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Measuring topology from dynamics by obtaining
the Chern number from a linking number
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Integer-valued topological indices, characterizing nonlocal properties of quantum states of

matter, are known to directly predict robust physical properties of equilibrium systems. The

Chern number, e.g., determines the quantized Hall conductivity of an insulator. Using non-

interacting fermionic atoms in a periodically driven optical lattice, here we demonstrate

experimentally that the Chern number determines also the far-from-equilibrium dynamics of

a quantum system. Extending a respective proposal to Floquet systems, we measure the

linking number that characterizes the trajectories of momentum-space vortices emerging

after a strong quench. We observe that it directly corresponds to the ground-state Chern

number. This one-to-one relation between a dynamical and a static topological index allows

us to experimentally map out the phase diagram of our system. Furthermore, we measure the

instantaneous Chern number and show that it remains zero under the unitary dynamics.
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Topological quantum matter has recently received much
attention, because it constitutes an entirely new class of
quantum phases and has potential applications ranging

from precision measurements to quantum information proces-
sing and spintronics1. These phases are characterized by the
absence of symmetry breaking and of a local order parameter and
are therefore beyond the conventional classification of phase
transitions. Instead, they are characterized by integer topological
indices, which are topologically protected and can only change
value at a gap closing. An important role is played by the Chern
number, which characterizes the topology of filled bands in two-
dimensional lattice systems. It captures the winding of the
eigenstates and is defined via the integral of the Berry curvature
over the first Brillouin zone. A band with non-zero Chern
number is topologically non-trivial. When the highest occupied
band is non-trivial and completely filled, the state is called a
topological insulator. Non-zero Chern numbers are also at the
origin of the integer Quantum Hall effect, which arises in two-
dimensional systems subject to a strong perpendicular magnetic
field, and they are responsible for the perfect quantization of the
Hall conductance. Via the bulk-boundary correspondence prin-
ciple, the Chern number of the bulk bands also dictates the
number of chiral conducting edge states, which lie in the band
gap and give rise to topologically protected transport.

Ultracold quantum gases are a promising experimental plat-
form to explore these effects. On the one hand, they allow for the
realization of topologically nontrivial band structures and artifi-
cial gauge fields2–9 and on the other hand typical time scales for
dynamical studies are experimentally accessible. Example, para-
digmatic topological band models have been realized: the Hof-
stadter model describing a lattice with a net magnetic flux and the
Haldane model on the honeycomb lattice, which contains topo-
logically non-trivial bands even in the absence of a net magnetic
flux. Moreover, they offer the perspective of combining these
effects with strong interactions (see, e.g., refs. 10–12), which can be
tuned independently. In cold atom systems, the Chern number
was measured for the Hofstadter model13 using transport mea-
surements and for the Haldane model using quantized circular
dichroism14.

Here we experimentally investigate a fascinating connection
between the topological properties of the ground state and its far-
from-equilibrium dynamics following a strong quench from a
topologically trivial system that was recently proposed in ref. 15.
The state tomography reveals two kinds of vortices in momentum
space: (i) static vortices indicating the Dirac points and (ii)
dynamical vortices, which appear and disappear in pairs and trace
out a closed contour16. Whether this contour encloses one of the
static vortices or not is a topological index (called linking num-
ber), which directly corresponds to the ground-state Chern
number of the post-quench Hamiltonian15 (see Fig. 1). We
experimentally access this topological index for topologically
non-trivial systems. Furthermore, using this correspondence we
map out the phase diagram of a Floquet-engineered Haldane-type
lattice model, characterized by different Chern numbers. This
characterization constitutes a direct measurement of Chern
numbers in the Haldane model. A similar approach for a spin-
orbit coupled band structure was recently demonstrated in ref. 17.
Finally, using the time-resolved state tomography of the time-
evolved wave function, we show experimentally that the instan-
taneous Chern number remains indeed zero during the dynamics.

Results
Floquet description of the driven hexagonal lattice. We start
with a hexagonal optical lattice18 with two sublattices A and B,
which are connected by nearest-neighbor (NN) tunneling matrix
elements JAB and have a potential offset of ΔAB (see Fig. 2). It is
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Fig. 1 Illustration of the linking number of dynamical vortices. The figure
shows the Brillouin zone (hexagon) and trajectories of momentum-space
phase vortices. One can define a linking number between the static vortices
(straight green line) and the dynamical vortex contour (gray closed line).
The linking number is zero in the left panel and one in the right panel, which
can be directly mapped to the Chern number of the underlying Hamiltonian
(illustrated by the sphere and torus). The initial Hamiltonian is assumed to
be topologically trivial throughout the manuscript, which is ensured by
starting with a static optical lattice, where time-reversal symmetry is not
broken
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Fig. 2 Experimental realization of topological bands in driven optical
lattices. a Three laser beams (red arrows) interfere under 120° and form a
hexagonal optical lattice. The geometry can be tuned via the polarisation of
the lattice beams using two wave plates (gray lines). The lattice can be
accelerated along a circular trajectory by modulating the phases of the
lattice laser beams. b Illustration of the tight-binding model of the bare
lattice (left) and the effective Hamiltonian for the driven lattice (right). The
renormalized tunnel elements arise from a shaking frequency ω and shaking
amplitude α. The sublattice offset in the effective Hamiltonian can be tuned
via the shaking detuning δ
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described by the bare Hamiltonian

Ĥ0 ¼ �
X
hl′ li

JABâ
y
l′ âl þ

X
l2B

ΔABn̂l ð1Þ

where âl and n̂l denote the annhiliation operator and number
operator for a fermion at site l and 〈l′l〉 denotes a pair of nearest-
neighboring sites.

Via lattice shaking2–8,19–25 we induce a circular inertial force of
angular frequency ω ¼ ΔAB=�h� δ and amplitude F ¼ α�hω=a,
with small detuning δ, site spacing a, and dimensionless driving
strength α. The resulting Floquet system is described by a time-
independent effective Hamiltonian24, which is given by (see
Methods)

ĤF ¼ �
X
hl′ li

JeffABâ
y
l′ âl þ

X
hhl′ liiA

JeffAAâ
y
l′âl þ

X
hhl′ liiB

JeffBB â
y
l′ âl þ

X
l2B

Δeff n̂l:

ð2Þ
The notation 〈〈l′l〉〉A corresponds to pairs of next-nearest

neighbor (NNN) sites on the A sublattice. In the limit of low
driving strength, the expressions for the effective tunnel elements
read JeffAB ’ α

2 JABe
iϕl′ l with Peierls phases ϕl′l for NN tunneling and

JeffAA ¼ �JeffBB ’ J2AB=�hω for NNN tunneling, which arises as a
superexchange process. The effective sublattice offset becomes
Δeff ¼ �hδ þ 3J2AB=�hω (see Fig. 2b). Note that in contrast to
the case without initial sublattice offset5,26,27, we realize the
Hamiltonian in a gauge, where the Peierls phases appear at the
NN tunneling, which gives rise to a shifted band structure with
one of the Dirac points at the Γ point8. The band structure of the
Hamiltonian undergoes topological phase transitions between
different lowest band Chern numbers C= 0 and C= ±1 at the
parameters �hδ ’ �15J2AB=�hω and �hδ ’ 3J2AB=�hω. We note that
the width of the non-trivial region is broader than in the case
without initial offset, because the effective next-nearest neighbor
tunnel elements are larger (∝α0 rather than ∝α2) (see Methods).
By going away from circular shaking to a general shaking phase ϕ
between x and y direction, one obtains the phase diagram shown
in Fig. 3 resembling that of the Haldane model28.

In this two-band model, the Hamiltonian and the time-evolved
modes can be visualized on a Bloch sphere for each quasimomen-
tum. The Hamiltonian is diagonal with respect to quasimomentum
k and can be written in the form

hðkÞ ¼ h0ðkÞ þ σ � hðkÞ: ð3Þ
Here h (k) plays the role of a magnetic field coupling via the

vector of Pauli matrices σ to the pseudospin-1/2 degree of
freedom, which is spanned by the two sublattice states and
represented by a unit vector ψ(k) on the Bloch sphere. It induces
a k-dependent precession dynamics with angular velocity
2jhðkÞj=�h around itself. Its direction bhðkÞ ¼ hðkÞ=jhðkÞj deter-
mines the two eigenstates with Bloch vectors ψ ± ðkÞ ¼ �bhðkÞ
forming both Bloch bands and, therefore, completely charac-
terizes the topology of the system. In fact, in such a two-band
system, the Chern number has a simple geometric interpretation:
it counts the number of times bhðkÞ covers the Bloch sphere for k
in the first Brillouin zone1. From the direction bhðkÞ one can
obtain the Berry curvature of the lowest band

ΩðkÞ ¼ 1
2
ð∂kxbhðkÞ ´ ∂kybhðkÞÞ � bhðkÞ: ð4Þ

and the corresponding Chern number C ¼ 1
2π

R
d2kΩðkÞ by

integration over the first Brillouin zone.

Time-resolved state tomography. In order to access the topology
of our system, we use a state tomography scheme, which was

introduced in ref. 29 and demonstrated in ref. 8. Here, we are
interested in the dynamics of the state after a quench between two
Hamiltonians hi(k) and hf(k) and use a time-resolved state
tomography16, which involves a projection onto a tomography
Hamiltonian ht(k), i.e. a double quench protocol, as illustrated in
Fig. 4 for the special case ht (k)= hi(k).

The key idea of the tomography is to observe a precession
under the action of the tomography Hamiltonian, which can be
observed in time-of-flight measurements. For the state |ψ(k)〉 =
cos(θ(k)/2)|A,k〉+ sin(θ(k)/2)eiϕ(k)|B,k〉 corresponding to the
Bloch vector

ψðkÞ ¼
sinðθðkÞÞcosðϕðkÞÞ
sinðθðkÞÞsinðϕðkÞÞ

cosðθðkÞÞ

0
B@

1
CA; ð5Þ

the momentum distribution after a time-of-flight measurement
reads

nðkÞ ¼ f ðkÞjhA; kjψðkÞi þ hB; kjψðkÞij2
¼ f ðkÞf1þ sinðθðkÞÞcosðϕðkÞÞg; ð6Þ

where (|A, k〉, |B, k〉) are the poles of the Bloch sphere and f(k) is
the Fourier transform of the Wannier function. This measure-
ment is nothing but a projection onto the x-axis of the Bloch
sphere, |x,k〉 = (|A,k〉 + |B,k〉)/2, as can be easily seen by
comparing the x-component of the Bloch vector with the second
expression for the momentum density n(k).

In all experiments described in the manuscript, we start with a
filled lowest band |ψi(k)〉 of the initial Hamiltonian describing the
bare lattice and quench into the final Hamiltonian describing the
shaken lattice, i.e. between the two “magnetic fields” hi(k) and hf(k).
After a variable evolution time t, we perform state tomography in
the basis of the initial lattice by quenching to the tomography
Hamiltonian ht(k) = hi(k) and letting the system evolve for a
time t′. The quenched state precesses around ht(k), with the
frequency ΔAB given by the band gap of the tomography
Hamiltonian. This dynamics gives rise to an oscillatory signal
for the momentum distribution

nðk; t′Þ ¼ f ðkÞf1þ sinðθðkÞÞcosðΔABt′þ ϕðkÞÞg; ð7Þ
from which θ(k) and ϕ(k) can be extracted (see Fig. 4c).
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Fig. 3 Topological phase diagram. Calculated Haldane-like phase diagram of
the driven hexagonal lattice with regions of different Chern number
(parameters: ω= 2π ⋅ 6410 Hz, α= 1.28, the detuning δ is varied by
changing the initial offset ΔAB via the lattice depth). The experiments are
performed for circular shaking (along the gray line and also for the gray
point in the C=−1 area). For the parameters of ΔAB and JAB for the varying
lattice depths see Supplementary Fig. 1
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The original tomography scheme8,16,29 and the proposal for
the linking number ref. 15 assume that the tomography
Hamiltonian ht(k) is diagonal in the sublattice-basis, i.e.
corresponds to completely decoupled A and B sublattices and
with flat dispersion relations. In that case, one directly measures
the angles θ(k) and ϕ(k) defined above and can straight-forwardly
obtain the Berry curvature of the lowest band via Eq. (4).

State tomography with dispersive bands. Here, we extend this
concept to a state tomography in dispersive bands, i.e. ht(k) being
non-diagonal in the sublattice-basis and k-dependent. Because
both the initial and the tomography Hamiltonian are realized as
the same static lattice, this allows us to start with dispersive bands
JAB=ΔAB ’ 0:08ð Þ, yielding a much broader non-trivial region
(18J2AB=�hω ’ h � 500Hz, see above), which is easier to access
experimentally even in the presence of an external trap. As a
central result, we find that the topological properties can be
faithfully obtained from the tomography in dispersive bands, as
long as the tomography basis is itself topologically trivial, which is
always ensured when using the static optical lattice for the
tomography. This also demonstrates the topological robustness in
our system against distortions. We note that a measurement in
the diagonal basis, i.e. corresponding to completely flat bands, is
possible via Stern-Gerlach separation when using internal atomic
levels as spin instead of the sublattice pseudospin to generate
topological structures17,30.

While the phase profile is, in general distorted for tomography in
non-flat bands, we will show here that the topological information
encoded in the vortex trajectories is not altered. Since the linking
number of the vortex trajectories can only have discrete quantized
values, it is topologically protected and cannot be changed by the
distorted phase profile measured in the tomography in dispersive
bands. This robustness of topological defects is a general feature and
was also used in the related work of ref. 9. While the effect of
dispersive bands of the initial Hamiltonian was discussed in
refs. 15,16,31, the effect of dispersive bands of the tomography
Hamiltonian was not discussed previously.

As long as the initial state is trivial, the linking number
observed after the double-quench protocol reflects the Chern
number of the ground state of the final Hamiltonian hf(k).
Namely, a trivial dispersive band structure corresponds to a mapbhtðkÞ that does not wrap around the Bloch sphere, but covers
only a part of the Bloch sphere. Thus, we can continuously
deform bhtðkÞ so that it points to the north pole for every k-point
which is again a topologically trivial state. We do this by the
k-dependent rotation defined by

ehtðkÞ ¼ R̂ðbn; θtðkÞÞbhtðkÞ
¼ R̂ðsinϕtðkÞbex � cosϕtðkÞbey; θtðkÞÞbhtðkÞ; ð8Þ

where the transformation is captured by the vector θ̂tðkÞ
(pointing along bnðkÞ) and having the length of θt (k). Since
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Fig. 4 Illustration of the time-resolved state tomography. a The states of the two-band model can be visualized on a Bloch sphere with the eigenstates of
the two bare bands on the poles. (i) We initialize the state of the system in the lower bare band of bhiðkÞ (south pole). (ii) We quench into the final Floquet
system bhf ðkÞ by suddenly switching on the lattice shaking. The state Bloch vectors (black arrow) evolve on the Bloch sphere according to the Floquet
Hamiltonian. (iii) We measure the time-evolved state by projecting back onto the bare bands of bhiðkÞ and following the dynamics. When the time-evolved
state Bloch vector ψ(k, t) is at one of the poles, this leads to the absence of dynamics in the tomography and to a vortex in the azimuthal phase profile.
b Example image of the momentum density n(k) obtained by time-of-flight expansion for detuning δ=−2π ⋅ 372 Hz, evolution time t= 0.429ms and
tomography time t ′= 104 μs. The hexagon marks the first Brillouin zone. c The interference of the A and B sublattices maps the precession onto an
oscillation in the density, from which one obtains the phase ϕ(k, t) and the amplitude sin (θ (k, t)) (compare Eq. (7)). The plot shows the oscillation with
the respective fit for a selected pixel in the image in b, i.e. a single momentum state, and for the evolution time t= 0.429ms (blue) and t= 0.624ms (red)
in the Floquet system. While the illustration assumes flat bands for simplicity, where the initial state points to the south pole, the conclusions about the
topology remain valid for the dispersive bands used in the experiment
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bhtðkÞ is smooth in k, fully gapped and topologically trivial,
R̂ðbn; θtðkÞÞ is continuous in k as well. When this rotation is
applied to the Hamiltonians in the remaining stages of the
experiment, bhf ðkÞ and bhiðkÞ, it does not change the topology of
their band structures. Namely, it does not change the number of
times bhf ðkÞ wraps around the Bloch sphere. One can consider a
patch in k-space and its image under the map bhf ðkÞ. The
continuous rotation R̂ðbn; θtðkÞÞ can stretch, compress, rotate, or
shift this patch on the sphere but cannot cut it open. Once we
perform this rotation on the Hamiltonians in all three stages,bhiðkÞ;bhf ðkÞ and bhtðkÞ (assuming bhtðkÞ ¼ bhiðkÞ), the rest of the
discussion follows as described by Wang et al. in ref. 15.

In this rotated frame, the tomography Hamiltonian ehtðkÞ is
parallel to the z-axis and again we have a precession around the
z-axis. But now the signal that we measure is the projection on
the rotated x-axis. As a result, the phase of the measured
oscillatory dynamics is not the azimuthal angle of
jψf ðk; tÞi ¼ e�ihf ðkÞ�σt jψiðkÞi. Nevertheless, the phase distribu-
tion possesses vortices whenever ψf ðk; tÞjjbez . At k-values for
which ψiðkÞjjehf ðkÞ, the initial state Bloch vector cannot precess
and when projected onto ehtðkÞ, we observe a static singularity
in the tomography. On the other hand, at some k-value, if the
rotated quench Hamiltonian is perpendicular to the initial state
Bloch vector ψiðkÞ?ehf ðkÞ, after some precession time t, the
Bloch vector reaches the �ehtðkÞ direction (effective north pole)
and gives rise to a dynamic vortex in the tomography.

Chern number from tomography in dispersive bands. The state
tomography in dispersive, but topologically trivial bands also
gives access to the Chern number. It corresponds to a recon-
struction of the state in a basis, which is itself non-diagonal in the
sublattice-basis and has itself finite Berry curvature. Therefore the

relation of the measured angles θ(k) and ϕ(k) to the Berry cur-
vature is more involved and would in principle require the
knowledge of the dispersive bands, i.e., the rotation matrix R̂.
Instead we introduce the distorted Berry curvature by inserting θ
(k) and ϕ(k) directly in Eq. (4). The integral of the distorted Berry
curvature over the full Brillouin zone is quantized, just like the
integral over the real Berry curvature, and is equal to the Chern
number. This is the case, because the rotation matrix R̂ quanti-
fying the distortion due to ht(k) does not create a monopole as
long as the tomography basis is topologically trivial. More pre-
cisely, the quantization of the Chern number holds for any
pseudospin texture and the rotation does not change the topol-
ogy, which is still determined by the direction of the pseudospin
at the Dirac points, where the rotation matrix is identity. This
faithful measurement of topological properties even in the basis of
dispersive bands underlines the versatility of the state tomo-
graphy approach.

Measurement of the instantaneous Chern number. As a central
result, we measure the instantaneous Chern number of the time-
evolved state after a quench into a non-trivial Hamiltonian. We
obtain the instantaneous distorted Berry curvature from the time-
resolved state tomography in dispersive bands shown in Fig. 5.
We find that after the quench the state develops a strong Berry
curvature with finer and finer structure, but the extracted Chern
number stays very close to zero with |C| < 0.02. This confirms the
finding that the Chern number, which is dictated by the trivial
Hamiltonian before the quench, cannot change under unitary
dynamics32–35. Recently it was suggested that, conversely, the
Chern–Simons invariant in one-dimensional systems can change
during dynamics36.

The tomography scheme cannot differentiate between the
northern and southern hemisphere of the Bloch sphere, because it
gives access to sin (θ(k)) instead of θ(k) itself. This could in
principle be complemented by adiabatic band mapping
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measurements29. Alternatively, one can identify the momenta,
where the state points to the equator and changes between two
hemispheres, and correct the sign of the Berry curvature
correspondingly29. In Fig. 5, we identify these momenta and
mark them by dashed lines. These momenta are identified via a
local maximum of sin (θ(k)), although due to damping in the
system, which originates from Floquet heating, sin (θ(k)) does not
reach one. In the data of the distorted Berry curvature, it is
evident, that the curvature cancels to zero separately for each
region separated by the dashed lines. Therefore a sign correction
is not necessary.

Observation of dynamical vortices. While the time-evolved state
has an instantaneous Chern number of zero independent of the
Chern number of the underlying post-quench Hamiltonian, its
dynamics contains information about the topology of the latter
via the vortex structure of the phase profile.

In the remainder of the manuscript, we, therefore, focus on
the vorticity of the phase profiles of the time-resolved
state tomography (see Fig. 6). We calculate the vorticity as
v(k)=∇k ×∇kϕ(k) and integrate it over different evolution times
in the Floquet system. From this analysis, we clearly identify the
static vortices at the Γ and K′ or K points and the dynamical
vortices, which appear and disappear in pairs and trace out a
closed contour16 (see Fig. 6c).

Mapping between Chern number and linking number. As we
show in the following, the Chern number of the underlying
Hamiltonian maps to the linking number of these dynamical
vortices, which counts whether this contour encloses one of the
static vortices or not15. The central idea is that the Chern number
corresponds to the wrapping of the Bloch sphere, which can be
measured by observing whether bhðkÞ contains both poles while
smoothly covering the equator (see Fig. 7). The question of
covering of the full sphere can be reduced to covering the two
poles, because bhðkÞ is forced to point to either pole at the two
Dirac points: this choice dictates the Semenoff masses of the
Dirac points, which determine the Chern number. We note that

the topology can be inferred by studying isolated points on the
Bloch sphere, because bhf ðkÞ is smooth, continuous and dis-
persive, i.e. it smoothly spreads around the Bloch sphere15. The
topology of bhf ðkÞ is entirely encoded in the vortices of this phase
profile. Namely, the linking number associated with the trajec-
tories of vortices directly corresponds to the Chern number15,31.
While static vortices appear at the Dirac points, where bhf ðkÞ
points to one of the poles of the Bloch sphere, the contours of
dynamical vortices correspond to those k where bhf ðkÞ points to
the equator. A topologically nontrivial Hamiltonian containing
both poles requires this contour to encircle a static vortex so that
it has to be crossed once (or an odd number of times) between the
two static vortices. The absence of a dynamical vortex contour
can, therefore, be identified with a Chern number zero. Impor-
tantly, the topology is not signaled by the mere existence of a
contour, but by its topological index: trivial contours that do not
enclose a static vortex are explicitly possible.

Note that the argument can be formulated in a more general
framework by considering the inverse images of any two
orthogonal vectors on the Bloch sphere15. The Chern number
then maps onto the linking number of the two trajectories in the
space spanned by kx, ky and time (compare Fig. 1) and can be
related to a Hopf invariant. Such a linking number characterizing
a Hopf insulator was recently observed in a quantum simulation
using a nitrogen vacancy center37. This more general picture of
two contours in a three-dimensional space, which can link, is the
reason for the term linking number, which we also use here when
looking at the projection onto the kx, ky plane.

The arguments can also be extended to large Chern numbers
|C| > 1. This situation would correspond either to multiple pairs
of static vortices that are (individually or jointly) encircled by a
dynamical vortex contour or to multiply charged static vortices
(defined by multiple phase windings) encircled by a dynamical
vortex contour. Large Chern numbers |C| > 1 can, e.g., appear for
strong third-neighbor hopping terms in the N3 Haldane model
giving rise to additional satellite Dirac points38–40. In driven
hexagonal lattices, this can occur when the next-neighbor
tunneling is renormalized close to zero41.

Time t

x

y

Phase vortex

Anti-vortex
Time-integrated
vortex structure
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b c

π
t3t2t1

–π

K

	

K ′

0

Fig. 6 Extracting the vorticity of the phase profiles. a Azimuthal phase profile ϕ(k) of the time-evolved state with the identified vortices marked by red and
blue circles as a guide to the eye. b Vorticity of the phase profiles with the position of the vortices and anti-vortices marked by blue and red squares,
respectively. While the phase profile itself is distorted for state tomography in dispersive bands, the vortices can be clearly identified and their
interpretation is not compromised. c The time-integrated vorticity clearly shows the static vortices at the Γ and K′ points and the closed contour of
dynamical vortices. The detuning is δ=−2π ⋅ 372 Hz; the evolution times are t1= 0.507ms, t2= 0.663ms and t3= 0.819ms
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Measurement of the topological phase diagram. As a central
result, we use the relation between the linking number and the
Chern number to experimentally map out the topological phase
transition of the effective Hamiltonian. Figure 8a shows data of
the time-integrated vorticity for different quenches into Chern 0
and Chern 1 areas of the phase diagram (different detunings of
the lattice shaking). While the static vortices at the Γ and K′
points are visible in all data sets, one clearly recognizes additional
vortex contours in the data sets for near-resonant shaking. We
easily count the linking number of these contours and thereby
obtain the Chern number of the final Hamiltonian. With respect
to the detuning δ, we obtain the phase diagram shown in Fig. 8b.
It features a topologically non-trivial region with Chern number 1
for a finite interval of detunings (corresponding to small values of
Δeff) surrounded by topologically trivial regions. The measured
Chern number agrees well with the theoretical prediction
obtained from a numerical simulation (see Methods). While the
phase data gets noisier for long evolution times, possibly leading

to additional fake vortices in the data evaluation, this does not
cause a problem, because they do not describe closed contours
around static vortices and will therefore not contribute to the
linking number. This topological quantity is protected against
noise. However, the vortices in Fig. 8a (iii) at long evolution times
(light hue) are mostly not due to noise, but to the coherent
dynamics, which allows additional vortices to appear.

Extracting the sign of the Chern number. The sign of the Chern
number can be obtained from an analysis of the chiralities of the
observed vortices and their direction of motion (see Fig. 9)
(compare ref. 15). We can define a chirality χd of the dynamical
vortex contour from the direction in which the dynamical vor-
tices of positive chirality move. The sign of the linking number
can then be defined as the product—χdχs with χs denoting the
chirality of the enclosed static vortex. From this sign, one directly
obtains the sign of the Chern number of the lower Bloch band
(see Methods). Figure 9 shows time-resolved vortex data for two
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Fig. 7 Illustration of the mapping between linking number and Chern number. a The inverse images of the poles on the Bloch sphere form contours in the
Brillouin zone. At the Dirac points, where the Hamiltonian points to one of the poles, there is no dynamics and the state will stay at the south pole and give
rise to a static vortex (green and orange dots). Where the Hamiltonian lies on the equator, the time-evolved state will reach the north pole dynamically and
will give rise to a dynamic vortex. These dynamic vortices move on a contour, which is the inverse image of the equator of the Bloch sphere (gray line). The
Chern number of the Hamiltonian can be inferred from the linking number of the contour: if the dynamic vortex contour encloses one of the static vortices,
then both static vortices correspond to opposite poles so that the Hamiltonian is topologically nontrivial. This can be seen by following the dynamics along
a path connecting the two Dirac points (dashed line). In the depicted case, the Chern number is 1. b Same as (a), but for the case of a Chern number 0
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different directions of the circular lattice shaking, which leads to
Chern numbers of opposite sign. While the chirality of the vortex
contour is the same in both cases, the chirality of the enclosed
vortex changes with the driving direction, directly indicating the
opposite sign of the Chern number.

Measurement of the micromotion. In order to get a better
resolution of the vortex dynamics, we measure the dynamics in
steps of a quarter of the driving period T= 2π/ω= 156 μs. We
thus sample the micromotion of the Floquet system22–24,42.

Because the micromotion of the vortex positions is small com-
pared to the contours of their trajectories in our case (see
Methods), it has no influence on the measurement of the Chern
number.

In Fig. 10 we evaluate the micromotion of the static Dirac
points in the experimental data. We find an approximately
circular motion with the driving frequency or multiples of it as
predicted by the derivation presented in the Methods. As
expected from the scaling of the micromotion with JAB=ð�hωÞ
which is on the order of ~0.1, the amplitude of the micromotion

T
im

e 
(T

)
E

ne
rg

y/
h 

(k
H

z)

a

C
he

rn
 n

um
be

r

–25 –20 –15 –10

0

1

Detuning �/2π (Hz)

–1000 –500 0 500

151050–5 20

Detuning h� (J /h�)
AB
2

6

1
1

6

(i)

(ii) (iii)

(iv) (v)

(i) (iv)(iii)(ii) (v)

0

0.5

1

1.5

b

c

kykx

Fig. 8 Mapping out the topological phase diagram using the linking number. a Original data of the observed vortices summed over all time steps (red dot:
positive chirality, blue dot: negative chirality; the hue indicates the time step where the vortex was present). The hexagon marks the first Brillouin zone. The
dynamical vortex contours are highlighted by a guide-to-the-eye (gray line). b The Chern number is obtained from the linking number of these dynamical vortex
contours (or the absence of a contour) and plotted for various shaking detunings (cut through the phase diagram corresponding to the gray line in Fig. 3). The
region with non-trivial Chern number agrees well with the prediction from a full numerical calculation (solid line). c Calculated Floquet bands for various
detunings illustrating the closing of the Dirac points at the topological phase transitions

a

b


d = + 1


s = – 1

C = + 1


d = + 1


s = + 1

C = – 1

t3t2t1

t3t2t1

=
2�

�
�

=
�

−
2

6

1

6

T
im

e 
(T

)
T

im
e 

(T
)

1

6

1

6

1

Fig. 9 Sign of the linking number. a Vortex data in the non-trivial regime (shaking phase of π/2 and shaking detuning of δ/2π=−372 Hz). The first
subfigure shows the time-integrated data, while the other sub figures show successive stroboscopic time steps t1= 13⋅T/4, t2= 17⋅T/4, t3= 21⋅T/4
after the quench, where T is the driving period. The arrows mark the direction of motion of the respective vortices. The vortex contour has a positive
chirality, while the enclosed static vortex has a negative chirality, revealing the Chern number +1 (see text). b, Reverse shaking (gray point in Fig. 3) for
δ/2π=−359 Hz and for time steps t1= 14⋅T/4, t2 = 18⋅T/4, t3= 22⋅T/4 after the quench. The chirality of the enclosed vortex is now inverted and the
Chern number is −1

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09668-y

8 NATURE COMMUNICATIONS |         (2019) 10:1728 | https://doi.org/10.1038/s41467-019-09668-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


is very small (few percent of the lattice vector length |b|) and does
not affect the measurement of the topology of the system.

Discussion
In summary, we found experimental evidence that the Chern
number, which characterizes topologically non-trivial properties
of insulating equilibrium states of a quantum system, determines
also properties of its dynamics far away from equilibrium.
Namely, we observed that it directly corresponds to the linking
number of the trajectories of k-space vortices that emerge after a
strong quench. Furthermore, we measured the instantaneous
Chern number of the time-evolved state and found that it indeed
remains zero under the unitary dynamics. We also identified the
sign of the linking number from the chiralities of the vortices and

their direction of motion. We show that state tomography yields
the correct topological properties also for measurements in dis-
persive bands, which allows for broader non-trivial regions.

It is an interesting question in how far such a correspondence
between topological properties in equilibrium and far from
equilibrium can be generalized to other topological indices, such
as, e.g., the W3 winding number characterizing Floquet topolo-
gical phases43,44, to multi-band systems45, or to strongly inter-
acting systems. Our experiments present a direct measurement
and visualization of a topological index as opposed to the usual
approach of infering the topology from the quantization of a
response, e.g., the Hall conductance13 or circular dichroism14.

Methods
System preparation. The experiments start with an ultracold cloud of about
3 × 105 spin-polarized 40K atoms in the F= 9/2, mF = 9/2 state. We linearly ramp
up the hexagonal optical lattice in 10 ms and hold for another 5 ms before
switching on the lattice shaking. In the direction orthogonal to the hexagonal
lattice, the sample is harmonically confined, i.e. realizing a lattice of tubes. The
lattice is formed by the interference of three laser beams of wavelength λL = 1064
nm and we introduce an AB-offset by polarization control of the beams8. We image
the sample on a CCD camera after 21 ms of time-of-flight expansion, which leads
to a magnification where one lattice vector length |b| corresponds to 56 pixel. The
state tomography uses 32 time steps of 8 μs and a sinusoidal fit including an
exponential damping (see Fig. 4).

Exact numerical simulation of the driven lattice. To obtain the tight-binding
description of our lattice, we start from the known lattice geometry fixed by the
polarization of the lattice beams (linear polarization tilted 9° out of the lattice
plane, with a relative phase of the in-plane and out-of-plane polarization of 0, 2π/3,
and 4π/3 for the three beams). We calculate the exact band structure for this
geometry and different lattice depths V0. To determine a precise value of the lattice
depth, we use the band distance data of the bare lattice from the state tomography
and fit the exact band structure to it (see Supplementary Fig. 1 and Supplementary
Note 1). In this way, we compensate for small drifts of the lattice depth. We then fit
a tight-binding model to the exact band structure and obtain ΔAB, JAB, JAA, and JBB.
The values of JAA/h are in the range of 80–115 Hz and JBB/h in the range of −2
to −6 Hz. For the comparison with the effective Hamiltonian the small JAA and JBB
are neglected.

We compare our data to exact numerics of the driven tight-binding model
(Figs. 3 and 8). In this calculation, the time evolution operator Ûðt; 0Þ is calculated
via time slicing as a product of time evolution operators for constant Hamiltonians
(compare ref. 8). This method works for any evolution time t including sub-
stroboscopic time steps, where the micromotion is automatically taken into
account. It depends on the initial phase of the shaking, which we set to zero as in
the experiment. To obtain a prediction for the dynamical vortex contours, we
calculate the overlap of the time-evolved state jψðtÞi ¼ Ûðt; 0Þjψð0Þi with the
initial state |ψ(0)〉 and count momenta where this overlap is below a threshold of
0.02. This procedure finds the momenta, where the dynamical vortices are expected
taking the non-flatness of bands into account, while the finite threshold is due to
the numerical implementation. In the last column of Supplementary Fig. 1, these
numerical data are summed up for all time steps (using a resolution of eight-time
steps per driving period, in order to better resolve the contours). The phase
diagrams in Figs. 3 and 8 are obtained from this exact numerics and the Chern
number is calculated as the integral of the Berry curvature. The non-integer values
from the calculation on a finite grid in momentum space are removed by setting
the Chern number to zero or one based on a threshold of 0.5.

Tight-binding description. We consider a system of spinless fermions in a hex-
agonal lattice with sublattice offset Δ ¼ ν�hωþ �hδ that is near-resonantly driven by
a circular force FðtÞ ¼ �F½cosðωtÞbex þ sinðωtÞbey � [See Fig. 2b]. Here ν is an integer
and �hδ � �hω the detuning. (Our experiment is described by ν= 1, whereas the
case ν= 0 captures the Floquet topological insulator proposed in ref. 26, which was
realized both with optical wave guides27 and in an optical lattice experiment46). In
general, the system is described by the Hubbard Hamiltonian

ĤðtÞ ¼ �J
P
h‘′‘i

ây‘′â‘

þP
‘

½�r‘ � FðtÞ þ ðν�hωþ �hδÞδ‘2B�n̂‘;
ð9Þ

where ây‘ , â‘, and n̂‘ ¼ ây‘ â‘ denote the creation, annhilation, and number operator
for fermions on lattice site ‘ at position r‘, respectively, where J describes tunneling
between nearest neighbor pairs h‘′‘i, and where δ‘2B is one if ‘ lies in sublattice
B and zero otherwise. Since we do not consider any bare next-nearest-neighbor
hopping, here we have dropped the subscript indices used in the main text (J≡ JAB
and Δ≡ ΔAB) in order to make the notation simpler. The force F(t) is an inertial
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Fig. 10Micromotion of the static Dirac points. Position of the static vortices
for the observed time steps (multiples of 39 μs, driving period T is four time
steps). a Static vortex at the Γ point. b Static vortex at one of the K′ points.
The kx position is shifted by + 0.2|b| in a and + 0.7|b| in b for better
visibility. The motion is approximately circular with the kx direction (blue
points) being out of phase with the ky direction (orange points). The vortex
at the Γ point moves dominantly with the driving frequency. The vortex at
the K point moves dominantly at twice the driving frequency. The lines
show fits as a guide to the eye with the periods fixed at T and T/2,
respectively. Both amplitudes are very small (few percent of the lattice
vector length |b|). The positions are determined to the precision of a
single pixel of the images, which corresponds to 0.018|b|. The detuning is
δ/2π = −478 Hz
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force created by moving the lattice along a circular orbit in space, so that the
Hamiltonian describes the system in the reference frame co-moving with the
lattice.

Let |ψ(t)〉 denote the state of the system in the lattice frame. It is convenient to
perform a gauge transformation jψ′ðtÞi ¼ ÛyðtÞjψðtÞi and
Ĥ′ðtÞ ¼ ÛyðtÞĤðtÞÛðtÞ � i�hÛyðtÞ Û

:

ðtÞ, with the unitary operator

ÛðtÞ ¼ ÛshiftðtÞÛrotðtÞ
¼ exp i

P
‘

½χshift‘ ðtÞ þ χrot‘ ðtÞ�n̂‘
� �

;
ð10Þ

where

χshift‘ ðtÞ ¼ F
�hω r‘ � ½� sinðωtÞêx þ cosðωtÞêy �;

χrot‘ ðtÞ ¼ �νωtδ‘2B:
ð11Þ

While ÛshiftðtÞ integrates out the time-periodic shift in quasimomentum
induced by the circular force, ÛrotðtÞ captures a rotation of the pseudospin defined
by the sublattice degree of freedom and integrates out the resonant part ν�hω of the
sublattice imbalance Δ. The resulting transformed Hamiltonian reads

Ĥ′ðtÞ ¼ �
X
h‘′‘i

Jeiθ‘′‘ðtÞây‘′â‘ þ
X
‘

δδ‘2Bn̂‘; ð12Þ

with time-periodic Peierls phases θ‘′‘ðtÞ ¼ α sinðωt � φ‘′‘Þ � σ‘νωt. Here, we have
introduced the dimensionless driving strength α ¼ Fa=�hω, with a ¼ 1ffiffi

3
p 2

3 λL
denoting the distance between adjacent lattice sites, φ‘′‘ denotes the azimuthal
angle of the vector r‘′ � r‘, and σ‘ ¼ 1 σ‘ ¼ �1ð Þ for ‘ 2 A ‘ 2 Bð Þ.

The transformation preserves the periodic time dependence of the Hamiltonian
and removes large energy offsets of order �hω between neighboring sites. With that
it provides a good starting point for computing the effective time-independent
Hamiltonian ĤF and the periodic micromotion operator ÛFðtÞ in a high-frequency
approximation22,24, in terms of which the time-evolution operator for the
dynamics induced by Ĥ′ðtÞ takes the transparent form

Û′ðt; t0Þ ¼ ÛFðtÞ exp � i
�h
ðt � t0ÞĤF

� �
Ûy
Fð0Þ: ð13Þ

Note that the transformation ÛðtÞ restores also the translational symmetry of
the lattice, which was broken by the on-site potential �r‘ � FðtÞ, so that the Floquet
states of Ĥ′ðtÞ and the eigenstates of ĤF are Bloch states.

Effective Hamiltonian. In order to compute the effective Hamiltonian, we will
keep the two leading terms of the high-frequency expansion24,

ĤF � Ĥð1Þ
F þ Ĥð2Þ

F with Ĥð1Þ
F ¼ Ĥ0;

Ĥð2Þ
F ¼ P1

m¼1

½Ĥm ;Ĥ�m �
m�hω :

ð14Þ

Here,

Ĥm ¼ 1
T

R T
0 dt Ĥ′ðtÞe�imωt

¼ � P
h‘′‘i

JðmÞ
‘′‘

ây‘′â‘ þ δm;0

P
‘

�hδδ‘2Bn̂‘
ð15Þ

denote the Fourier components of the Hamiltonian, with tunneling parameters

JðmÞ
‘′‘

¼ JJ mþσ‘ν
ðαÞe�iðmþσ‘νÞφ‘′ ‘ , where J nðxÞ is an ordinary Bessel function of the

first kind.
Evaluating these terms, we find

ĤF � � P
h‘′‘i

Jeffh‘′‘iâ
y
‘′
â‘ �

P
hh‘′‘ii

Jeffhh‘′‘iiâ
y
‘′
â‘

þP
‘

Δeff δ‘2Bn̂‘;
ð16Þ

where hh‘′‘ii denote pairs of next-nearest neighbors. The effective nearest-
neighbor tunneling matrix elements,

Jeffh‘′‘i ¼ JJ σ‘ν
ðαÞe�iσ‘νφ‘′ ‘ ; ð17Þ

originate from the first-order term Ĥð1Þ
F . In turn, the effective next-nearest-

neighbor tunneling matrix elements

Jeffhh‘′‘ii ¼ � P1
m¼1

J2

m�hω J 2
m�σ‘ν

ðαÞeiðm�σ‘νÞðπþσhh‘′ ‘iiπ=3Þ
h

�J 2
mþσ‘ν

ðαÞeiðmþσ‘νÞðπþσhh‘′ ‘iiπ=3Þ
i
;

ð18Þ

stem from the first-order term and can be understood as a superexchange process.

Here, σhh‘′‘ii ¼ 1 σhh‘′‘ii ¼ �1
� �

for tunneling clockwise (counterclockwise)

around a hexagonal plaquette of the lattice. The effective sublattice offset

Δeff ¼ �hδ þ
X1
m¼1

zJ2

m�hω
J 2

m�σ‘ν
ðαÞ � J 2

mþσ‘ν
ðαÞ

� �
; ð19Þ

with coordination number z= 3, possesses contributions from both orders.

Comparison of models with and without initial offset. There is a fundamental
difference between the case ν ≠ 0; corresponding to our experiment with ν= 1, and
the experiments with the case ν= 0 described in refs. 27,46. For ν= 0, nearest-
neighbor tunneling is present already in the undriven system and second-order
next-nearest neighbor tunneling is a driving induced process. Conversely, for ν ≠ 0
nearest-neighbor tunneling has to be induced by the driving (since it is off-resonant
in the undriven lattice), while second-order next-nearest-neighbor tunneling
occurs already in the undriven system. This fact is reflected in the behavior of the
effective tunneling matrix elements in the limit of small driving strength α, where
we have

Jeffh‘′‘i ’ J þOðα2Þ;
Jeffhh‘′‘ii ’

ffiffi
3

p
α2

4
J2

�hω e
iσhh‘′ ‘iiπ=2 þOðα4Þ for ν ¼ 0;

ð20Þ

whereas

Jeffh‘′‘i ’ α
2 Jσ‘e

�iσ‘φ‘′ ‘ þOðα3Þ;
Jeffhh‘′‘ii ’ �σ‘

J2

�hω þOðα2Þ for ν ¼ 1:
ð21Þ

Here, we have used that J nðxÞ ¼ 1
jnj! ½sgnðnÞx=2�jnj þ Oðxjnjþ2Þ. The opposite

sign of the effective next-nearest- neighbor tunneling on the two sublattices arises
from the opposite sign of the offset to the intermediate state in the superexchange
process. This difference between the cases ν= 0 and ν= 1 has two major
consequences. The first one is related to the fact that the Peierls phases appear at the
driving induced tunneling matrix elements. For ν= 0, the effective next-nearest
neighbor tunneling matrix elements are complex, corresponding to the configuration
of the Haldane model47. In our case, for ν= 1, instead the nearest-neighbor tunneling
matrix elements acquire a phase. While the model can still be mapped to the Haldane
model via a gauge transformation, this implies that one of the Dirac cones is shifted
from one of the K points at the corner of the first Brillouin zone to the Γ point at its
center. The second consequence is more important: The topologically non-trivial
properties of the effective Hamiltonian emerge from the interplay between nearest-
neighbor tunneling processes on the one hand and next-nearest-neighbors tunneling
processes on the other. If the energy scale of one of these processes is much smaller
than that of the other one, the topological band gap will be of the order of this smaller
energy scale. For ν= 0 the next-nearest neighbor tunneling matrix elements, which
are suppressed already by a factor of J=ð�hωÞ with respect to nearest-neighbor
tunneling, scale only quadratically with the driving amplitude α, so that for not too
strong driving the band gap scales like α2J2=ð�hωÞ. In contrast, for ν= 1 the gap
should roughly scale like αJ as long as α≲J=ð�hωÞ and like J2=ð�hωÞ for larger driving
strength (as long as α ≤ 1). This suggests that the case ν = 1 is favorable for the
realization of robust topological band structures. Indeed, the width of the region with
non-trivial Chern number is 100Hz in ref. 46, but 500Hz in this work. However, in an
implementation with an inhomogeneous lattice, where the resonance condition of the
global shaking varies across the sample, the ratio of the width of the non-trivial region
to the driving frequency is also relevant.

Effective Hamiltonian in quasimomentum representation. It is instructive to
express the effective Hamiltonian given in Eq. (16) in quasimomentum repre-
sentation,

Ĥ ¼
X
k

ðâyAk ; âyBkÞ ½h0ðkÞ � Î þ hðkÞ � σ� âAk
âBk

� �
: ð22Þ

Here, Î is the 2 × 2 identity matrix, σ denotes the vector of Pauli matrices acting
on the pseudospin space defined by the two sublattice states σ= A, B, and âσk ¼
1ffiffiffiffi
M

p
P

‘2σ e
�ik�r‘ â‘ the annihilation operator for a fermion with quasimomentum k

on sublattice σ, where M is the number of lattice cells. The components of the
Hamiltonian on the Bloch sphere follow as

hfxðkÞ ¼ �JJ νðαÞ
X3
j¼1

cosðk � aj � νφjÞ; ð23Þ

hfyðkÞ ¼ JJ νðαÞ
X3
j¼1

sinðk � aj � νφjÞ; ð24Þ

hfzðkÞ ¼ � J2

�hω
czðαÞ

X3
j¼1

2cosðk � bjÞ � Δeff=2; ð25Þ

hf0ðkÞ ¼ � J2

�hω
c0ðαÞ

X3
j¼1

2sinðk � bjÞ þ Δeff=2; ð26Þ
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where aj is the vector that connects the nearest-neighbor sites, with j labeling the
three possible directions for moving from an A site to a B site, aj ¼ a½cosðφjÞbex þ
sinðφjÞbey � with their corresponding angles φj defined from the positive x-axis. bj

denotes the lattice vectors b1 ¼ að ffiffiffi
3

p
; 0Þ; b2 ¼ a �

ffiffi
3

p
2 ; 32

� �
; b3 ¼ �b1 � b2 which

connect next-nearest neighbors, and c0,z (α) are some constants coming from
taking the sum in Eq. (18).

Micromotion. In order to describe the influence of the periodic micromotion
described by ÛFðtÞ on the dynamics, let us consider the first non-trival term of the
high-frequency expansion ÛFðtÞ ¼ exp½Ĝ1ðtÞ þ Ĝ2ðtÞ þ � � ��. We approximate24

ÛFðtÞ ’ exp½Ĝ1ðtÞ�; Ĝ1ðtÞ ¼ �
X1
m≠0

Ĥme
imωt

m�hω
; ð27Þ

and find

Ĝ1ðtÞ ¼ P
h‘′‘i

gh‘′‘iðtÞây‘′ â‘;

gh‘′‘iðtÞ ¼ � P1
m≠0

Jeimωt

m�hωJ mþσ‘ν
ðαÞe�iðmþσ‘νÞφ‘′ ‘ :

ð28Þ

This correction is of the same origin as the effective next-nearest neighbor
tunneling terms in the effective Hamiltonian. In leading order with respect to the
driving amplitude, the coefficients read gh‘′‘iðtÞ ¼ �α J

�hω cosðωt � φ‘′‘Þ for ν= 0

and gh‘′‘iðtÞ ¼ J
�hω σ‘e

�iσ‘ωt for ν= 1. For ν= 1, this correction is again present
already for infinitely weak driving, i.e. for α → 0.

The operator Ĝ1ðtÞ describes a time-periodic micromotion in real space, where
a particle at a given site ‘ explores neighboring lattice sites. With respect to
quasimomentum, it can be expressed like

Ĝ1ðtÞ ¼
X
k

ðâyAk ; âyBkÞ ½gxðk; tÞσx þ gyðk; tÞσy �
âAk
âBk

� �
: ð29Þ

Here, gx (k,t) = Re (g (k,t)) and gy (k,t) = Im (g(k,t)), with
gðk; tÞ ¼ �i

P
m≠0

P3
j¼1 gjðtÞe�aj �k , where gj (t) describes gh‘′‘iðtÞ for processes

connecting an A site ‘ with a neighboring B site ‘′ at r‘′ ¼ r‘ þ aj . For ν = 1, we
find

gðk; tÞ ¼ P
m≠0

J
m�hωJ mþ1ðαÞ ´

P3
j¼1

expðmωt � aj � k � ðmþ 1Þφj þ π=2Þ:
ð30Þ

For small driving amplitudes α, the leading contribution stems from the
m=−1 term. Neglecting all other terms, ÛFðtÞ describes a rotation in pseudospin,
by a k-dependent angle � J=ð�hωÞ around an axis in the xy-plane that itself rotates
around the z-axis with angular velocity ω and k-dependent phase. Increasing α,
however, for α ’ 1 both the m=−2 term and the m= 1 term become relevant so
that also higher harmonics of the driving frequency will make themselves felt in the
micromotion described by ÛFðtÞ.

Apart from the real-space micromotion described by ÛFðtÞ, another contribution
to the micromotion is given by the transformation ÛðtÞ ¼ ÛshiftðtÞÛrotðtÞ back to the
original lattice frame of reference. It describes a phase rotation between different
lattice sites, which corresponds to both a shift in quasimomentum and a rotation
around the z-axis of the sublattice pseudospin. Moreover, there is another effect. In
order to predict the dynamics observed in the experiment, we also have to consider
the experimental protocol, where lattice shaking is switched on at time t0 and
switched off again at the measurement time t. The shaking is performed in such a way
that the relative lattice position xðt þ t′Þ changes continuously when the shaking is
switched on. It is given by xðt þ t′Þ ¼ 0 for t þ t′<t0, xðt þ t′Þ ¼ ξðt þ t′Þ � ξðt0Þ
for t0<t þ t′<t, and by xðt þ t′Þ ¼ ξðtÞ � ξðt0Þ for t þ t′>t, where ξðt þ t′Þ ¼
�Δx½cosðωðt þ t′ÞÞbex þ sinðωðt þ t′ÞÞbey � with Δx ¼ F=ðMω2Þ and atomic mass M.

Accordingly the lattice velocity x
: ðt þ t′Þ is discontinuous, featuring jumps by ξ

:

ðt0Þ
and � ξ

:

ðtÞ at t þ t′ ¼ t0 and t þ t′ ¼ t, respectively. As a result the inertial force
Finertðt þ t′Þ ¼ �M€xðt þ t′Þ induced in the lattice frame of reference, which is given

by Fðt þ t′Þ ¼ �M ξ
::

ðt þ t′Þ between t0 and t and vanishes before and after that,
possesses also a contribution Fboostðt þ t′Þ ¼ �M _ξðt0Þδðt þ t′� t0Þ � _ξðtÞδðt � tÞ.
These boosts shift the system’s state in quasimomentum by q (t0) and −q (t) with

qðt þ t′Þ ¼ �ðM=�hÞ ξ
:

ðt þ t′Þ, which is described by the unitary operator
Ûq ¼ expðiP‘ q � r‘n̂‘Þ. Thus, starting from the trivial insulator state |ψ0〉 at time
t þ t′<t0, for times t′ > 0 the time-evolved state reads

jψðt þ t′Þi ¼ e�
i
�ht′Ĥ

t jψðtÞi; ð31Þ

where Ĥt denotes the static tomography Hamiltonian describing the system
for times t′ > 0 and where the state to be measured is given by jψðtÞi ¼ Û�qðtþt′Þ
ÛshiftðtÞÛrotðtÞÛ ′ðt; t0ÞÛy

rotðt0ÞÛy
shiftðt0ÞÛqðt0Þjψ0i. Employing Eq. (13) as well as the

fact that Ûshiftðt þ t′Þ ¼ Ûqðt þ t′Þ, we find
jψðtÞi ¼ ÛrotðtÞÛFðtÞe�

i
�hðt�t0ÞĤF Ûy

Fðt0ÞÛy
rotðt0Þjψ0i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

	jψ′
0i

: ð32Þ

Thus, the full micromotion, as it can be observed in the experiment is described
by

ÛmicroðtÞ ¼ ÛrotðtÞÛFðtÞ: ð33Þ
One should note that jψ0′i ¼ Ûy

microðt0Þjψ0i is not an eigenstate of the initial
Hamiltonian. We can overcome this by transforming the initial Hamiltonian as
well; Ĥ i′ ¼ Ûy

microðt0ÞĤiÛmicroðt0Þ. When we also rotate the tomography

Hamiltonian Ĥt′ ¼ Ûy
microðtÞĤtÛmicroðtÞ, it is now clear that these tomography and

initial Hamiltonians are equal to each other only for tomography times t= t0+ nT
with integer n. For any other sub-stroboscopic time steps, the tomography
Hamiltonian will not be parallel to the initial Hamiltonian on the Bloch sphere. In
Fig. 4a of the main text, we omit these contributions due to the micromotion and
just aim to illustrate the experimental procedure.

The Hamiltonian Ĥt is represented by a quasimomentum-dependent vector ht

(k) playing the role of a magnetic field with respect to the sublattice pseudospin
and the state |ψ(t)〉 is represented by a quasimomentum-dependent unit vector ψ(t)
denoting a point on the Bloch sphere of that pseudospin. The positions of the
measured vortices correspond to those points in k-space, where both vectors are
parallel (or antiparallel). Thus, as long as ht(k) points to the south (or north) pole
everywhere, the pseudospin rotation ÛrotðtÞ at angular velocity ω will not make
itself felt. However, as soon as ht(k) tilts away from the north pole, as it is the case
in the present experiment, this rotation will cause an oscillatory behavior of the
vortex position with respect to the time t. Thus, the interplay between the
oscillations induced by ÛFðtÞ and that by ÛrotðtÞ is another source for the
generation of higher harmonics in the motion of the vortex position observed in
the experiment.

Sign of the linking number. We determine the sign of the linking number by
comparing the relative chirality of the static (χs) and dynamic vortices (χd), i.e. the
total sign is set by χsχd. The chirality of the dynamic vortex contour is given by the
multiplication of the chirality of a vortex (or an antivortex) χv and the chirality of
the path that it travels χp. Since the dynamic vortex contour is the inverse image
of the equator of the Bloch sphere, the direction of the motion is set by the gradient
of the Hamiltonian |h(kv)| at the equator. This direction can be reversed by
modifying the magnitude of the gap parameter |h(kv)|, without closing the gap at
the Dirac point itself, i.e., without changing the chirality of the static vortex at the
Dirac point. In the following, we show that changing the gradient of the Hamil-
tonian at the equator also converts the vortices into antivortices, hence, preserves
the chirality χd and with that also the sign of the linking number. This means that
the chirality of the dynamic vortex contour χd reflects indeed the topology of the
Hamiltonian and cannot be changed by topologically trivial deformations of the
energy band. Our definitions are inspired by a related argument in ref. 15.

The state of the system ψ(k,t) is given by Eq. (5) for θ(k,t) and ϕ(k,t). The initial
state points to the south pole for all k, ψðk; 0Þ ¼ �bez (in the case of dispersive
bands, after performing the rotation given in Eq. (8)). Quenching to the Floquet
Hamiltonian induces a rotation by the angle αðk; tÞ 	 ωðkÞt ¼ ð2hf ðkÞ=�hÞt
around the direction of bhf ðkÞ ¼ hf ðkÞ=jhf ðkÞj. The time-evolved state thus reads

ψðk; tÞ ¼ R̂ðαðk; tÞ; ĥf ðkÞÞψðk; 0Þ where R̂ðαðk; tÞ; ĥf ðkÞÞ denotes the rotation
matrix. For the given initial conditions, this gives

ψðk; tÞ ¼
ĥfxĥ

f
z ½1� cosðαðk; tÞÞ� þ ĥfysinðαðk; tÞÞ

ĥfyĥ
f
z ½1� cosðαðk; tÞÞ� � ĥfxsinðαðk; tÞÞ

ðĥfzÞ2½1� cosðαðk; tÞÞ� þ cosðαðk; tÞÞ

0
BB@

1
CCA; ð34Þ

where we introduced the cartesian components of the vector bhf . In the tomography,

we observe a static vortex whenever bhf ðkÞjjbez . Dynamic vortices occur whenbhf ðkÞ?bhz , i.e., when bhf ðkÞ lies on the equator, so that for α(k,tn)= nπ and ψ(k,tn)
points to the north (south) pole for odd (even) integers n, where tn= nπ/2|hf(k)|. In
the following, we will focus on the case n= 1, where a dynamic vortex is found at
time t1(k). The condition α(k,tn)= π defines the trajectories of the dynamic vortices in
quasimomentum k, corresponding to the inverse image, P, of the equator of the Bloch

sphere with respect to the map bhðkÞ : k ! bh. Note that in ref. 15, this corresponds to

the inverse image of the north pole with respect to the map ½k; t� ! bh.
Direction of vortex motion. Let kv 2 ‘ 
 Z be a point on the line ‘ which lies in

the inverse image of the equator and bejjðkvÞ denote a tangential unit vector of ‘ at
kv which defines a direction on this line. Then, the vortex which passes kv at time t
(kv) moves with velocity _kv ¼ _kjjbejj where _kjj ¼ �ωðkvÞ=jgjjðkvÞj with
gjjðkÞ ¼ tðkÞ∇kωðkÞ �bejjðkvÞ. Thus, as long as the gap does not close ½ωðkÞ>0�, the
direction of motion χp is determined by the gradient of the gap along the line ‘,

χp ¼ �sgn½gjjðkvÞ�: ð35Þ
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Here, bejj is the unit vector obtained from ∇k ĥ
f
zðkÞ by an azimuthal rotation by

π/2; êjj ¼ R̂ðbez ; π=2Þ∇k ĥ
f
zðkÞ.

Vortex chirality. In order to obtain the chirality of a dynamic vortex at point kv,
we expand the wave function ψ(kv,t (kv)) in the vicinity of kv,

ψðkÞ ¼
0

0

�1

0
B@

1
CAþ δk

ĥfxðkvÞfðkvÞ � ĥfyðkvÞgðkvÞ
ĥfyðkvÞfðkvÞ � ĥfxðkvÞgðkvÞ

0

0
BB@

1
CCA; ð36Þ

where fðkvÞ ¼ 2∇k ĥ
f
zðkÞ and g(kv)= π/(h(k) ⋅ ∇k|h(k)|) as before. This can be also

expressed as δψðkÞ ¼ fðkvÞδkbhðkÞ þ gðkvÞδkbh′ðkÞ, where bh′ðkÞ ¼
ð�bhyðkvÞ;bhxðkvÞÞ is a unit vector orthogonal to bhðkvÞ and that, like bhðkvÞ, lies on
the equator. These two unit vectors bh;bh′� �

span a coordinate system that is rotated

by ϕ(kv) with respect to the one spanned by bex ; bey� �
.

The chirality χv of a dynamical vortex is now determined by whether the
azimuthal phase ϕ(k) winds in positive or negative direction while δk is taken
around a closed loop; δk ¼ δk½cosðγÞbex þ sinðγÞbey � for γ: 0→ 2π. The chirality
reads,

χv ¼ sgn½gðkvÞ ´ fðkvÞ� ¼ sgn½gðkvÞ �bejj �: ð37Þ
Therefore, both the direction a vortex travels and its chirality depend on the

gradient g(kv) of the gap at the vortex position kv. Inverting the direction of the
motion requires to invert the gradient of the gap g||(kv) along the line ‘. On the
other hand, inverting the chirality of the vortex via a change of g(kv) requires to
invert gðkvÞ � f?ðkvÞ 	 gf? ðkvÞ. Note that the unit vector bejj , which is defined to

point along the direction where ĥfzðkvÞ keeps the constant value zero, stands
perpendicular to the gradient of ĥfzðkvÞ. Thus, changing the direction of motion of
the vortex without closing the gap implies that the vortex changes its chirality,
which preserves the overall sign of the dynamic vortex contour χvχp. Hence, any
deformation in the Hamiltonian that does not change the topology cannot change
the observed sign of the linking number.

Data availability
Source data for Figs. 3–6 and 8–10 are provided as source data file in the supplementary
material. All data files are available from the corresponding author on request.
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