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Glioblastoma (GBM), the most prevalent brain tumor, is one of the least treatable malignancies due to its
propensity for intracranial spread, high proliferative potential, and innate resistance to radiation and
chemotherapy. Current GBM therapy is limited due to unfavorable, non-specific therapeutic effects in
healthy cells and the difficulty of small molecules to penetrate the blood brain barrier (BBB) and reach
the tumor microenvironment. Adding PARP-1 inhibitors inhibit DNA repair enzymes thereby increasing
the cytotoxicity of anticancer agents. Hence, we aimed to discover potential naturally occurring PARP-1
inhibitors that can be utilized in the treatment of glioma by using multiple in silico tools like molecular
docking, absorption, distribution, metabolism, and excretion (ADME) profile, pharmacophore modeling,
and molecular dynamic (MD) simulations. Among 43 phytocompounds we screened, two of them
(Ellagic acid and Naringin) were discovered to be bound to the catalytic site of PARP-1 with an affinity
more remarkable than commercially available PARP-1 inhibitors (Talazoparib, Niraparib, and
Rucaparib) except Olaparib. The molecular interactions were analyzed, and data shows that bound entity
attained a conserved domain via hydrogen bond interactions, polar interactions, and p-p stacking.
Pharmacophore modeling studies showed electronic and steric features of ligands responsible for
supramolecular interaction with PARP-1. ADME properties were studied, to assess drug-likeness, hy-
drophilic nature, hydrophobicity, brain permeability, and oral bioavailability of the natural PARP-1 in-
hibitors. The simulation study demonstrated the development of a stable complex between Naringin,
Ellagic acid, and PARP-1 protein. Moreover, cell culture studies and animal investigations are essential
to determine pharmacokinetics and pharmacodynamics.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is one of the most devastating disease, and it is still the
leading cause of mortality worldwide. (Siegel et al., 2018). In-
creased understanding of the molecular processes underlying can-
cer progression has resulted in a profusion of anticancer drugs
(Siddiqui et al., 2022). Even then, cancer chemotherapy faces prin-
cipal disadvantages: cancer recurrence, drug resistance, and harm-
ful effects on normal healthy cells; all of these factors may limit the
use of chemotherapeutic drugs and hence diminish the life ex-
pectancy of cancer patients (X. Wang et al., 2019). To address the
shortcomings of current therapies, the pursuit of novel, prospective
anticancer drugs with higher potency and fewer adverse effects
continues.
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Phytomedicines, naturally occurring plant molecules, act as cru-
cial elements for breakthrough drugs and as alternatives for cancer
care. They act on various molecular signal pathways, including pro-
tein kinases, downstream tumor suppressors, transcriptional fac-
tors, cyclin, caspases, micro RNAs and other molecular targets
(Choudhari et al., 2019). New techniques and innovative chemo-
preventive medicines are required to increase the efficacy of cur-
rent cancer therapies (Dias et al., 2012).

Malignant glioma, is the deadliest form of adult brain tumor.
The conventional treatment is maximal safe resection preceded
by adjuvant radiotherapy and oral temozolomide, adds patients’
lives by 16 to 18 months (Wen et al., 2020). The tumor microenvi-
ronment has numerous biological and physical barriers that make
it challenging to treat GBM successfully and pose the risk of recur-
rence even after following the recommended treatment plan (Cha
et al., 2020). Many drugs cannot be used in glioma patients due to
poor physicochemical qualities, lack of targeting capability, and in-
ability to penetrate the BBB and blood–brain tumor barrier. Some
of these shortcomings can be overcome by targeted formulation
approaches using nanotechnology.

PARP is an intriguing target in GBM because it is a DNA re-
pair protein essential for the nucleotide or base excision repair
of cellular DNA damage, including chemotherapy-induced DNA
breaks. (Morales et al., 2014). PARP-1, the most typical PARP
member, has DNA-binding, self-modifying, and catalytic areas.
The catalytic domain transfers ADP-ribose from NAD+ to the
substrate protein. PARP-1 decreases NAD+ and utilizes intracel-
lular ATP after DNA damage. ATP depletion causes cell impair-
ment and necrosis. PARP-1 helps DNA cell repair and survival,
as shown by many PARP-1 knockout mouse experiments (Lu
et al., 2022; Zhou et al., 2019a). PARP-1 catalyzes the PARyla-
tion process and plays a vital role in regulating chromatin
shape and promoting DNA repair, among other functions.
Glioma cells with isocitrate dehydrogenase (IDH) mutations
were eliminated by PARP-1 inhibitors, but not cells with normal
IDH. In addition, a PARP-1 inhibitor increased the toxicity of
chemotherapy on IDH-mutant cells. Adding PARP-1 inhibitors
or inhibiting DNA repair enzymes augments the cytotoxicity of
genotoxic treatments (Zhang et al., 2020). Olaparib, Rucaparib,
Niraparib, and Talazoparib are FDA- and EMA-approved PARP-
1 inhibitors (Slade, 2020). Many times, PARP-1 inhibitors have
been used in combination with DNA-damaging treatments such
as TMZ, topoisomerase inhibitors, and radiation. These agents
promote PARP-1 activity for the repair of DNA damage, which
makes tumor cells more sensitive to the effects of the DNA-
damaging agents (Chen, 2011; Javle & Curtin, 2011). Small
molecule PARP-1 inhibitors Veliparib, Talazoparib and Niraparib
are currently being tested in combination with temozolomide
(TMZ) to treat primary Glioblastoma (Bai et al., 2011). However,
the adverse events (C. Wang & Li, 2021) of PARP-1 inhibitors
and the development of resistance to medications with an ex-
tended treatment of existing treatment, points to the necessity
of discovering new naturally occurring PARP-1 inhibitors against
glioma.

By taking into account the anticancer effects of phytocon-
stituents, the present study advocated visually screening the
finest phytomedicines that can function as effective PARP-1 in-
hibitors by applying computational procedures. There is an ur-
gent requirement for novel PARP-1 inhibitors with high
potency and favorable pharmacodynamic and pharmacokinetic
profiles. Until now, only a small number of publications have
attempted to model ligand interactions with the PARP-1 recep-
tor employing simulation or pharmacophore techniques
(Revathi et al., 2021; Zhou et al., 2019a). The Naturally Occur-
ring Plant Based Anticancerous compound Activity Target
(NPACT) database comprises 1574 entries that detail the struc-
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ture, physical, elemental, and topological properties of com-
pounds, as well as their in vitro and in vivo biological
activity, cancer type, cell lines, inhibitory values, molecular tar-
gets, commercial suppliers, and drug likeness. Additionally it
represents protein targets that have been proven to be inhibit-
ed by phytomedicines in cancer cell lines (Mangal et al., 2013).
We tested the PARP-1 inhibitory activity of phytomedicines
against 5DS3 protein (crystal structure of constitutively active
PARP-1) and specifically performed structure-based in silico
screening of 43 phyto-ligands. In addition, we performed MD
simulation for the identified lead hits to validate the stability
of the complexes over 200 ns of MD. As a result, it is able
to undergo additional processing for use in pharmacological re-
search to treat glioblastoma.
2. Materials and methods

2.1. Phytoconstituent data

Phytoconstituents such as alkaloids, flavonoids, polyphenols,
terpenoids, saponins, lignans, steroids, polyketides, and other or-
ganic chemicals were collected from research articles and (NPACT)
database (https://crdd.osdd.net/raghava/npact), and all these
drugs are reported for anticancer activities, and structures are il-
lustrated in Table 1.

2.2. Platform for in silico studies

To predict in silico AMDE profile, pharmacophore model, and
drug-receptor interactions were performed using Schrödinger ap-
plication the Maestro V-12.3, programmed on a LENOVO Inc.1700

workstation machine running on Intel core i-7 processor with
3.60 GHz of clock speed with octa-core, a processor with 8 GB ran-
dom access memory and 1024 Gigabyte hard drive with Linux -x86
64 bit as the OS (operating system) was utilized. The MD simula-
tion studies were performed on Dell Prec. 3650 tower with the
11th generation Intel core i-7–11700 16 MB Cache octacore
2.5 GHz to 4.9 GHz clock speed 32 GB (2x16) RAM DDR4, 1 TB PCIe
Gen4 M.2 Solid State Drive with 12 GB NVIDIARTX A2000 Graphic
Card.

2.3. Molecular docking interactions study and MM-GBSA analysis

Using Chem sketch, a diagram of the two-dimensional structure
of each ligand molecule was created. In order to convert the 2D
molecular structures into 3D, Ligprep was utilized in this process,
that is a part of the Schrodinger. SMILES were produced, structures
were imported, and most stable conformation of ligand were con-
sidered for study. From the Research Collaboratory for Structural
Bioinformatics (RCSB) protein data library, the X-ray structure of
crystal PARP-1 with the protein data bank identification number
of 5DS3 (R-Value Observed: 0.202, R-Value Free: 0.251, Resolu-
tion: 2.60 Å, R-Value Work: 0.200) was obtained and analyzed
(Dawicki-McKenna et al., 2015). The preparation of PARP-1 was ac-
complished with the assistance of Schrodinger’s protein prepara-
tion wizard. The procedure for the protein preparation concluded
with a minimization that had been refined, optimized, and con-
strained. Schrodinger’s Receptor Grid Generation modules were
utilized for the process that is typically utilized to generate grids.
During grid creation, the active site of the protein and the most fa-
vorable interaction between ligand molecules are primarily identi-
fied. After that, these ligands were docked with the help of Glide’s
XP (extra precision) scoring tools. The binding energy (MM-GBSA)
of the ligand-receptor complex was estimated using Schrodinger’s
Prime module.

https://crdd.osdd.net/raghava/npact


Table 1
List of Flavonoids, Alkaloids, Polyphenols, Terpenoids, Saponins, Lignans, Steroids, Polyketides, organic chemicals, and FDA-approved PARP-1 inhibitors.

Flavonoids

(continued on next page)
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Alkaloids

Polyphenols

Terpenoids

Saponins
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Lignans

Steroids

Polyketides

Organic chemicals

FDA approved
PARP inhibitors
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2.4. ADME and physicochemical properties

Since computational technology has decreased the number of
experimental drug trials and increased the success rate, it has be-
come an indispensable instrument for drug candidate identifica-
tion. The Schrodinger program’s QikProp module was utilized to
estimate the ligand molecules’ PK(Pharmacokinetic) properties as
well as ADME. The same software predicted ligand molecule’s
physicochemical or drug-likeness properties. Drug likeness proper-
ties analyzed are molecular weight, Donor Hb, Dipole, QP log o/w,
and Acceptor HB calculation. Lipinski’s rule of five was used to
5

make predictions about the potential drug-likeness of the
compounds.
2.5. Generation of pharmacophore modeling

The Phase add-on to Schrodinger program was used to create
the models in this investigation . A receptor-based pharmacophore
was employed in the procedure, and it describes the spatial config-
uration of molecules required for the bioactivity of the ligands be-
ing seen with the targeted receptor (Kaserer et al., 2015).



A. Tharamelveliyil Rajendran, G. Dheeraj Rajesh, P. Kumar et al. Saudi Journal of Biological Sciences 30 (2023) 103698
2.6. Molecular dynamic simulation

The stability of the best-docked interaction for ellagic acid and
naringin with 5DS3 was assessed by an all-atom 100 ns MD simu-
lation on Gromacs version 2021.6. Protein was stabilized, and its
topology was generated via charmm36 forcefield using the pdb2g-
mx module of gromacs. The proteins were solvated using 3-point
water model by using a dodecahedron box with 1 nm dimensions
on all sides. Further, sodium and chloride ions were used to stabi-
lize the system. To get the least energy confirmation, energy reduc-
tion was carried out utilizing a steepest descent integrator with a
verlet cutoff scheme for a maximum of 50,000 steps. Isobaric
(NPT) and Canonical (NVT) were used to equilibrate the system
for 100 ps. Constant temperature and volume at 300 K was
achieved by integrating V-rescale thermostat. Similarly, a constant
pressure of 1 bar was maintained via C-rescale coupling algorithm.
Computing coulomb, van der Waals, and long-range electrostatic
interactions required the use of the particle mesh Ewald approxi-
mation, with a cut-off value of 1 nm; bond length was constrained
by LINCS algorithm. Built-in gromacs utilities were used to exam-
ine the obtained trajectories. On completion of molecular dynamic
run, Root mean square fluctuation (RMSF), Root mean square devi-
ation (RMSD), Radius of gyration (RoG), Solvent assessable surface
area (SASA), and number of H- bonds were analyzed. In addition,
DSV (Discovery Studio Visualizer) was used to visualize the com-
plex at the start and end of the MD run (Berendsen et al., 1995;
Dwivedi et al., 2021; Khanal et al., 2022).

2.7. MM-PBSA analysis

The gmx_MMPBSA module was used to analyze the energy con-
tribution parameters like Vander Waals, total relative binding,
electrostatic molecular mechanics, and total energy contribution
per residue.

A total of 1,000 frames were used for the MMPBSA run, with a
10-frame interval. A PBSA internal solver in a sander was used to
investigate the Poisson Boltzmann computations. The gmx
MMPBSA run results were visualized using the MMPBSA ana mod-
ule. (Valdés-Tresanco et al., 2021).

3. Results

3.1. Molecular docking interactions study and MM-GBSA analysis

Docking interactions of natural and FDA-approved PARP-1 in-
hibitors were illustrated in Table 2 & Supplementary Sheet 1 as
well as Fig. 1 & Supplementary Sheets 2&3. More details have been
Table 2
Molecular docking scores of natural and FDA-approved PARP-1 inhibitors.

Sl No. Drugs Glide Score Glide EvdW G

1 Ellagic acid �11.024 �37.147
2 Naringin �10.793 �40.984
3 Icogenin �10.232 �36.886
4 EGCG �10.072 �49.769
5 Silymarin �10.051 �48.812
6 Macranthoside B �10.048 �42.519
7 Curcumin �8.839 �45.529
8 Quercetin �8.819 �31.717
9 Poncirin �8.789 �40.697
10 Baicalein �8.762 �34.268
Molecular docking scores of FDA-approved PARP-1 inhibitors
1 Olaparib �12.840 �53.005 �
2 Talazoparib �10.545 �40.674
3 Niraparib �7.911 �37.699
4 Rucaparib �6.678 �41.864
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provided in Supplementary Sheet 4. Polyphenols:- Ellagic acid and
flavonoid-Naringin showed better PARP inhibitory activity than the
FDA-approved PARP-1 inhibitors (Talazoparib, Niraparib, and Ru-
caparib) except Olaparib. Ellagic acid showed excellent binding in-
teractions with PARP-1 (5DS3) with a docking score of
�11.024 kcal/mol. Amino acids such as GLU988, GLY888, and
GLY863 showed hydrogen bonding interaction. Other amino acids
(TYR896, PHE 897, ALA898, TYR889, MET 890, PHE891, TYR907)
were involved in the PARP-1 inhibition (5DS3), indicating lipophi-
lic interaction with the ligand and p-p bonding with TYR 907.
While the amino acid complexes (SER 904, SER 864, HIS 862) of
the enzyme PARP-1inhibitors (5DS3) showed polar interaction
with ligands. Naringin showed better affinity towards 5DS3 pro-
tein, having a bound score of �10.793 kcal/mol. This molecule de-
veloped H- bond interaction with (TYR896, GLY894, ARG878, and
SER 904) amino acid complexes of PARP-1 inhibitor protein. In ad-
dition, lipophilic interaction (TYR 907, TYR 889, ALA 898, TRP861,
TYR896, ILE895, LEU877, ILE879, ALA880, PHE897, and ILE872), po-
lar interaction (SER904, HIS862, ASN868), pi- pi stacking (TYR907)
were observed. Moreover, FDA-approved PARP-1 inhibitors
showed significant activity toward the 5DS3 protein. Apart from
the four different FDA-approved PARP-1 inhibitors, Olaparib
showed the highest affinity with a binding score of �10.545 kcal/-
mol and established H-bonding interaction with (SER 904, GLY
863) amino acid residues of PARP-1 protein. It is found that hy-
drophobic interactions (TYR 989, TYR 907, ALA898, TRP 861,
TYR896, TYR889, PHE897, and ILE895), polar interactions (SER
864, HIS 862, SER 904) and Pi-Pi stacking (TYR907) with amino
complexes of 5DS3 protein. Among the 43 natural PARP-1 in-
hibitors screened, the top two leads were selected for further stud-
ies (pharmacophore generation and simulation studies).

The (MM-GBSA) binding free energy of both natural and FDA-
approved PARP inhibitors towards 5DS3 protein were listed in Sup-
plementary sheet 5. Natural PARP-1 inhibitors have DGbind values
ranging from �108.62 to �42.24 kcal/mol for 5DS3 proteins. With
FDA-approved PARP-1 drugs, the DGbind ranges from �55.5 to
�106.99 kcal/mol for the relevant protein 5DS3. It has been found
that the primary donors to the interactions of natural PARP-1 in-
hibitors with 5DS3 are (DGLipo (non-polar solvation), �14.22 to
�78.35 kcal/mol andDGvdW (van der Waals);�25.42 to�63.43 k-
cal/mol). Because of the significant negative values produced by
all-natural PARP-1 inhibitors in the MM-GBSA experiment, the en-
ergies that affect ligand binding in the binding pocket of 5DS3 are
DG vdW and DG Lipo. Other energies, such as covalent energy (DG
Cov) and (DG bind H bond), should not prefer receptor binding. The
DG Coul moderately favors both natural and FDA-approved PARP-1
inhibitors.
lide e Model Glide ecoul G rotatable bonds XP Hbond

�81.446 �17.073 4 �4.443
�80.325 �18.185 14 �1.859
�74.941 �24.513 23 �5.822
�91.458 �17.546 12 �3.904
�85.121 �9.151 9 �2.683
�47.046 �10.721 25 �2.673
�80.529 �9.703 10 �3.32
�63.237 �14.093 6 �2.488
�74.371 �15.784 14 �2.4
�61.18 �13.675 4 �2.835

105.69 �13.940 6 �2.800
�64.57 �8.531 2 �1.761
�76.205 �12.253 3 �1.89
�60.681 �1.309 3 �0.554



Fig. 1. (A& B) 2D and 3D interactions of Ellagic acid with 5DS3. (C & D) 2D and 3D interactions of Naringin with 5DS3.
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3.2. Generation of pharmacophore modeling

Ellagic acid and naringin, two naturally occurring compounds
that inhibit PARP-1 through distinct chemical interactions, were
the focus of pharmacophore modeling analyses to decipher the
molecular mechanisms behind their PARP-1inhibiting effects. The
pharmacophore elucidates the crucial characteristics accountable
for biological functions, proving the H-bonding interaction to be
Fig. 2. Pharmacophore model complex of A)

7

the most important property (Fig. 2 and Supplementary sheet 6).
The receptor-based pharmacophore hypothesis of Ellagic acid with
5DS3 (Fig. 2A) consists of two aromatic rings (R14 and R15) and
four donor groups (D9, D10, D11, and D12). D11 develops an H-
bond with amino acids GLU988,

D9, and D10 with GLY863, and D12 with GLY888, respectively.
In the pharmacophore hypothesis of Naringin-5DS3, one aromatic
ring (R25) and four donors (D15, D17, D18, D19, and D21) are
Ellagic acid and B) Naringin with 5DS3.
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present, in which D15 hydrogen bonds with amino acid SER904,
D17 had an H bond interaction with TYR896 and GLY894, and fi-
nally, three different donors (D18, D19, D21) made H bond interac-
tion with a single amino acid ARG878 (Fig. 2B). Pharmacophore
properties of FDA-approved PARP-1 inhibitors are described in
(Supplementary sheets 6 and 7).

3.3. Physicochemical properties of both natural and FDA-approved
PARP-1 inhibitors

QikProp scrutinized the drug-likeness properties of both natural
and FDA-approved PARP-1 inhibitors, which assessed the molecu-
lar weight of all the natural PARP-1 inhibitors. Ellagic acid and
Naringin levels are within the usual range. The molecular weights
of Icogenin and Macranthoside B exceed the allowed range. Sup-
plementary sheet 8 illustrates the physicochemical properties of
natural and FDA-approved PARP inhibitors. Naringin, Icogenin,
EGCG, Macranthoside B, and Poncirin have hydrogen donors above
five, and Naringin, Icogenin, Macranthoside B, and Poncirin have
hydrogen acceptors above ten. In addition, analysis of QPlog o/w
predicts the lipophilicity of the natural PARP-1 inhibitors. The n-
octanol/water partition coefficient measures lipophilicity. The
lipophilicity of substances affects membrane permeability.
Lipophilicity can reduce it, while hydrophilic substances can’t dif-
fuse passively. Squamocin and garcinol are beyond the allowed
range (-2.0 to 6.5), but other drugs are within.

3.4. ADME studies

Ellagic acid and Naringin showed poor permeability and human
oral absorption. Supplementary sheet 9 demonstrated the ADME
properties of natural and FDA-approved PARP-1 inhibitors.
QPlogBB assessed the access to the CNS. As per the recommended
range (-3 to 1.2), Ellagic acid and other natural PARP inhibitors can
penetrate the blood–brain barrier except for Naringin, Icogenin,
EGCG, Macranthoside B, Ponicirin, and Narirutin, respectively. All
FDA-approved drugs are within the limit. QikProp used a scale
from �2 (inactive) to + 2 (active) to foretell the state of the central
nervous system. In this study, values indicated that both natural
PARP-1 and FDA-approved drugs are normal in range. QikProp an-
alyzed the total number of metabolic reactions of each natural
PARP-1 inhibitors and FDA-approved drugs. Ellagic acid’s metabol-
ic reactions rate is within the recommended limit (1–8) except for
Narinigin, Icogenin, EGCG, Macranthoside B, Ponicirin, Narirutin,
Garcinol, and Cepharanthine. The SASA, FISA, and FOSA values
are shown in Supplementary sheet 9. Icogenin, Macranthoside B,
and Squamocin were the only phytocompounds with SASA values
above 1000 Å; all others fell below the normal limits. Icogenin
and Squamocin have FOSA values greater than 750, indicating their
hydrophobic portion of SASA (solvent-accessible surface area) is
greater. Antofine and Cepharanthine exhibit scores under seven,
indicating the presence of a portion of SASA that is less hydrophilic
(FISA). Naringin, Icogenin, Macranthoside B, and Narirutin all re-
ceived scores greater than 330, indicating a stronger aqueous com-
ponent of solvent accessible surface area.

3.5. Molecular dynamic simulation

3.5.1. Complex of Ellagic acid with 5DS3
The RMSD of complex displayed a maximum fluctuation value

upto � 8.8 Å; the RMSD of the complex showed deviations less
than 0.5 Å indicating the stability of the complex throughout the
run. The RMSD was stable after 20 ns of stabilization time and
thereafter displayed deviations less than 0.3 Å. The RMSF of the
c-alpha atoms displayed a fluctuation in the range of � 0.5 Å
to � 5.5 Å, and residues glycine 784 and glutamic acid 883 showed
8

the highest RMSF of 5.3 Å and 4.8 Å respectively; identical with the
residues possessing maximum fluctuation in olaparib-5DS3 com-
plex (Supplementary sheet 10; Movie 3). This indicates the interac-
tion of ellagic acid with PARP-1 to be a stable complex and
interaction is at the active site of the protein. The Radius of Gyra-
tion (RoG) for the backbone and complex showed fluctuation in the
range of � 17.7 Å to � 18.3 Å with minor deviations indicating the
compactness of the protein throughout the run. The SASA showed
fluctuation in the range of � 123 nm2 to � 139 nm2, which was un-
stable for the initial � 25 ns of md run and thereafter a gradual in-
crease in SASA was observed; this may be due to the number of
bonds being formed and deformed during the MD run. A highest
of 7 hydrogen bonds were seen throughout the MD run in which
a minimum of 2 bonds were constant; however, formation and de-
formation of hydrogen bonds was seen throughout the run. The to-
tal energy decomposition per residue showed tyrosine 907 and 896
to possess the minimum energy contribution of�1.80 and�1.07 k-
cal/mol, respectively. The total energy contribution of the ligand
was found to be �4.98 kcal/mol for the 100 ns of MD run (Fig. 3,
Movie 1).
3.5.2. Complex of Naringin with 5DS3
The RMSD of the complex showed a maximum fluctuation

of � 0.5 Å within the range � 11.5 Å to 12.0 Å throughout the
MD run of 200 ns indicating the complex stability. The RMSD
of the complex was seen to stabilize after � 20 ns of MD run
and thereafter showed RMSD deviations of less than 0.25 Å.
The RMSF showed fluctuation in the range of � 1Å to � 7 Å;
the residues glycine 784 and serine 783 showed maximum RMSF
of 7.0 Å and 6.9 Å respectively, which is identical with the stan-
dard olaparib-5DS3 complex (Supplementary sheet 10; Movie 3).
The Radius of Gyration (RoG) for the complex and backbone
showed fluctuation in the range of � 17.5 Å to � 18.3 Å; the
RoG showed deviations for the initial � 30 ns of md run which
thereafter was seen to be stable with deviations less than
� 0.5Å, this suggests that the docked complex is stable and that
the protein is compact. The SASA showed fluctuation in the
range of � 123 nm2 to � 140 nm2, which was unstable for the
initial 20 ns, and thereafter gradual increase in the SASA was
showed with minor fluctuation after � 60 ns of simulation. A
maximum of 7 hydrogen bonds were shown throughout the
run; initially, for � 40 ns the bonds were not stable and gained
stability after � 60 ns of MD run. A minimum of 2 hydrogen
bonds were constantly seen after � 60 ns. The total energy de-
composition per residue revealed proline 881 and asparagine
868 to be in the favor of interaction possessing the minimum
energy contribution of �1.42 and �0.73 kcal/mol respectively
(Fig. 4; Movie 2).
3.5.3. MM-PBSA analysis
MMPBSA analysis (Table 3) revealed the Ellagic acid-5DS3

complex to possess the least total energy decomposition of
�2039.24 ± 58.76 kcal/mol. The naringin-5DS3 complex
possessed the least VDWAALS, EPB, and GSOLV of �1692.26 ±
7.3, �3254.58 ± 35.44, and �2386.63 ± 35.14 kcal/mol, respec-
tively. Similarly, Ellagic acid-5DS3 complex possessed the least
electrostatic, non-polar contribution of solute–solvent interac-
tions to the solvation energy and total gas phase molecular
mechanics energy with energy decomposition of �15874.26 ±
42.68, 1943.75 ± 4.84, and 274.96 ± 49.63 kcal/mol respectively.
The standard Olaparib showed a total relative binding energy of
�1927.69 ± 58.61 kcal/mol which is lower than the naringin-
5DS3 complex however greater than ellagic acid-5DS3 complex
indicating ellagic acid complex to be more stable with greater
binding affinity with the protein.



Fig. 3. Represents the stability of the complex (Ellagic acid-5DS3) with respect to, (a) Root Mean Square Deviation (RMSD) of the complex, (b) Root Mean Square Fluctuation
(RMSF) of the c-alpha atoms, (c)Radius of Gyration (RoG) of the backbone (black) and complex (red), (d) Solvent Assessable Surface Area (SASA) for the protein(black) and
complex (red) (e) Number of Hydrogen bonds, (f) Total energy decomposition per residue.

Fig. 4. Represents the stability of the complex (Naringin-5DS3) with respect to, (a) Root Mean Square Deviation (RMSD) of the backbone (black) and complex (red), (b) Root
Mean Square Fluctuation (RMSF) of the c-alpha atoms, (c)Radius of Gyration (RoG) of the backbone (black) and complex (red), (d) Solvent Assessable Surface Area (SASA) for
the protein(black) and complex (red) (e) Number of Hydrogen bonds, (f) Total energy decomposition per residue.

Table 3
MM-PBSA analysis of Ellagic acid, Naringin & Olaparib with PARP-1.

Bioactive VDWAALS EEL EPB ENPOLAR EDISPER GGAS GSOLV GTotal

Ellagic acid �1660.78 ± 6.58 �15874.26 ± 42.68 �3165.66 ± 30.74 1943.75 ± 4.84 �1092.30 ± 4.57 274.96 ± 49.63 �2314.21 ± 31.45 �2039.24 ± 58.76
Naringin �1692.26 ± 7.3 �15680.59 ± 46.05 �3254.58 ± 35.44 1963.55 ± 4.49 �1095.60 ± 3.96 475.92 ± 45.15 �2386.63 ± 35.14 �1910.71 ± 14.67
Olaparib* �1683.65 ± 6.88 �15803.39 ± 42.21 �3177.41 ± 31.60 1965.65 ± 4.67 �1103.91 ± 6.43 387.98 ± 48.71 �2315.67 ± 32.58 �1927.69 ± 58.61

All the data are presented in mean ± SEM (n = 100) and unit for each parameter is Kcal/mol.
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4. Discussion

Molecular docking is an integral aspect of the drug discovery
procedure, and it is utilized in this work to assess the binding inter-
actions of the hit molecules with the target 5DS3 protein
(Deshpande et al., 2021). In addition to the docking score, the bind-
ing free energy, binding modes, and interactions of each ligand
with the functional residues of the targeted protein (including H-
bonding, lipophilic and polar interactions, and - p-p stacking) were
investigated. The model features interact directly with critical
amino acids, which inhibit PARP-1 (Li et al., 2016). Because of this,
we can look to these characteristics as crucial chemical traits in the
search for new PARP-1 inhibitors (Tabrez et al., 2022). The docking
outcomes by the MM-GBSA approach were confirmed by the bind-
ing free energy calculations of the ligand–protein complexes
(Forouzesh & Mishra, 2021). Van der Waals and non-polar solva-
tion energies are the vibrant forces required for natural PARP in-
hibitors to interact with the protein (Thorsell et al., 2017).
Pharmacophore is a set of steric and electronic properties that val-
idate optimal supramolecular interactions during the virtual
screening of massive chemical databases. It is a more effective
and efficient technique than autodock for locating molecules
which can activate or inhibit macromolecular activity(Zhou et al.,
2019b). The molecule with similar or relevant characteristics
should possess the same or a greater level of activity than the
search molecule (Rohilla et al., 2017). Molecular weight is an
essential characteristic in the drug discovery process for small
compounds. During compound optimization, this feature is often
researched since it affects many molecular changes, including up-
take, bile excretion rate, BBB invasion, and target interactions
(Lagorce et al., 2017). QikProp analysis gives information about
the rule of five, predicting the drug-like nature of the molecules.
The rules must satisfy the limits of molecular weight MW less
than 500, QPlogPo/w less than 5, donor HB � 5, accept HB � 10
(Lipinski et al., 1997). Some drugs (Naringin, Icogenin, EGCG,
Macranthoside B, Poncirin) disobeyed the Lipinskis’s rule mainly
due to their highly hydrophobic nature. Based on docking studies,
best interacted natural PARP-1 inhibitors, Naringin has three rule
of five violations, while Ellagic acid has zero violations.

ADME studies were conducted based on the molecular weight
(MW), G-rotatable bonds, H-bond acceptors and donors, surface
area, Intestinal absorption, BBB permeability, number of Lipinski
violations, solvent accessible area, metabolism, and, Plasma pro-
tein binding (Gürdere et al., 2021). Bioavailability predictions
based on the Caco-2 cell permeability predicted apparent cell per-
meability in nm/sec., and estimated human oral absorption on a 0
to 100% scale (Deshpande et al., 2021). The BBB is the primary fac-
tor impeding the development of novel therapies for brain disor-
ders. Certain small molecule medications can penetrate the BBB
via lipid-mediated free diffusion if their molecular weight is less
than 400 Da and they form less than eight hydrogen bonds. Most
small and large-molecule therapeutics lack these characteristics
(Pardridge, 2012). These large molecules can be re-engineered with
different nano-delivery systems such as liposomes, polymeric
nanoparticles, micelles and protein nanoparticles. Several studies
point to hydrogen bonding significantly influencing drug perme-
ability (Raevsky et al., 2000).Therapeutic medicines that are de-
signed to interact with their molecular targets in the CNS must
cross the BBB, while medications that function only on the periph-
ery should not cross the BBB to prevent unwanted CNS adverse
events (Zhu et al., 2018). Drugs and xenobiotics are metabolized
to be excreted. Poor bioavailability can be caused by metabolic li-
ability due to fast clearance, potential toxicity from reactive
metabolites, and drug-drug interactions, including enzyme inhibi-
tion, induction, and mechanism-based inactivation (Y. Wang et al.,
10
2015). Phase I and II enzymes predominantly catalyze metabolic
processes in the liver (A. Smith, 2011). Following the path of the
probe sphere’s center allows one to calculate the SASA. The rolling
ball algorithm is commonly used to compute the surface area of a
biomolecule, and the area is typically referred to using the unit of
square angstroms. When a biomolecule goes from a polar media to
a nonpolar medium, the SASA provides information regarding the
free energy transfer that occurs during this process (Dasari et al.,
2017). The surface of a water molecule has a typical radius of 1.4
A�. SASA is usually in the range of 300.0–1000.0 Å. FOSA refers to
the lipophilic component of the SASA, while FISA indicates the
aqueous components of the SASA(Divyashri et al., 2021).

In addition, we also performed MD simulation for the lead com-
plex which revealed the ellagic acid complex with 5DS3 to be the
most stable. The RMSD showed fluctuation of less than � 0.4 Å
indicating it to be stable complex when compared to the standard
which showed deviations of � 10Å. Also, the naringin complex
with 5DS3 showed better stability than the standard. For both
the complexes, i.e., naringin and ellagic acid with 5DS3, showed
4–5 constant hydrogen bonds in a 100 ns of MD run which was ob-
served to be 2 for the standard. The total energy decomposition per
residue for ellagic acid-5DS3 complex showed TYR907 and TYR896
to possess the minimum energy contribution of�1.80 and�1.07 k-
cal/mol, respectively. The ligand showed a total energy contribu-
tion of �4.98 kcal/mol for the 100 ns of MD run. Additionally,
the complete energy decomposition per residue for the naringin-
5DS3 complex revealed PRO881 and ASP868 to favor interaction
possessing the minimum energy contribution of �1.42 and
�0.73 kcal/mol respectively. These stability parameters indicate
that the interaction of the ligands ellagic acid and naringin with
5DS3 was stable throughout the MD run and provides validation
to the molecular docking studies.
5. Conclusion

In this study, forty-three phytomedicines were virtually ana-
lyzed for their activity against PARP-1 inhibition via molecular
docking with PARP-1 inhibitor (5DS3); majority of them showed
good interaction at the binding site. In addition, Ellagic acid and
Naringin showed a greater stable interaction trajectory with the
PARP than with the olaparib-5DS3 complex. Discovering new
medicines relies heavily on the drug molecule’s pharmacophore.
Molecular structure is crucial for pharmacological and biological
actions. Hydrogen bonds (donor and acceptor) and aromatic rings
were discovered to be involved in the chemical interactions be-
tween the natural PARP-1 inhibitors (Ellagic acid and Naringin)
and the protein 5DS3. Any new drug molecule that can outperform
currently available cancer treatments and move the field in excit-
ing new directions is always appreciated. The compounds’ drug-
likeness and bioavailability were highlighted through the use of
physicochemical parameters as well as the ADME program. Poor
oral bioavailability was observed, and the pharmacokinetic profile
revealed that ellagic acid followed the Rule of 5. The natural com-
pounds shown to be most effective in the virtual screening proce-
dure could potentially serve as lead molecules in the fight against
glioma cancer.
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