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Abstract: The concept of using ibuprofen as an albumin-binding entity was recently demonstrated
by the development of [177Lu]Lu-Ibu-PSMA-01. In the present study, we designed a novel
ibuprofen-containing radioligand (Ibu-PSMA-02) with subtle structural changes regarding the
linker entity in order to investigate a potential impact on the in vitro and in vivo properties.
Ibu-PSMA-02 was prepared using solid-phase synthesis techniques and labeled with lutetium-177.
[177Lu]Lu-Ibu-PSMA-02 was evaluated in vitro with regard to its plasma protein-binding properties,
PSMA affinity and uptake into PSMA-expressing PC-3 PIP tumor cells. The tissue distribution profile
of [177Lu]Lu-Ibu-PSMA-02 was assessed in tumor-bearing mice and dose estimations were performed.
The in vitro characteristics of [177Lu]Lu-Ibu-PSMA-02 were similar to those previously obtained for
[177Lu]Lu-Ibu-PSMA-01 with respect to plasma protein-binding, PSMA affinity and tumor cell uptake.
The in vivo studies revealed, however, an unprecedentedly high uptake of [177Lu]Lu-Ibu-PSMA-02
in PC-3 PIP tumors, resulting in an increased absorbed tumor dose of 7.7 Gy/MBq as compared to
5.1 Gy/MBq calculated for [177Lu]Lu-Ibu-PSMA-01. As a consequence of the high tumor accumulation,
[177Lu]Lu-Ibu-PSMA-02 showed higher tumor-to-background ratios than [177Lu]Lu-Ibu-PSMA-01.
This study exemplified that smallest structural changes in the linker entity of PSMA radioligands may
have a significant impact on their pharmacokinetic profiles and, thus, may be applied as a means for
ligand design optimization.
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1. Introduction

The prostate-specific membrane antigen (PSMA) was found to be overexpressed in the majority of
prostate cancer cases [1,2] and is, therefore, a promising target for radionuclide therapy of metastatic
castration-resistant prostate cancer (mCRPC) [3–5]. A wide variety of PSMA-targeting radioligands
were developed in recent years, among them also conjugates for labeling with a variety of therapeutic
radionuclides [6,7]. [177Lu]Lu-PSMA-617 is the currently best-known PSMA radioligand for therapeutic
application and employed in a Phase III clinical study (VISION, NCT03511664) [8].
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The concept of modifying radiopharmaceuticals with an albumin-binding entity has recently
gained growing interest [9]. PSMA-targeting radioligands modified with these entities showed
enhanced blood circulation in comparison to [177Lu]Lu-PSMA-617 and, as a consequence, considerably
increased accumulation in the tumor tissue, which correlated with better therapeutic outcomes
in preclinical settings [10–12]. The most widely used albumin binder for the modification of
PSMA-targeting radioligands is the p-iodophenyl entity, previously discovered to bind with high
affinity to serum albumin [13]. Another successfully applied albumin-binding entity is the azo dye
Evans blue [14,15].

Increased blood activity levels of albumin-binding PSMA radioligands led, however, also to a
higher uptake of activity in non-targeted organs and tissues including the kidneys, which may be
associated with an increased risk of bone marrow and kidney toxicity. In our group, it was revealed
that PSMA radioligands derivatized with entities that have lower albumin-binding affinity such as the
p-tolyl entity [13] or ibuprofen showed more promising preclinical results [16,17].

Not only the nature of the albumin binder, but also the incorporation of linker entities between the
PSMA ligand’s backbone and the albumin-binding group, may strongly influence the tissue distribution
profile of the radioligand. It was previously observed that the hydrophilicity, length and charge of the
incorporated linker play a crucial role in this regard [11,17,18]. Benešová et al. investigated the impact
of negatively charged aspartate groups on a p-iodophenyl-containing PSMA radioligand and observed
a higher kidney accumulation with an increasing number of negative charges [11]. Another study, in
which PSMA-targeting radioligands were modified with hydrophilic PEG-spacers, showed a directly
proportional correlation of the linker length to the clearance rate of the radioligand [18]. These examples
impressively illustrated the options for fine-tuning the pharmacokinetics of PSMA radioligands.

Recently, we described PSMA radioligands modified with ibuprofen as an albumin-binding
entity [17]. The albumin binder was conjugated to the radioligand’s backbone via a lysine side chain
and variable amino acid-based linkers. The charge of the linker entity had a significant impact on the
radioligand’s tissue distribution profile. A negatively charged linker increased the albumin-binding
properties, resulting in higher background activity, whereas a positively charged amino acid led to a
more efficient clearance of the radioligand from the blood [17].

The aim of the present study was to investigate whether only a subtle structural modification
of the linker entity would have an impact on the radioligand’s pharmacokinetics. Instead of a
lysine residue, which was the connecting entity in Ibu-PSMA (herein referred to as Ibu-PSMA-01),
a diaminobutyric acid entity was used as a shorter linker for the connection of ibuprofen to the
PSMA ligand’s backbone. The novel PSMA ligand, referred to as Ibu-PSMA-02, was synthesized
and radiolabeled with lutetium-177 (T1/2 = 6.65 d; Eβ¯

av = 134 keV, Eγ = 113 keV, 208 keV) and
preclinically evaluated. [177Lu]Lu-Ibu-PSMA-02 was characterized in vitro using PC-3 PIP/flu tumor
cells and in vivo using tumor-bearing mice. The data of [177Lu]Lu-Ibu-PSMA-02 were compared
with those previously obtained with [177Lu]Lu-Ibu-PSMA-01 and put in relation to the properties of
[177Lu]Lu-PSMA-617 (Figure 1).



Molecules 2020, 25, 2542 3 of 16

Figure 1. Chemical structure of prostate-specific membrane antigen (PSMA) ligands. (a) Novel ligand,
Ibu-PSMA-02, with a diaminobutyric acid entity as connecting entity (red) to conjugate ibuprofen (blue);
(b) Previously developed Ibu-PSMA-01 with a lysine entity as a connecting entity (yellow) to conjugate
ibuprofen (blue) [17] and (c) PSMA-617 [11] as a reference compound without an albumin-binding entity.

2. Results

2.1. Synthesis of Ibu-PSMA-02

Ibu-PSMA-02 was obtained with a yield of 15% after HPLC purification. Characterization by
analytical HPLC and MALDI-TOF-MS confirmed the identity of the product and a chemical purity of
>99% (Table 1, Supplementary Materials).

Table 1. Analytical data of Ibu-PSMA-02 and Ibu-PSMA-01.

Compound Chemical Formula MW [g/mol] m/zcalc m/zmeas
1 tr [min] Chemical Purity 2 [%]

Ibu-PSMA-02 C66H95N11O18 1330.55 1330.69 1330.69 10.4 >99
Ibu-PSMA-013 C68H99N11O18 1358.60 1358.72 1358.72 9.9 >99

1m/z-peak in the unlabeled ligand obtained by MALDI-TOF-MS detected as [M + H]+; 2 Determined by analytical
HPLC, λ = 254 nm; 3 ligand previously synthesized and published by Deberle and Benešová et al. 2020 [17].

2.2. Radiolabeling and Radiolytic Stability

Radiolabeling of Ibu-PSMA-02 with lutetium-177 was feasible at a molar activity up to
100 MBq/nmol with a radiochemical purity ≥98%. [177Lu]Lu-Ibu-PSMA-01 and [177Lu]Lu-PSMA-617
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were obtained with a radiochemical purity ≥96%. All three radioligands were used for in vitro and
in vivo experiments without further purification steps (Supplementary Materials, Figure S1).

At a high activity concentration (500 MBq/mL), radiolytic degradation of [177Lu]Lu-Ibu-PSMA-02
was observed, however, >84% radioligand were still intact after a 24 h-incubation period. Radiolysis of
[177Lu]Lu-Ibu-PSMA-01 and [177Lu]Lu-PSMA-617 was more pronounced, resulting in <10% intact
product under the same conditions. Radiolysis of all three radioligands was, however, entirely
prevented in the presence of l-ascorbic acid, resulting in >96% intact radioligand after 24 h incubation
(Supplementary Materials, Figure S2).

2.3. In Vitro Evaluation

2.3.1. Determination of the n-Octanol/PBS Distribution Coefficient

The n-octanol/PBS distribution coefficient (logD value) of [177Lu]Lu-Ibu-PSMA-02 was determined
as −2.43 ± 0.01. This value was in the same range as the previously published logD value of
[177Lu]Lu-Ibu-PSMA-01 (−2.18 ± 0.07) [17], but higher than the logD value of [177Lu]Lu-PSMA-617
(−4.38 ± 0.01) [11].

2.3.2. Albumin-Binding Properties

[177Lu]Lu-Ibu-PSMA-02 and [177Lu]Lu-Ibu-PSMA-01 showed affinity to mouse plasma proteins
with similar half-maximum binding (B50 values: ~79 and ~96, respectively), which was in clear contrast
to [177Lu]Lu-PSMA-617 that showed negligible binding to mouse plasma proteins (Figure 2). Similarly,
[177Lu]Lu-Ibu-PSMA-02 and [177Lu]Lu-Ibu-PSMA-01 showed increased binding to human plasma
proteins in general and to human serum albumin in particular (Supplementary Materials, Figure S3).

Figure 2. Data from ultrafiltration assays of [177Lu]Lu-Ibu-PSMA-02 in comparison to
[177Lu]Lu-Ibu-PSMA-01 and [177Lu]Lu-PSMA-617 (n = 4). The data were fitted with a one-site specific
binding curve to calculate the B50 values. MSA: Mouse serum albumin. Data of [177Lu]Lu-PSMA-617
were adapted with permission from Umbricht et al. 2018 Mol Pharm 15:2297 [16]. Copyright 2020
American Chemical Society.

2.3.3. Cell Uptake and Internalization

The uptake of [177Lu]Lu-Ibu-PSMA-02 in PC-3 PIP tumor cells (53% ± 6% and 65% ± 5%) was in
the same range as for [177Lu]Lu-Ibu-PSMA-01 (49% ± 12% and 53% ± 8%) and [177Lu]Lu-PSMA-617
(49%± 5% and 55%± 5%) after a 2- and 4 h-incubation period, respectively (Figure 3a). The internalized
fraction of [177Lu]Lu-Ibu-PSMA-02 (18% ± 3% and 22% ± 2%) was similar to [177Lu]Lu-Ibu-PSMA-01
(16%−17%) but higher than for [177Lu]Lu-PSMA-617 (11%−13%) after 2 and 4 h incubation (Figure 3a).
The uptake of [177Lu]Lu-Ibu-PSMA-02 in PSMA-negative PC-3 flu tumor cells was <0.1% after 4 h
incubation, which indicated PSMA-specific cell uptake in PC-3 PIP cells (Figure 3b). The same results
were previously reported for [177Lu]Lu-Ibu-PSMA-01 [17] and [177Lu]Lu-PSMA-617 [11].
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Figure 3. Uptake and internalization of [177Lu]Lu-Ibu-PSMA-02 in comparison to
[177Lu]Lu-Ibu-PSMA-01 [17] and [177Lu]Lu-PSMA-617 [11]. (a) Data obtained in PSMA-positive PC-3
PIP cells (n = 3). (b) Data obtained in PSMA-negative PC-3 flu cells (n = 3). Data of [177Lu]Lu-PSMA-617
were adapted with permission from Benešová et al. 2018 Mol Pharm 15: 934. Copyright 2020 American
Chemical Society [11]. Data of [177Lu]Lu-Ibu-PSMA-01 were adapted from Deberle and Benešová et al.
2020 Theranostics 10:1678 [17].

2.3.4. Determination of PSMA-binding Affinity

The PSMA-binding affinity of [177Lu]Lu-Ibu-PSMA-02, determined using PC-3 PIP tumor cells,
was in the same range (KD = 40 ± 15 nM) as the affinity of [177Lu]Lu-Ibu-PSMA-01 (KD = 24 ± 7 nM;
p > 0.05) [17]. The binding affinity of [177Lu]Lu-Ibu-PSMA-02 was, however, significantly lower
(p < 0.05) than the affinity of [177Lu]Lu-PSMA-617 (KD = 13 ± 1 nM) [11].

2.4. Biodistribution Studies

[177Lu]Lu-Ibu-PSMA-02 showed high blood activity levels at 1 h p.i. (29% ± 4% injected activity
per gram (IA/g)), which decreased to 7.1% ± 0.7% IA/g at 4 h and <1% IA/g 24 h after injection. The PC-3
PIP tumor uptake of [177Lu]Lu-Ibu-PSMA-02 was high already 1 h after injection (63% ± 8% IA/g) and
further increased over the following 24 h (133% ± 15% IA/g; 24 h p.i.). Clearance of activity from tumor
tissue was slow, which resulted in 56% ± 9% and 24% ± 3% IA/g retained activity in the tumor four
and eight days after injection. Uptake of [177Lu]Lu-Ibu-PSMA-02 into PSMA-negative PC-3 flu tumors
was below blood levels, confirming the PSMA-mediated uptake in PC-3 PIP tumors as was also the
case for the other, previously investigated radioligands [11,16,17].

The kidney uptake of [177Lu]Lu-Ibu-PSMA-02 was high (115% ± 15% IA/g) 1 h after injection,
but renal clearance was fast, resulting in activity levels of 27% ± 2% IA/g and 10% ± 2% IA/g at
4 and 24 h p.i., respectively. Accumulation in the kidneys was <4% IA/g at 48 h after injection of
[177Lu]Lu-Ibu-PSMA-02. A high accumulation of activity was also observed in the liver at early
timepoints (17% ± 4% IA/g at 1 h p.i. and 7.1% ± 0.5% IA/g at 4 h p.i.), but the fast clearance resulted in
a low activity retention in the liver at later timepoints (<1% at 24 h p.i.).

Overall, the uptake of [177Lu]Lu-Ibu-PSMA-02 in the tumor was significantly higher (p < 0.05)
and longer retained as compared to [177Lu]Lu-Ibu-PSMA-01. Accumulation in non-targeted organs
and tissue was also higher in the case of [177Lu]Lu-Ibu-PSMA-02 at early timepoints. The fast clearance
of [177Lu]Lu-Ibu-PSMA-02 resulted, however, in similar or even lower retention of activity in kidneys
at timepoints later than 1 h p.i. and in the liver later than 4 h p.i. [17]. Due to the presence of an
albumin-binding entity and the resulting increased blood circulation time, maximum tumor uptake
of [177Lu]Lu-Ibu-PSMA-02 was reached at 24 h p.i. and was ~2.5-fold higher than the maximum
tumor uptake of [177Lu]Lu-PSMA-617 which was reached at 4 h p.i. Off-target accumulation of
[177Lu]Lu-Ibu-PSMA-02 as well as of [177Lu]Lu-Ibu-PSMA-01 was, however, also higher than for
[177Lu]Lu-PSMA-617 at all investigated timepoints (Figure 4, Supplementary Materials, Tables S1-S3).
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Figure 4. Graphs showing decay-corrected biodistribution data of [177Lu]Lu-Ibu-PSMA-02,
[177Lu]Lu-Ibu-PSMA-01 and [177Lu]Lu-PSMA-617 obtained in PC-3 PIP/flu tumor-bearing mice.
(a) Biodistribution data of [177Lu]Lu-Ibu-PSMA-02; (b) Previously published biodistribution data of
[177Lu]Lu-Ibu-PSMA-01, adapted from Deberle and Benešová et al. 2020 Theranostics 10:1678 [17];
(c) Previously published biodistribution data of [177Lu]Lu-PSMA-617, adapted with permission from
Benešová et al. 2018 Mol Pharm 15:934. Copyright 2020 American Chemical Society [11].

High blood pool activity 1 h after injection of [177Lu]Lu-Ibu-PSMA-02 resulted in a low
tumor-to-blood ratio (2.2 ± 0.1), which increased significantly over time due to the efficient blood
clearance. Tumor-to-blood ratios were in the range of 170−220 between 24 and 96 h after injection of
[177Lu]Lu-Ibu-PSMA-02 and reached a value of 918 ± 80 after eight days. The tumor-to-kidney ratio
of [177Lu]Lu-Ibu-PSMA-02 was low at 1 h p.i. (0.56 ± 0.09), but increased significantly with time to
a tumor-to-kidney ratio >50 eight days after injection. A similar time course was observed for the
tumor-to-liver ratios.
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Overall, the tumor-to-background ratios of [177Lu]Lu-Ibu-PSMA-02 were relatively low at early
timepoints, but increased significantly over time. As a result, the tumor-to-blood, tumor-to-kidney and
tumor-to-liver ratios of [177Lu]Lu-Ibu-PSMA-02 were higher than those of [177Lu]Lu-Ibu-PSMA-01
at timepoints later than 4 h p.i. (Figure 5) [17]. Due to the lack of a designated albumin
binder and thus extremely fast clearance from background organs, tumor-to-background ratios
of [177Lu]Lu-PSMA-617 were higher than those of the albumin-binding radioligands at all investigated
timepoints (Supplementary Materials, Figure S4) [11].

Figure 5. (a) Tumor-to-blood ratios; (b) tumor-to-kidney ratios and (c) tumor-to-liver ratios at 1, 4, 24, 48,
96 and 192 h after injection of [177Lu]Lu-Ibu-PSMA-02 in comparison to [177Lu]Lu-Ibu-PSMA-01 [17].
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Calculation of the area under the curve (AUC) values of [177Lu]Lu-Ibu-PSMA-02 revealed a 1.6-fold
increased AUC tumor value and a 1.2-fold increased AUC blood value over the course of 192 h in
comparison to [177Lu]Lu-Ibu-PSMA-01. As a result of the increased tumor uptake, the tumor-to-blood
AUC ratio of [177Lu]Lu-Ibu-PSMA-02 was 1.4-fold higher than that of [177Lu]Lu-Ibu-PSMA-01
(Supplementary Materials, Figure S5, Table S4).

2.5. Dosimetric Calculations

High accumulation and retention of [177Lu]Lu-Ibu-PSMA-02 in the tumor led to a mean absorbed
tumor dose of 7.7± 0.8 Gy/MBq. The mean specific absorbed dose to the kidneys was 0.71± 0.05 Gy/MBq,
resulting in a tumor-to-kidney absorbed dose ratio of 11 ± 2. In contrast to [177Lu]Lu-Ibu-PSMA-02,
the mean absorbed tumor dose of [177Lu]Lu-Ibu-PSMA-01 was lower (5.1 ± 0.2 Gy/MBq) and the
mean absorbed dose to the kidneys higher (1.0 ± 0.2 Gy/MBq). This led to a lower tumor-to-kidney
absorbed dose ratio of 5.1 ± 0.5. Mean absorbed doses for both the tumor and the kidneys were
clearly lower in the case of [177Lu]Lu-PSMA-617 (3.90 and 0.05 Gy/MBq, respectively) and, the
resulting tumor-to-kidney dose ratio (~87), therefore, much higher as compared to the albumin-binding
radioligands (Figure 6) [19].

Figure 6. The graphs show dosimetry results of [177Lu]Lu-Ibu-PSMA-02 in comparison to
[177Lu]Lu-Ibu-PSMA-01 and [177Lu]Lu-PSMA-617. (a) Values representing the mean absorbed doses
of the PC-3 PIP tumor; (b) mean absorbed kidney doses, and (c) the tumor-to-kidney absorbed dose
ratios for [177Lu]Lu-Ibu-PSMA-02, [177Lu]Lu-Ibu-PSMA-01 and [177Lu]Lu-PSMA-617 [19]. Data for
[177Lu]Lu-PSMA-617 adapted from Müller et al. 2019 Eur J Nucl Med Mol Imaging 46: 1919 [19].

2.6. SPECT/CT Imaging

The SPECT/CT images of mice visualized the PC-3 PIP tumor xenograft (right shoulder), in which
[177Lu]Lu-Ibu-PSMA-02 accumulated to a high extent, whereas in the PC-3 flu tumors (left shoulder)
accumulation of activity was not observed (Figure 7). At the 4-h timepoint, some activity was also
seen in the kidneys as well as in the urinary bladder as a result of the radioligand’s renal excretion.
At the 24-h timepoint, activity was almost exclusively visualized in the PC-3 PIP tumor. At both
investigated timepoints, the tumor uptake of [177Lu]Lu-Ibu-PSMA-02 was slightly higher than the
uptake of [177Lu]Lu-Ibu-PSMA-01 and considerably higher than the uptake of [177Lu]Lu-PSMA-617
(Figure 7).
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Figure 7. SPECT/CT images obtained 4 h and 24 h after injection of the PSMA radioligands
and shown as maximum intensity projections (MIPs); (a) MIP of [177Lu]Lu-Ibu-PSMA-02 4 h p.i.;
(b) MIP of [177Lu]Lu-Ibu-PSMA-01 4 h p.i.; (c) MIP of [177Lu]Lu-PSMA-617 4 h p.i.; (d) MIP of
[177Lu]Lu-Ibu-PSMA-02 24 h p.i.; (e) MIP of [177Lu]Lu-Ibu-PSMA-01 24 h p.i. and (f) MIP of
[177Lu]Lu-PSMA-617 24 h p.i.; PC-3 PIP = PSMA-positive tumor xenograft; PC-3 flu = PSMA-negative
tumor xenograft; Ki = kidney; Bl = urinary bladder.

3. Discussion

In this study, the impact of a small structural change on the in vitro and in vivo behavior of
a PSMA radioligand was investigated. The newly developed radioligand [177Lu]Lu-Ibu-PSMA-02
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differed from [177Lu]Lu-Ibu-PSMA-01 by two carbon atoms in the linker entity which connected
ibuprofen with the radioligand’s backbone.

The synthesis of Ibu-PSMA-02 was performed in analogy to the previously published synthesis of
Ibu-PSMA-01 [17] by means of a resin-immobilized precursor containing a diaminobutyric acid entity.
Ibu-PSMA-02 was obtained after a single purification step in high purity. This was indirectly confirmed
by the feasibility of radiolabeling at a molar activity up to 100 MBq/nmol with a radiochemical purity of
>98%. Interestingly, [177Lu]Lu-Ibu-PSMA-02 was considerably more stable than [177Lu]Lu-PSMA-617
and other previously synthesized ibuprofen-derivatized PSMA radioligands [17]. In this regard,
[177Lu]Lu-Ibu-PSMA-02 rather resembled [177Lu]Lu-PSMA-ALB-56 containing a p-tolyl entity as
stabilizing albumin binder [16]. This result showed that the radiolytic stability of a radioligand can
be effectively influenced by small structural changes. Similarly, Kelly et al. demonstrated that the
structure of the linker entity might have a significant impact on the stability of PSMA radioligands [18].

Evaluation of the concentration-dependent affinities of both albumin-binding radioligands to
mouse plasma proteins showed that the small structural changes in the connecting entity between
ibuprofen and the PSMA ligand’s backbone did not have an impact on the binding affinity. In analogy,
binding to human plasma proteins and to human serum albumin showed similar results between the
radioligands (Supplementary Materials, Figure S3). Notably, the B50 values of [177Lu]Lu-Ibu-PSMA-02
and [177Lu]Lu-Ibu-PSMA-01 were similar to that of [177Lu]Lu-PSMA-ALB-56 containing a p-tolyl-based
albumin binder [16], which indicates that ibuprofen and the p-tolyl entity exhibit comparable affinities
towards plasma proteins. It has to be mentioned, however, that the experiments regarding the plasma
protein-binding properties of [177Lu]Lu-PSMA-ALB-56 were performed using a slightly different
method as compared to those for [177Lu]Lu-Ibu-PSMA-02 and [177Lu]Lu-Ibu-PSMA-01.

Excretion of the radioligand from the whole body of non-tumor-bearing mice showed increased
retention of [177Lu]Lu-Ibu-PSMA-02 in comparison to [177Lu]Lu-PSMA-617 (Supplementary Materials,
Figure S6). Comparison with [177Lu]Lu-Ibu-PSMA-01 showed a similar excretion profile, although at
later timepoints, [177Lu]Lu-Ibu-PSMA-02 was cleared somewhat faster.

Even though the structural differences between Ibu-PSMA-02 and Ibu-PSMA-01 were small,
the tissue distribution profile of [177Lu]Lu-Ibu-PSMA-02 in PC-3 PIP tumor-bearing mice was different to
the profile previously obtained with [177Lu]Lu-Ibu-PSMA-01 [17]. Stability studies confirmed that both
radioligands were entirely stable under the conditions of radioligand preparation for biodistribution
studies (data not shown). These results ensured that the radioligand solutions injected into the mice
did not contain any degradation products, which could have influenced the tissue distribution.

Mice injected with [177Lu]Lu-Ibu-PSMA-02 showed higher accumulation of activity in PC-3
PIP tumors as compared to [177Lu]Lu-Ibu-PSMA-01 and other ibuprofen-containing PSMA
radioligands [17]. This may have been a consequence of the increased activity level in the blood
pool of [177Lu]Lu-Ibu-PSMA-02 at early timepoints. Obviously, in vitro albumin-binding properties
of a radioligand under equilibrium conditions cannot be considered as the only predictor of its
blood retention time, and consequently, tissue distribution profile. The somewhat higher retention
of [177Lu]Lu-Ibu-PSMA-02 in the blood resulted, however, also in higher uptake in non-targeted
tissues and organs, particularly in the kidneys. Despite increased off-target accumulation of
[177Lu]Lu-Ibu-PSMA-02 at early timepoints after injection, the tumor-to-kidney and tumor-to-liver
ratios at later timepoints were higher than for other albumin-binding radioligands evaluated under the
same experimental conditions (Supplementary Materials, Figure S4) [11,17]. The high PSMA expression
level of PC-3 PIP tumors does, however, not allow a direct comparison with other radioligands that were
evaluated in LNCaP tumor-bearing mice [18,20] since LNCaP tumors express PSMA at considerably
lower levels [21]. Moreover, the injected molar amount of the radioligand may have a critical impact
on its tissue distribution profile as well. In agreement with biodistribution data, the SPECT/CT images
showed increased accumulation of [177Lu]Lu-Ibu-PSMA-02 in the PC-3 PIP tumor as compared to the
uptake of [177Lu]Lu-Ibu-PSMA-01 and [177Lu]Lu-PSMA-617, but also higher uptake in the kidneys
at 4 h p.i. Intense activity signals were also found in the urinary bladder for both albumin-binding
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radioligands. This can be ascribed to residual activity after emptying the urinary bladder before
acquisition of the SPECT/CT image, and from the ongoing urine formation during the scan.

Dosimetry calculations confirmed the superior mean absorbed dose to the tumor of
[177Lu]Lu-Ibu-PSMA-02 in comparison to [177Lu]Lu-Ibu-PSMA-01 and [177Lu]Lu-PSMA-617. It
can thus be speculated that [177Lu]Lu-Ibu-PSMA-02 would exhibit higher therapeutic efficacy as
compared to the clinically used [177Lu]Lu-PSMA-617. Moreover, the tumor-to-kidney dose ratio
of [177Lu]Lu-Ibu-PSMA-02 was significantly higher than for [177Lu]Lu-Ibu-PSMA-01, which is a
favorable characteristic in view of a therapeutic application. The tumor-to-kidney dose ratio of
[177Lu]Lu-PSMA-617 was higher than that of the albumin-binding radioligands, but the absolute value
of the mean absorbed tumor dose of [177Lu]Lu-PSMA-617 remained relatively low in comparison to
the new radioligands.

The increased blood circulation of albumin-binding PSMA radioligands certainly poses the
concern of an increased bone marrow toxicity. The absorbed dose to the bone marrow is, however, not
easily assessable. Based on AUC calculations, the tumor-to-blood AUC ratio of [177Lu]Lu-Ibu-PSMA-02
was, however, higher than for [177Lu]Lu-Ibu-PSMA-01, which would certainly be favorable in view of
a therapeutic application (Supplementary Materials, Figure S5, Table S4).

Additional in-depth studies will be necessary in order to fully understand the
observed discrepancies among the biodistribution profiles of [177Lu]Lu-Ibu-PSMA-02 and
[177Lu]Lu-Ibu-PSMA-01.

4. Material and Methods

4.1. Synthesis of Ibu-PSMA-02

In analogy to previously synthesized ibuprofen-derivatized PSMA ligands [17], Ibu-PSMA-02
was synthesized via a solid-phase platform. The synthesis of Ibu-PSMA-02 was based on precursor
1, which was prepared in analogy to the methods previously described (Supplementary Materials,
Scheme S1) [6,11]. Instead of a l-lysine residue, l-diaminobutyric acid was introduced as a linker to
conjugate (RS)-ibuprofen with the PSMA ligand’s backbone. (RS)-Ibuprofen was coupled to precursor
1 to obtain compound 2 in the same manner as previously reported by Deberle and Benešová et al.
(Supplementary Materials) [17]. Ibu-PSMA-02 was obtained after cleavage of the compound from
the resin, removal of the protecting groups and HPLC purification of the crude product (Scheme 1).
The isolated, pure PSMA ligand was characterized by analytical HPLC and MALDI-TOF-MS (Bruker
UltraFlex II, Billerica, MA, U.S.A.) (Supplementary Materials).

4.2. Radiolabeling and Radiolytic Stability

Ibu-PSMA-02 (1 mM stock solution) was labeled with lutetium-177 (no-carrier-added lutetium-177
in 0.04 M HCl; ITM Medical Isotopes GmbH, Germany) at molar activities of 5–100 MBq/nmol at
pH ~4.5 as previously reported (Supplementary Materials) [16]. The reaction mixture was incubated
for 10 min at 95 ◦C, followed by quality control using HPLC as previously reported (Supplementary
Materials) [11,16]. Ibu-PSMA-01, which was previously developed in our group [17], and PSMA-617
(ABX GmbH, Radeberg, Germany) were radiolabeled under the same conditions.

The radiolytic stability of [177Lu]Lu-Ibu-PSMA-02 was assessed in three independent experiments.
[177Lu]Lu-Ibu-PSMA-02 (50 MBq/nmol) was diluted with saline to an activity concentration of 250
MBq/500 µL and incubated at room temperature with or without the addition of l-ascorbic acid (3
mg) for a total period of 24 h. HPLC was performed after 1, 4 and 24 h to determine the radioligand’s
integrity as previously reported (Supplementary Materials) [17].
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Scheme 1. Synthesis of Ibu-PSMA-02 based on precursor 1.

4.3. Determination of LogD Values

The in vitro evaluation of [177Lu]Lu-Ibu-PSMA-02 was carried out as previously reported for other
ibuprofen-modified PSMA radioligands [11,17]. The n-octanol/PBS distribution coefficient (LogD) of
[177Lu]Lu-Ibu-PSMA-02 (50 MBq/nmol) was determined in a mixture of n-octanol and PBS, pH 7.4, by
a shake-flask method using liquid–liquid extraction followed by phase separation and measurement
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of activity in both phases using a γ-counter (Perkin Elmer Wallac Wizard 1480). The distribution
coefficient was calculated as the logarithm of the ratio of counts per minute (cpm) measured in the
n-octanol phase relative to the cpm measured in the PBS phase. Three experiments were performed
in quintuplicate.

4.4. Albumin-Binding Properties

The binding of [177Lu]Lu-Ibu-PSMA-02 and [177Lu]Lu-Ibu-PSMA-01 to mouse plasma proteins
was evaluated by incubating a fixed amount of radioligand with different concentrations of mouse
plasma and followed by determination of the percentage of bound radioligand using an ultrafiltration
method. Mouse plasma was diluted to obtain a mouse serum albumin (MSA) concentration of
0.07 to 550 µM in PBS pH 7.4. A fixed amount of the radioligand (50 MBq/nmol; 15 µL, ~300 kBq,
0.006 nmol,) was added to 150 µL of the mouse plasma dilutions, briefly vortexed and incubated for
30 min at 37 ◦C. Afterwards, each sample of mouse plasma-radioligand mixture was cooled on ice
followed by addition of 300 µL ice-cold PBS. The samples were transferred to Amicon centrifugal
filters (cut-off of 10 kDa), which ensured the retention of MSA (~67 kDa), and centrifuged (rcf of
14,000) for 30 min at 4 ◦C. The inserts of the filter devices were inverted and centrifuged (rcf of
200) for 3 min to recover the protein fraction. The activity of the protein fraction (Aprotein) and the
activity in the filtrate and in the filter unit were measured separately in a γ-counter. The total activity
(Atotal) was determined as the sum of counted activity of the protein fraction (Aprotein), the filtrate
and the filter unit. The percentage of radioligand bound to mouse plasma proteins was calculated as
(bound radioligand = Aprotein/Atotal *100).

The results were presented as average ± standard deviation (SD) of four independent
experiments. The percentage of radioligand bound to mouse plasma (Aprotein) was plotted against the
MSA-to-radioligand molar ratios and fitted with a nonlinear regression curve (one site, specific binding)
using GraphPad Prism software (version 7, San Diego, CA, U.S.A.) to obtain the half-maximum binding
(B50). Control experiments were performed by incubating the radioligands with PBS only followed by
filtration which resulted in ≤10% of unspecifically retained radioligand in the filter. The binding of
[177Lu]Lu-PSMA-617 to mouse plasma proteins was previously determined by Umbricht et al. using a
similar procedure but a different ultrafiltration device [16].

Additionally, the radioligands were incubated in human plasma and in 700 µM human serum
albumin (HSA) diluted in PBS to confirm the binding also to human plasma proteins and albumin,
respectively (Supplementary Materials).

4.5. Cell Culture and Cell Experiments

Sublines of the androgen-independent PC-3 human prostate cancer cell line, PSMA-positive
PC-3 PIP and PSMA-negative PC-3 flu cells, were kindly provided by Prof. Dr. Martin Pomper
(Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A.) (Supplementary Materials).
The tumor cells were cultured in RPMI-1640 cell culture medium supplemented with 10% fetal calf
serum, l-glutamine and antibiotics. Puromycin (2 µg/mL) was added to the cell cultures to maintain
PSMA expression as previously reported [21].

Cell uptake and internalization studies of [177Lu]Lu-Ibu-PSMA-02 were performed as previously
reported [11]. The radioligand was investigated in three experiments performed in six replicates
with PC-3 PIP tumor cells and in triplicate with PC-3 flu tumor cells. The PSMA-binding affinity of
[177Lu]Lu-Ibu-PSMA-02, presented as KD value, was determined as previously reported [17]. Statistical
significance of KD values was assessed using a one-way ANOVA with a Tukeys’s multiple comparison
post-test in GraphPad Prism software (version 7, San Diego, CA, U.S.A.). A p-value of <0.05 was
considered statistically significant.
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4.6. Tumor Mouse Model

All applicable international, national, and/or institutional guidelines for the care and use of animals
were followed. In particular, all animal experiments were carried out according to the guidelines
of Swiss Regulations for Animal Welfare. The preclinical studies were ethically approved by the
Cantonal Committee of Animal Experimentation and permitted by the responsible cantonal authorities
(license N◦ 75668).

Mice were obtained from Charles River Laboratories, Sulzfeld, Germany, at the age of 5–6 weeks.
Female, athymic nude BALB/c mice were subcutaneously inoculated with PSMA-positive PC-3 PIP
cells (6 × 106 cells in 100 µL Hank’s balanced salt solution (HBSS)) on the right shoulder and with
PSMA-negative PC-3 flu cells (5 × 106 cells in 100 µL HBSS) on the left shoulder. Biodistribution
and SPECT/CT imaging studies were performed about 2 weeks later, when the tumor sizes reached a
volume of 80–300 mm3.

4.7. Biodistribution Study

[177Lu]Lu-Ibu-PSMA-02 (5 MBq, 1 nmol, 100 µL) was diluted in saline containing 0.05% bovine
serum albumin (BSA) and injected in a lateral tail vein of the mice. Mice were euthanized at different
timepoints after injection (p.i.) of the radioligand. Selected tissues and organs were collected, weighed
and measured for activity using a γ-counter. The results were decay-corrected and listed as percentage
of the injected activity per gram of tissue mass (% IA/g) (Figure 4, Supplementary Materials, Table S1).
The values of the areas under the curve (AUCs) for the PC-3 PIP tumor and the blood were calculated
based on non-decay-corrected biodistribution data (Supplementary Materials).

4.8. Dosimetric Calculations

Dosimetric calculations for [177Lu]Lu-Ibu-PSMA-02 and [177Lu]Lu-Ibu-PSMA-01 were performed
based on non-decay-corrected biodistribution data. The cumulated activity was estimated by calculating
the time-integrated activity concentration coefficients (TIACCs) and used for calculation of the mean
specific absorbed dose (Gy/MBq) to the tumor xenografts and kidneys (Supplementary Materials).
The absorbed fractions for the tumors and the kidneys were assessed by Monte Carlo simulations
using PENELOPE [22]. Dosimetric calculations for [177Lu]Lu-PSMA-617 were previously performed
with a different method as published by Müller et al. [19].

4.9. In Vivo SPECT/CT Imaging

SPECT/CT images were obtained using a dedicated small-animal SPECT/CT scanner
(NanoSPECT/CTTM, Mediso Medical Imaging Systems, Budapest, Hungary) as previously reported [21].
[177Lu]Lu-Ibu-PSMA-02 (25 MBq, 1 nmol, 100 µL) diluted in saline containing 0.05% BSA was injected
in a lateral tail vein of the mouse. SPECT scans of ~45 min duration were performed 4 and 24 h after
injection of the radioligand followed by a CT of 7.5 min duration. During the in vivo scans, the mice
were anesthetized with a mixture of isoflurane and oxygen. Reconstruction of the acquired data was
performed using HiSPECT software (version 1.4.3049, Scivis GmbH, Göttingen, Germany). All images
were prepared using VivoQuant post-processing software (version 3.5, inviCRO Imaging Services and
Software, Boston, MA, U.S.A.). A Gauss post-reconstruction filter (FWHM = 1.0 mm) was applied to
the images and the scale of radioactivity was set as indicated on the images (minimum value = 0.7
Bq/voxel to maximum value = 70 Bq/voxel).

5. Conclusions

This study demonstrated that even subtle changes in the chemical structure may have a major
impact on the pharmacokinetic properties of a PSMA radioligand, as exemplified by the characteristics
of [177Lu]Lu-Ibu-PSMA-02 and [177Lu]Lu-Ibu-PSMA-01. [177Lu]Lu-Ibu-PSMA-02 comprising a shorter
linker showed unprecedentedly high tumor uptake as a consequence of a relatively high blood
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pool activity at early timepoints after injection. Further investigations are warranted to better
understand the relationship between the structure of ibuprofen-derivatized PSMA radioligands and
their in vivo properties.

Supplementary Materials: The following are available online, HPLC Purification and Analysis of Ibu-PSMA-02;
Radiolabeling, including Figure S1: HPLC chromatograms of radioligands obtained as a result of the quality control;
Radiolytic Stability, including, Figure S2: Radiolytic stability of [177Lu]Lu-Ibu-PSMA-02, [177Lu]Lu-Ibu-PSMA-01
and [177Lu]Lu-PSMA-617; Albumin-Binding Properties, including, Figure S3: Plasma protein-binding properties
of [177Lu]Lu-Ibu-PSMA-02 in comparison to [177Lu]Lu-Ibu-PSMA-01 and [177Lu]Lu-PSMA-617; Biodistribution,
including Tables S1–S3: Decay-corrected biodistribution data of [177Lu]Lu-Ibu-PSMA-02, [177Lu]Lu-Ibu-PSMA-01
and [177Lu]Lu-PSMA-617 obtained in PC-3 PIP/flu tumor-bearing mice and Figure S4: Tumor-to-kidney ratios
and tumor-to-liver ratios after injection of [177Lu]Lu-Ibu-PSMA-02 in comparison to [177Lu]Lu-Ibu-PSMA-01 and
[177Lu]Lu-PSMA-617; Area under the Curve (AUC) Values and AUC Ratios, including Figure S5: Area under the
curves (AUCs) of [177Lu]Lu-Ibu-PSMA-02 and [177Lu]Lu-Ibu-PSMA-01 and Table S4: Area under the curve (AUC)
values and ratios of AUCs based on non-decay-corrected biodistribution data; Whole-Body-Activity Measurement,
including Figure S6: Whole-body activity measured at various timepoints after injection of the radioligands;
Synthesis of Ibu-PSMA-02, including Scheme S1: Solid-phase synthesis of precursor 1 used for the formation of
Ibu-PSMA-02; Cell Culture; Dosimetric Calculations.

Author Contributions: Conceptualization, C.M. and L.M.D.; Methodology and execution, L.M.D., V.J.T., F.B.,
F.S.-G. and P.B.; Writing—Original Draft Preparation, L.M.D., V.J.T., and F.B.; Writing—Review & Editing, R.S.
and C.M.; Supervision C.M.; Resources, R.S., C.M.; Project Administration, C.M.; Funding Acquisition, C.M. All
authors have read and agreed to the published version of the manuscript.

Funding: Luisa M. Deberle and Francesca Borgna were co-funded by a research grant obtained from the
Swiss Cancer Research Foundation, grant number KFS-4678-02-2019-R (PI, Cristina Müller). Francesca Borgna
received funding from the European Union’s Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement, grant number 701647. Viviane Tschan was funded by an iDoc grant of the
Personalized Medicine and Related Technology (PHRT) program, grant number PHRT-301. Peter Bernhardt
was supported by the Swedish Cancer Society, Jubilee Clinic Cancer Research Foundation, Swedish Research
Council, and Swedish State ALF agreement. The whole project was supported by Isotope Technologies Garching
GmbH, Germany.

Acknowledgments: The authors thank Susan Cohrs for technical assistance. The authors thank Dr. Konstantin
Zhernosekov, ITM Medical Isotopes GmbH, Germany, for providing no-carrier-added lutetium-177.

Conflicts of Interest: The authors declare that the following competing financial interest(s): Patent applications
on PSMA ligands with albumin-binding entities have been filed by Isotope Technology Munich (ITM) AG. The
funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing
of the manuscript, or in the decision to publish the results.

References

1. Silver, D.A.; Pellicer, I.; Fair, W.R.; Heston, W.D.; Cordon-Cardo, C. Prostate-specific membrane antigen
expression in normal and malignant human tissues. Clin. Cancer Res. 1997, 3, 81–85. [PubMed]

2. Cunha, A.C.; Weigle, B.; Kiessling, A.; Bachmann, M.; Rieber, E.P. Tissue-specificity of prostate specific
antigens: Comparative analysis of transcript levels in prostate and non-prostatic tissues. Cancer Lett. 2006,
236, 229–238. [CrossRef] [PubMed]

3. Bouchelouche, K.; Choyke, P.L. Prostate-specific membrane antigen positron emission tomography in prostate
cancer: A step toward personalized medicine. Curr. Opin. Oncol. 2016, 28, 216–221. [CrossRef] [PubMed]

4. Haberkorn, U.; Eder, M.; Kopka, K.; Babich, J.W.; Eisenhut, M. New strategies in prostate cancer:
Prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin. Cancer. Res. 2016, 22,
9–15. [CrossRef] [PubMed]

5. Eiber, M.; Fendler, W.P.; Rowe, S.P.; Calais, J.; Hofman, M.S.; Maurer, T.; Schwarzenboeck, S.M.; Kratowchil, C.;
Herrmann, K.; Giesel, F.L. Prostate-specific membrane antigen ligands for imaging and therapy. J. Nucl. Med.
2017, 58, 67S–76S. [CrossRef]

6. Benešová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.;
Kopka, K.; Eder, M. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized
linker moiety for imaging and endoradiotherapy of prostate cancer. J. Nucl. Med. 2015, 56, 914–920.
[CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/9815541
http://dx.doi.org/10.1016/j.canlet.2005.05.021
http://www.ncbi.nlm.nih.gov/pubmed/16046056
http://dx.doi.org/10.1097/CCO.0000000000000277
http://www.ncbi.nlm.nih.gov/pubmed/26967720
http://dx.doi.org/10.1158/1078-0432.CCR-15-0820
http://www.ncbi.nlm.nih.gov/pubmed/26728408
http://dx.doi.org/10.2967/jnumed.116.186767
http://dx.doi.org/10.2967/jnumed.114.147413


Molecules 2020, 25, 2542 16 of 16

7. Weineisen, M.; Schottelius, M.; Simecek, J.; Baum, R.P.; Yildiz, A.; Beykan, S.; Kulkarni, H.R.; Lassmann, M.;
Klette, I.; Eiber, M.; et al. 68Ga- and 177Lu-labeled PSMA I&T: Optimization of a PSMA-targeted theranostic
concept and first proof-of-concept human studies. J. Nucl. Med. 2015, 56, 1169–1176. [CrossRef]

8. Sartor, A.O.; Morris, M.J.; Messman, R.; Krause, B.J. VISION: An international, prospective, open-label,
multicenter, randomized phase 3 study of 177Lu-PSMA-617 in the treatment of patients with progressive
PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2020, 38, TPS259.
[CrossRef]

9. Lau, J.; Jacobson, O.; Niu, G.; Lin, K.S.; Benard, F.; Chen, X. Bench to bedside: Albumin binders for improved
cancer radioligand therapies. Bioconjug. Chem. 2019, 30, 487–502. [CrossRef]

10. Choy, C.J.; Ling, X.; Geruntho, J.J.; Beyer, S.K.; Latoche, J.D.; Langton-Webster, B.; Anderson, C.J.; Berkman, C.E.
177Lu-Labeled phosphoramidate-based PSMA inhibitors: The effect of an albumin binder on biodistribution
and therapeutic efficacy in prostate tumor-bearing mice. Theranostics 2017, 7, 1928–1939. [CrossRef]

11. Benešová, M.; Umbricht, C.A.; Schibli, R.; Müller, C. Albumin-binding PSMA ligands: Optimization of the
tissue distribution profile. Mol. Pharm. 2018, 15, 934–946. [CrossRef] [PubMed]

12. Kelly, J.M.; Amor-Coarasa, A.; Nikolopoulou, A.; Wustemann, T.; Barelli, P.; Kim, D.; Williams, C., Jr.; Zheng, X.;
Bi, C.; Hu, B.; et al. Dual-target binding ligands with modulated pharmacokinetics for endoradiotherapy of
prostate cancer. J. Nucl. Med. 2017, 58, 1442–1449. [CrossRef] [PubMed]

13. Dumelin, C.E.; Trüssel, S.; Buller, F.; Trachsel, E.; Bootz, F.; Zhang, Y.; Mannocci, L.; Beck, S.C.;
Drumea-Mirancea, M.; Seeliger, M.W.; et al. A portable albumin binder from a DNA-encoded chemical
library. Angew. Chem. Int. Ed. Engl. 2008, 47, 3196–3201. [CrossRef] [PubMed]

14. Wang, Z.; Jacobson, O.; Tian, R.; Mease, R.C.; Kiesewetter, D.O.; Niu, G.; Pomper, M.G.; Chen, X.
Radioligand therapy of prostate cancer with a long-lasting prostate-specific membrane antigen targeting
agent 90Y-DOTA-EB-MCG. Bioconjug. Chem. 2018, 29, 2309–2315. [CrossRef]

15. Zang, J.; Fan, X.; Wang, H.; Liu, Q.; Wang, J.; Li, H.; Li, F.; Jacobson, O.; Niu, G.; Zhu, Z.; et al. First-in-human
study of 177Lu-EB-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Eur. J. Nucl.
Med. Mol. Imaging 2019, 46, 148–158. [CrossRef]

16. Umbricht, C.A.; Benešová, M.; Schibli, R.; Müller, C. Preclinical development of novel PSMA-targeting
radioligands: Modulation of albumin-binding properties to improve prostate cancer therapy. Mol. Pharm.
2018, 15, 2297–2306. [CrossRef]

17. Deberle, L.M.; Benešová, M.; Umbricht, C.A.; Borgna, F.; Büchler, M.; Zhernosekov, K.; Schibli, R.; Müller, C.
Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity.
Theranostics 2020, 10, 1678–1693. [CrossRef]

18. Kelly, J.; Amor-Coarasa, A.; Ponnala, S.; Nikolopoulou, A.; Williams, C., Jr.; Schlyer, D.; Zhao, Y.; Kim, D.;
Babich, J.W. Trifunctional PSMA-targeting constructs for prostate cancer with unprecedented localization to
LNCaP tumors. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1841–1851. [CrossRef]

19. Müller, C.; Umbricht, C.A.; Gracheva, N.; Tschan, V.J.; Pellegrini, G.; Bernhardt, P.; Zeevaart, J.R.; Koster, U.;
Schibli, R.; van der Meulen, N.P. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer.
Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1919–1930. [CrossRef]

20. Kelly, J.M.; Amor-Coarasa, A.; Ponnala, S.; Nikolopoulou, A.; Williams, C., Jr.; DiMagno, S.G.; Babich, J.W.
Albumin-binding PSMA ligands: Implications for expanding the therapeutic window. J. Nucl. Med. 2019, 60,
656–663. [CrossRef]

21. Umbricht, C.A.; Benešová, M.; Schmid, R.M.; Türler, A.; Schibli, R.; van der Meulen, N.P.; Müller, C.
44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617-preclinical investigations in
comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res. 2017, 7, 9. [CrossRef] [PubMed]

22. Salvat, F. PENELOPE2014: A code system for Monte-Carlo simulation of electron and photon transport.
OECD/NEA Data Bank: NEA/NSC/DOC 2015, 3. Available online: https://www.oecd-nea.org/science/docs/
2015/nsc-doc2015-3.pdf (accessed on 29 May 2020).

Sample Availability: Samples of the compounds are not available from the authors.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2967/jnumed.115.158550
http://dx.doi.org/10.1200/JCO.2020.38.6_suppl.TPS259
http://dx.doi.org/10.1021/acs.bioconjchem.8b00919
http://dx.doi.org/10.7150/thno.18719
http://dx.doi.org/10.1021/acs.molpharmaceut.7b00877
http://www.ncbi.nlm.nih.gov/pubmed/29400475
http://dx.doi.org/10.2967/jnumed.116.188722
http://www.ncbi.nlm.nih.gov/pubmed/28450562
http://dx.doi.org/10.1002/anie.200704936
http://www.ncbi.nlm.nih.gov/pubmed/18366035
http://dx.doi.org/10.1021/acs.bioconjchem.8b00292
http://dx.doi.org/10.1007/s00259-018-4096-y
http://dx.doi.org/10.1021/acs.molpharmaceut.8b00152
http://dx.doi.org/10.7150/thno.40482
http://dx.doi.org/10.1007/s00259-018-4004-5
http://dx.doi.org/10.1007/s00259-019-04345-0
http://dx.doi.org/10.2967/jnumed.118.221150
http://dx.doi.org/10.1186/s13550-017-0257-4
http://www.ncbi.nlm.nih.gov/pubmed/28102507
https://www.oecd-nea.org/science/docs/2015/nsc-doc2015-3.pdf
https://www.oecd-nea.org/science/docs/2015/nsc-doc2015-3.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Synthesis of Ibu-PSMA-02 
	Radiolabeling and Radiolytic Stability 
	In Vitro Evaluation 
	Determination of the n-Octanol/PBS Distribution Coefficient 
	Albumin-Binding Properties 
	Cell Uptake and Internalization 
	Determination of PSMA-binding Affinity 

	Biodistribution Studies 
	Dosimetric Calculations 
	SPECT/CT Imaging 

	Discussion 
	Material and Methods 
	Synthesis of Ibu-PSMA-02 
	Radiolabeling and Radiolytic Stability 
	Determination of LogD Values 
	Albumin-Binding Properties 
	Cell Culture and Cell Experiments 
	Tumor Mouse Model 
	Biodistribution Study 
	Dosimetric Calculations 
	In Vivo SPECT/CT Imaging 

	Conclusions 
	References

