBCe2 in control (RLuc) siRNA-injected mice 48 h after treatment.
H, similar image exemplifying staining for NBCe2 obtained 48 h after NBCe2 siRNA injection. /, graph showing
mean values £ SEM of CSF pH recovery rate during the last 20 min of the recovery phase of 5% CO, inhalation
in mice injected with siRNA targeting Slc4a5 mRNA (NBCe2 KD, n = 7) or the control RLuc (n = 5). *P < 0.05.
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compensations to these disturbances within minutes after
inflicting the perturbations. We show that the recovery
of CSF pH during hypercapnia-induced acidification
is greatly decreased in the NBCe2 KO mice, pointing
to CPE NBCe2 as the major molecular mechanism
underlying base extrusion during CSF acidification.
Applying DIDS to the ventricle system would inhibit both
NBCe2 and AE2, and seems an unattractive approach to
verify the involvement of NBCe2 in CSF pH regulation
(Deng & Johanson, 1989). In the absence of specific NBCe2
inhibitors, we developed siRNA-mediated knockdown of
the protein in order (1) to verify the involvement of
NBCe2 in CSF pH regulation and (2) to exclude the
influence of NBCe?2 expressed outside the central nervous
system. Similar to the NBCe2 KO mice, the NBCe2 KD
mice failed to recover the CSF pH significantly during
hypercapnia-induced acidosis, confirming that reduced
NBCe2 expression in the CPE causes a defect in CSF
pH regulation from acidification. A similar observation
was made for the electrogenic Na™-HCO; ™ cotransporter,
NBCel in astrocytes (Theparambil ef al. 2016). Astrocytes
are suggested to secrete bicarbonate through NBCel in
response to respiratory acidosis similar to what we observe
for NBCe?2 in this study. The altered CSF pH response was
not caused by a difference in the respiratory response to
inhalation of 5% CO, but is a direct effect of the lack
of local import of HCO;™. It is, however, unexpected
that the ventilatory response to 5% CO, is similar in
the two genotypes given the lack of appropriate HCO5~
import into the CSE. This is most likely due to the acute
nature of the experimental set-up. The mice were only
exposed to 5% CO; for 5 min. During the first 5 min of
CO; exposure, we did not detect any difference in CSF
pH in the two genotypes, which means that the central
chemoreceptors are exposed to similar pH. Our base-
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line findings, however, suggest that the long-term effect
of lacking a HCO;™~ transporter in the CPE leads to a
longer lasting effect on the chemoreceptors that slightly
increases the respiratory drive, leading to an increased
washout of CO,. This will cause a respiratory alkalosis
compensated by increased renal excretion of HCO; ™. The
acid-base status of the NBCe2 KO mice is indeed indicative
of a compensated acid-base disturbance characterized
by normal blood pH and lower P,co, and stHCO;~
compared to WT, similar to the study by Groger et al.
(2012). Groger et al. show that the phenotype is caused
by renal loss of HCO3;™ causing an acidosis followed
by a respiratory compensation. Our plethysmography
experiments, however, show a similar respiration rate
in the knockout compared to wild type under base-
line conditions. This is surprising if the mice indeed
have a metabolic acidosis with respiratory compensation.
Further studies are needed to isolate the renal versus the
central effect on the acid-base disturbance.
Dysregulation of brain pH has been linked to altered
seizure susceptibility (Schuchmann et al. 2006; Ziemann
et al. 2008). In a study by Kao and coworkers, a gene-trap
deletion of NBCe?2 resulted in increased seizure threshold
in mice following injections with the proconvulsant drug
PTZ (Kao et al. 2011). By contrast, PTZ injections in
our NBCe2 KO mice show only minor if any differences
among genotypes. The onset of seizure development in
NBCe2 KO mice was lower at only one of the six stages,
indicating that the NBCe2-deficient mice are generally
not protected against development of seizures. Another
way to induce seizures is to increase brain pH by hyper-
ventilation, as, for example, induced by exposing the
mice to elevated ambient temperature. Although there is
a numerical tendency towards protection in NBCe2 KO
mice, we do not detect a statistically significant difference
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Figure 8. NBCe2 KO mice are not protected against experimental seizures

Mice were injected intraperitoneally with pentylenetetrazol (PTZ) and observed for up to 60 min. Seizure activity
was determined as the time from injection of PTZ to development of first appearance in each seizure activity
score (see text for details) in female (A) and male (B) NBCe2 KO and WT (n = 5). C, mice were subjected to
hyperventilation-induced seizure challenge induced by heating. The graph shows the mean lag time £+ SEM
between when heating was initiated and the first observed seizures (n = 7 for NBCe2 KO; n = 6 for WT).
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in the time lag before seizure development in these
experiments. The observation that NBCe2 KO mice were
less active during the experiment complicates the inter-
pretation of the results, as the increased activity would
lead to increase in respiratory rate and thereby further
brain alkalization in the NBCe2 wild-type compared to KO
mice. Further studies are, therefore, necessary to explore
the difference in activity we observe in the hyperventilation
experiments.

The gene-trap NBCe2 KO mouse described by Kao
et al. displayed alterations in the localization of several
membrane transporters and cytoskeletal proteins in the
CPE (Kao et al. 2011), as described in the introduction.
In contrast, our knockout model exhibits an unchanged
expression pattern of solute transporters, such as the
Na*,K*-ATPase (a1 or 1 subunit), AQP1, and NKCCI.
Although our pH; measurements indicate increased
functional activity of acid extruders at low pH;, the
expression and localization of the HCO;™ transporters
Ncbe, NBCn1 and AE2 are similar in the two genotypes, as
was the localization pattern of the spectrin cytoskeleton in
our study. The potential seizure protective effect of NBCe2
KO presents a major discrepancy between the current
study and the gene-trap study by Kao and coworkers.
Whereas the gene-trap NBCe2 KO mouse was protected
against seizures (Kao et al. 2011), we found little evidence
for such protection by the same method and scoring
system in our model, although the underlying hypothesis
was very appealing. The brain ventricle volume in the
gene trap model was decreased, while the exon 7 deletion
approach by Groger et al. did not result in brain ventricle
volume changes (Groger et al. 2012). In addition to the
frame shift also applied in the two previous models,
our approach targets the conserved first transmembrane
segments of NBCe2 to prevent signal peptide mediated
transfer into RER and eventually plasma membrane
insertion. Thus, our model gives rise to a truncated
N-terminal part of the protein, which is undetectable even
with an antibody directed against an N-terminal epitope.
Therefore, we are confident that our NBCe2 deletion has
minimal cellular effects compared to the gene-trap model.
It would be very interesting to perform direct comparative
physiological studies with these three NBCe2 models.
Although we did not determine brain ventricle volume
in our knockout mouse, we would expect a similar result
as the mouse described by Groger et al. since the expression
of the transporters involved in CSF secretion are
unaffected.

In conclusion, our study provides the first evidence
of a specific transport protein harboured in the luminal
membrane of the CPE to be directly involved in CSF
pH regulation. We show that the sodium bicarbonate
cotransporter NBCe2 is critically involved in CSF pH
recovery during hypercapnia-induced acidosis, which
might protect the brain from acid-induced injury.
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