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Abstract

Major Depressive Disorder (MDD) is a chronic debilitating illness affecting yearly 300 million 

people worldwide. Oligodendrocyte-lineage cells have emerged as important neuromodulators 

in synaptic plasticity and crucial components of MDD pathophysiology. Using the repeated 

social defeat (RSDS) mouse model, we demonstrate that chronic psychosocial stress induces 

long-lasting losses and transient proliferation of oligodendrocyte-precursor cells (OPCs), aberrant 

differentiation into oligodendrocytes, and severe hypomyelination in the prefrontal cortex. 

Exposure to chronic stress results in OPC morphological impairments, excessive oxidative stress, 

and oligodendroglial apoptosis, implicating integrative-stress responses in depression. Analysis 

of single-nucleus transcriptomic data from MDD patients revealed oligodendroglial-lineage 

dysregulation and the presence of immune-oligodendrocytes (Im-OL), a novel population of cells 

with immune properties and myelination deficits. Im-OL were also identified in mice after RSDS, 

where oligodendrocyte-lineage cells expressed immune-related markers. Our findings demonstrate 

cellular and molecular changes in the oligodendroglial lineage in response to chronic stress and 

associate hypomyelination with Im-OL emergence during depression.
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Introduction

Oligodendrocyte precursor cells (OPCs) are glia with heterogeneous homeostatic properties, 

ubiquitously present in the central nervous system (CNS)1. Although they are highly 

proliferative, optimal OPC density and distribution are under tight self-regulation2,3. 

They serve both as progenitors of myelinating oligodendrocytes (OLs), and as active 

surveyors of their local environment integrating neuronal activity by establishment of 

direct neuroglial contacts4–6. As the neuromodulatory roles of OPCs have started to 

emerge1,7, the extent of their contribution to neuropsychiatric disorders and specifically 

major depressive disorder (MDD) has come into focus. Recent work revealed that OPC loss 

due to chronic psychosocial stress in the medial prefrontal cortex (mPFC) was sufficient 

to impede astrocytic activity, lead to neuronal dysfunction and depressive-like behavior8. 

A single-nucleus transcriptomics (sn-RNAseq) study from the PFC of MDD patients 

revealed that gene expression changes occurred predominantly in the OPCs and deep-layer 

excitatory neurons, further supporting that myelination and synaptic plasticity play a crucial 

role in the pathogenesis of depression9. Notably, oligodendrogenesis and myelination 

were reported to be highly sensitive to psychosocial input and stressful experiences10,11. 

Recent evidence has demonstrated significant myelin deficits in animal studies modeling 

depression12–15. Corresponding OL-related transcriptional deficits and white matter (WM) 

structural abnormalities have been implicated in the pathophysiology of MDD16–18, further 

supporting a pathophenotypic connection between depression and oligodendroglial-lineage 

cells (OLN).

The mPFC is a highly evolved brain region affecting top-down executive functions 

(personality expression, decision-making, social behavior)19 and processing of fear/aversive-

related stimuli20. Prolonged psychosocial stress can exert detrimental effects on the frontal 

cortex, strongly associating mPFC to MDD pathophysiology21. Such effects include volume 

and connectivity reductions in emotional/cognitive circuitry, significant myelin deficits and 

destabilization/loss of synaptic connections22. Corresponding reductions were identified in 

glial populations in the mPFC from postmortem studies of MDD patients, and in animal 

models of depressive-like behavior23. Although oligodendroglial dysfunction is a hallmark 

of MDD pathophysiology, the cellular and molecular mechanisms of the OLN compromises 

remain unclear.

Here, we utilize a chronic psychosocial stress mouse model and a snRNA-seq dataset 

from MDD patients9, to investigate: the extent to which chronic stress affects the OPC 

homeostasis and temporal dynamics of these perturbations; whether chronic stress has 

modulatory effects on OLN progression and OL maturation in MDD patients and the 

depression animal model; and what cellular and molecular mechanisms underlie these 

events.
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Results

Chronic stress induces depressive-like behavior leading to OPC reductions and time-
dependent alterations of their proliferation in the mPFC.

The repeated social defeat paradigm (RSDS; 10 days) was used to induce depressive-like 

behavior in adult male mice8,24 (Fig. 1a). Twenty-four hours after RSDS (D10) behavioral 

tests were performed (BH; D11-D14) and the socially defeated (SD) mice were divided 

(see Methods) in two groups: SD-Sus (~80%; susceptible to stress) and SD-Res (~20%; 

resilient to stress). Both groups exhibited significant anxiety-like behavior, however the 

SD-Sus additionally demonstrated characteristic depressive-like phenotypic features: social 

avoidance, despair-like behavior, reduction of reward under stress and anhedonia (Fig. 1b–c, 

Supplementary Fig. 1a–d).

To determine the effects of chronic stress on OPC density and proliferation in the mPFC, 

5-Bromo-2′-deoxyuridine (BrdU) was administered ad libitum throughout RSDS, and 

experimental groups were analyzed 15 days later. Histological analysis of the mPFC 

revealed a significant reduction of OPC density (platelet-derived growth factor receptor 

alpha; PDGFRα+) and OPC proliferation (%Ki67+ of PDGFRα+) in SD-Sus compared 

to Con and SD-Res mice (Fig. 1d–f; Supplementary Fig. 2d). Additionally, a moderate 

decrease of BrdU+ label-retaining OPCs (%BrdU+ of PDGFRα+) and a significant reduction 

of their proliferation capacity (%Ki67+BrdU+ of PDGFRα+) were detected in SD-Sus 

compared to Con and SD-Res groups (Fig. 1g–h). Analogous reductions of OPC density and 

proliferation capacity in SD-Sus groups were confirmed with the OPC marker chondroitin 

sulfate proteoglycan 4 (CSPG4) and immunoblot analyses of PDGFRα and CSPG4 

(Supplementary Fig.2a–c). These results indicate that chronic stress induces significant 

disturbances in OPC homeostasis.

The moderate decrease of BrdU+ OPCs in the SD-Sus (%BrdU+ of PDGFRα+/CSPG4+) 

(Fig. 1g, Supplementary Fig. 2f) in conjunction with the significant increase of total BrdU+ 

cells in the mPFC on D15 (Supplementary Fig. 2e) prompted us to characterize the early 

effects of psychosocial stress on OPCs. Therefore, we utilized a short-term RSDS paradigm 

adaptation (miniSD; 3 days) followed by 3 days of behavioral tests (BH; D4-D6), which 

resulted in ~50% of the SD mice becoming SD-Sus (Supplementary Fig. 3a–f). Histological 

analysis of mPFC revealed a significant reduction of OPCs (evident by reduced EGFP+ cells 

from the PDGFRα+ and CSPG4-EGFP+ mouse lines) and OLN-cell marker oligodendrocyte 

transcription factor 2 (Olig2) in the SD-Sus (Supplementary Fig. 3g–h,3k–m), displaying 

the rapid effects of chronic stress on OPC dynamics. Interestingly, the OPC proliferation 

capacity on D6 (%Ki67+ of PDGFRα+) was significantly upregulated in SD-Sus and SD-

Res compared to Con (Supplementary Fig. 3i–j). The increased proliferation of OPCs on 

D6 in response to chronic stress (Supplementary Fig. 3i–j) led to a significant increase 

of BrdU+-labeled cells post-RSDS (Supplementary Fig. 2e). A significant percentage of 

these cells presented diluted BrdU+ signal in the SD-Sus group (weak BrdU+ cells; 

Supplementary Fig. 2g). Dilution of BrdU labeling could be the result of mitosis occurring 

post-BrdU administration and/or of OPCs asymmetric division. In support of the latter, many 

of these weak BrdU+ were differentiated OLN populations as illustrated in the SD-Sus 
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group on D15 (weakBrdU+ PDGFRα−; Supplementary Fig. 2h). This tendency for OPC 

transition into differentiated OLN stages (CSPG4−Olig2+) can also be observed in the early 

RSDS (D6; Supplementary Fig. 3n). These results suggest that the time-dependent rapid 

OPC proliferation in response to chronic stress may be followed by an upregulation of OLN 

progression.

Chronic stress induces the OPC differentiation into OLs in the mPFC.

To examine for potential alterations of OPC maturation, we administered BrdU ad libitum 
in the experimental groups to label the proliferating OPCs during RSDS and follow their 

lineage-progression post-RSDS (Fig. 2a–b). Histological analysis of CSPG4-EGFP+ mice 

with the committed-OPC/immature-OL (C-OPC/Pre-OL) marker O4 and BrdU revealed a 

significant decrease of BrdU-retaining OPCs (% CSPG4+O4− of BrdU+), and a concomitant 

increase of C-OPCs (% CSPG4+O4+ of BrdU+) and Pre-OLs (% CSPG4−O4+ of BrdU+) in 

the SD-Sus compared to Con and SD-Res (Fig. 2c–f,2j). This led to significant increases of 

the O4+ cell population and Ο4 protein levels (Supplementary Fig. 2i,2k–l) in the SD-Sus 

mice.

Downstream characterization of the OLN progression in the CSPG4-EGFP+ mice, in 

combination with glutathione S-transferase-π (GST-π; OL) and BrdU resulted in significant 

increase of BrdU-retaining OLs in SD-Sus compared to Con and SD-Res groups (Fig. 

2h,2j). Surprisingly, the overall upregulation of OPC differentiation did not yield increased 

OL density (GST-π+) and GST-π levels (Fig. 2i, Supplementary Fig. 2k–l) in the SD-Sus 

mice. In contrast, the SD-Res mice exhibited a modest increase of both C-OPCs (O4+), OLs 

(GST-π+) and respective protein levels, compared to the Con (Fig. 2e,2i–j; Supplementary 

Fig. 2i,2k–l).

As reported, oligodendrogenesis can occur either through asymmetrical division or direct 

differentiation (without proliferation), with the former being rarely preferable, unless 

OPCs are responding to a homeostatic disturbance, such as cell death/injury or aberrant 

differentiation rates2. We utilized the PDGFRα-CreERT2::Rosa26-EYFP mice to lineage-

trace OPCs. In this system, after tamoxifen-induced (TMX) recombination eYFP is 

expressed in the OPCs (~73% recombination; data not shown). For induction of Cre-

recombination, TMX was administered i.p. for 5 days25, starting at P30. The RSDS 

paradigm was performed 1 month after the Cre induction (Supplementary Fig. 4a–b). 

The SD-Sus mice displayed a significant increase of the PDGFRα::eYFP+ cells compared 

to Con and SD-Res, suggesting an increase of OPC proliferation earlier during RSDS 

(Supplementary Fig. 4c–d). A large portion of the eYFP-labeled cells in the SD-Sus mice 

were either C-OPCs/Pre-OLs (eYFP+O4+) or OLs (eYFP+GST-π+), compared to the Con 

and SD-Res groups (Supplementary Fig. 4e–i), depicting the dysregulation of the OLN 

progression following chronic stress (Supplementary Fig. 2j,2m).

Exposure to chronic stress induces myelin deficits post-RSDS.

Although the OL numbers were not altered in SD-Sus, we sought to investigate the OL 

myelin load. Myelin basic protein (MBP) analysis in CSPG4-EGFP+ mice revealed striking 

deficits in the mPFC of SD-Sus mice, when compared to the Con and SD-Res mice 
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(Fig.3a,3c; Supplementary Fig. 2m; higher magnification). The deficits were confirmed 

by other classic myelin markers (CNP, MOG and MOBP; Fig. 3d,3e), suggesting that a 

large number of existing OLs could be dysfunctional. Oligodendroglial density (Olig2) was 

significantly decreased in the SD-Sus groups due to OPC losses (Fig. 3b; Supplementary 

Fig. 2k–l bottom panels). Decreased myelination and white matter (WM) deficits in MDD 

patients have also been reported for the ventral/lateral orbital cortices (VO/LO) and forceps 

minor (fmi)26,27. To that end, histological analysis of both areas post-RSDS revealed 

significant deficits of OPCs (CSPG4+), OLs (GST-π+), oligodendroglia (Olig2+) and myelin 

density (MBP+) in the SD-Sus mice compared to Con and SD-Res (Supplementary Fig. 

5a–h).

Chronic stress induces OPC morphological impairments, excessive oxidative stress 
responses and OPC apoptosis in mPFC post-RSDS

OPCs are highly dynamic cells which continuously survey their local environment 

with multibranched processes, motile filopodia and extended growth cones1,2, which are 

crucial for creating synaptic junctions with neurons (neuroglial junctions) and receiving 

neurotransmitter input4,5. We sought to characterize the OPC morphological features using 

Neurolucida hyperstacks acquired from the CSPG4-EGFP+ mice. Remarkably, branched 

structural and Sholl analyses revealed significant reductions in OPC process intersection 

numbers, surface area and branch complexity in the SD-Sus mice compared to Con 

and SD-Res groups (Supplementary Fig. 6a–d; Supplementary Videos 1–3). Such OPC 

morphological alterations and extensive loss of process complexity have been previously 

related to OPC dysfunction, demyelination injuries, and apoptosis2,28. Therefore, we 

investigated the reactive oxidative species (ROS) production in the mPFC post-RSDS. 

We administered dihydroethidium (DHE) three hours before mouse euthanasia on D15, 

which interacts with superoxide radicals and produces red-fluorescent 2-hydroxyethidium 

(2-OH-E)29,30. Since microglia are a major source of ROS in CNS, we utilized the 

CX3CR1-GFP+ reporter mice for histological analysis of 2-OH-E in OPCs (PDGFRα+) 

and microglia, revealing a significant upregulation of total ROS in the mPFC of SD-Sus 

mice (Supplementary Fig. 6e–f). ROS production was significantly increased in OPCs 

(PDGFRα+2-OH-E+DAPI+) and microglia (CX3CR1+2-OH-E+DAPI+) in the SD-Sus mice 

compared to the Con and SD-Res (Supplementary Fig. 6g–h). Highest ROS production was 

reported by the microglial 2-OHE integrated density (CX3CR1+2-OH-E+DAPI+)It is also 

important to note that microglial cell numbers were significantly increased in the SD-Sus 

groups (Supplementary Fig. 6i).

Differentiating oligodendroglia are considered vulnerable to ROS-related cytotoxic triggers 

resulting in OL deficits in cell numbers and myelin content31,32. To investigate if this is 

due to oligodendroglial apoptosis, we performed IHC in mPFC of CSPG4-EGFP+ mice 

for cleaved Caspase-3 (Cl.Caspase3; apoptosis marker) and Olig2. Total Cl.Caspase3 levels 

were significantly higher in the OPCs/C-OPCs (CSPG4+Olig2+Cl.Casp3+DAPI+) of SD-Sus 

mice, compared to Con and SD-Res (Fig. 3g–h). Similar but less profound was the Cl.Casp3 

increase in the Pre-OLs/OLs (CSPG4−Olig2+Cl.Casp3+DAPI+) of the SD-Sus mice (Fig. 

3i). These results indicate that chronic stress can induce significant ROS production 
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and OPC structural atrophy in mPFC, contributing to aberrant OPC progression, leading 

potentially to oligodendroglial apoptosis.

Chronic stress triggers integrated-stress pathway responses and p-eIF2α/CHOP 
stimulation post-RSDS.

The integrated stress response (ISR) pathway plays a major role for the OLN progression, 

myelination, and cytoprotection during cellular stress stimuli (i.e., endoplasmic-reticulum 

stress, inflammation, ROS)33. The ISR is activated when the eukaryotic translation initiation 

factor eIF2α gets phosphorylated (p-eIF2α) and upregulates the activating transcription 

factor 4 (ATF4) to diminish global protein translation. However, should efforts to restore 

proteostasis fail and stress conditions persist, ATF4 can upregulate the C/EBP homologous 

protein (CHOP) transcription factor which induces cell apoptosis34.

We investigated the D6 and D15 ISR responses of oligodendroglia following chronic 

stress. CSPG4-EGFP+ mPFC sections were stained with p-eIF2α and Olig2 revealing a 

time-dependent activation of ISR (Supplementary Fig.7a–e). At D6, total and OPC-specific 

p-eIF2α (CSPG4+p-eiF2α+) significantly increased in the SD-Sus mice compared to Con 

and SD-Res, while the p-eIF2α expression in the SD-Res mice exhibited a modest increase 

compared to the Con (Supplementary Fig.7d–e). In contrast, total and OPC-specific p-eIF2α 
markedly decreased in the SD-Sus mice compared to Con at D15, while p-eIF2α in the 

SD-Res was considerably higher than the Con and SD-Sus mice (Supplementary Fig.7a–c).

We examined the downstream responses of ATF4 and CHOP in mPFC post RSDS. IHC 

analysis revealed remarkable upregulation of ATF4 in both SD-Sus and SD-Res compared 

to Con (Supplementary Fig.7f–h). This upregulation led to CHOP activation only in the SD-

Sus mice as shown by the OPC-specific CHOP+ and OPC-specific ATF4+CHOP+ expression 

in mPFC (Supplementary Fig.7i–k). These results suggest that chronic stress can drastically 

activate the ISR mechanism and potentially alter the homeostasis, fate, and function of 

oligodendroglia.

Long-term effects of chronic stress on OPC homeostasis in mPFC.

Considering that chronic stress and traumatic experiences display persisting effects 

on MDD-affected areas35, we determined the long-term effects of chronic stress on 

oligodendroglial homeostasis and function. Following the RSDS paradigm and behavioral 

tests (BH1; D11-D14), mice were kept single-housed, and a 2nd round of behavioral tests 

was performed (BH2; D21-D24) (Supplementary Fig. 8a). The depressive-like phenotype of 

the SD-Sus mice persisted with ~80% of the SD mice displaying depressive-like phenotype, 

while the SD-Res (~20%) exhibiting only increased anxiety (Supplementary Fig. 8b,9a–e).

To examine the long-term effects (D25) of chronic stress on OPC homeostasis, proliferation 

capacity and lineage fate, we dual pulse labeled with BrdU (administered ad libitum during 

the RSDS paradigm) and three EdU doses at D17, D19 and D21 (Supplementary Fig. 

8a). Histological analysis of mPFC confirmed sustained OPC losses in the SD-Sus mice, 

compared to Con and SD-Res (Supplementary Fig. 8c–d). In addition, the BrdU-retaining 

cells were considerably increased in the SD-Sus, while a large percentage of them displayed 

low BrdU intensity, due to OPC mitotic burst in the SD-Sus mice during early-RSDS 
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(Supplementary Fig.8e–g). Interestingly, only half of the BrdU-retaining cells were OPCs, 

indicating that the remainder has differentiated into Pre-OLs/OLs (Supplementary Fig. 6h). 

In addition, the proliferation capacity of the BrdU-retaining OPCs (BrdU+EdU+PDFRα+) 

was significantly lower in the SD-Sus mice (~10%) at D25, compared to the Con 

(~25%) and SD-Res (~28%) (Suppplementary Fig. 10i–j), and corresponding deficits in 

OPC proliferation were also confirmed by decreased PDGFRα+Ki67+ expression at D25 

(Supplementary Fig. 10a–d). Use of the mature OL marker (GST-π+) revealed significant 

losses of mature OLs in the SD-Sus groups (Supplementary Fig. 10e–f) in mPFC, indicating 

that the aberrantly high OPC differentiation does not compensate for the OL reductions in 

D25 post-RSDS.

Single-nucleus transcriptomic characterization of oligodendroglial-lineage in the dlPFC of 
MDD patients.

To investigate whether our findings in RSDS rodent model may reflect the human 

condition, we utilized a publicly available dataset (Nagy et al., 20209) of ~80,000 

nuclear transcriptomes (sn-RNAseq) from the dorsolateral PFC (dlPFC) of MDD cases 

and psychiatrically healthy controls. Raw counts were downloaded from GEO (GSE144136) 

and expression objects were created using Seurat tool. Cell-type-specific, differentially 

expressed genes (DEGs) and OLN populations were identified, clustered using uniform 

manifold approximation and projection (UMAP), and annotated based on their expression of 

oligodendroglial-specific markers (PCDH15, DSCAM, VCAN, SOX6, PDGFRα, CSPG4, 

OLIG2, OLIG1, CNTNAP2, CLDN11, CNP, PLP1, PCDH9, QKI, MBP, MOG, MAG)9,36. 

Four common clusters (OPCs, C-OPCs, Pre-OLs, OLs; for Con and MDD) and an MDD-

specific cluster (named Immune Oligodendrocytes; Im-OL, given that the cells expressed 

immune-related genes) were determined by the analysis (Fig. 4a). Pie charts with raw cell 

numbers from each cluster indicated alterations in the OLN progeny and reductions of the 

OL numbers (Fig. 4a). Dotplot analysis of the top expressed OLN population markers in 

Con and MDD patients revealed that the Im-OL cluster, along with the OL-specific gene 

signature, also expressed a range of immune-related components (Fig. 4b).

Immune oligodendrocytes, a distinct population with immune-related features, are altering 
the oligodenroglial-lineage in MDD patients.

The transcriptome profile of the Im-OL was examined using violin plots of marker genes 

shared in the OLN and Im-OL clusters as well as Im-OL characteristic DEGs, divided per 

condition (Fig. 4c). The Im-OL cluster exhibited a substantial expression of OLN-specific 

genes (keen to mature OLs), but also demonstrated a distinct phenotypic gene expression 

of immune-related genes C3, HLA complex, P2RY12, ADAM28, DOCK8, LPAR6, 
ARHGAP24 (Fig. 4c). In addition, dot plot analysis and hierarchical clustering dendrogram 

of the top expressed OLN and microglial markers revealed that the immune-related gene 

signature of Im-OL was transcriptionally related to the microglial transcriptome cluster 

(Supplementary Fig. 11a). The double-faceted oligodendroglial/immune nature of Im-OL 

was further supported by heatmap analysis of their respective average gene expression, 

noting a significant correlation of Im-OL with both OLs (r=0.92) and Microglia (r=0.81) 

(Supplementary Fig. 11b).
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To further characterize the role and functionality of Im-OL as part of the oligodendroglial-

lineage, grouped gene scoring for myelin characteristic DEGs was used, divided 

per condition: CNP, PLP1, PCDH9, QKI, MBP, MOG, MAG. The MDD clusters 

exhibited significantly lower myelin gene scores compared to the respective Con clusters 

(Supplementary Fig. 11c). Importantly, the Im-OL cluster displayed a significant reduction 

of the myelin-related gene expression compared to the mature OLs, indicating myelination 

deficits or maturation arrest of OL-lineage during depression. In addition, gene set 

enrichment analysis of the top Im-OL markers identified a strong enrichment of Im-OL 

(p.adj.value<0.02) with genes involved in immune system processes and immune responses 

(Supplementary Fig. 11d), suggesting that the function Im-OL might be distinct than that of 

the other oligodendroglia.

Using the developmental-stage-specific OLN markers a predictive model of OLN 

pseudotime trajectory37 was plotted: significant alterations in the progression of the OLN 

progeny in MDD samples were observed. With starting point the OPC cluster (R; root), 

the control (Con) patient trajectory exhibited the traditional lineage progression: OPC → 
C-OPC → Pre-OL → OL. The MDD patient trajectory revealed two alternate routes of 

cell fate commitment, either toward OLs through the Im-OL population, or toward pre-OLs, 

with the latter suggesting myelination arrest of OLs (Fig. 4d). In addition, colocalization 

plots of key oligodendroglial markers (PDGFRα, CSPG4, CLDN11, PCDH9, PLP, MBP) 

with characteristic Im-OL markers showed that the Im-OLs are transcriptionally closer to 

the Pre-OL/OL cluster (Supplementary Figs. 15–17), supporting the pseudotime trajectory 

of the oligodendroglia in MDD patients.

Oligodendroglial expression of MHCII, complement C3 and P2RY12 in the RSDS-affected 
areas.

Based on the top Im-OL expressed DEGs (HLA complex, C3 and P2RY12) in MDD 

patients (Fig. 4c), we examined this novel oligodendroglial subset of Im-OL in the RSDS 

model using the MHCII, C3 and P2RY12 markers. Histological analysis of CSPG4-EGFP+ 

mice, co-stained with O4 (C-OPCs/Pre-OL) and MHC class II (I-A/I-E) antigen presentation 

markers revealed a significant expression of MHCII by oligodendroglia in the SD-Sus 

mice, compared to the Con and SD-Res (CSPG4−O4+MHCII+) (Fig. 5a–e). Among these 

populations, the Pre-OLs exhibited the largest percentage of total MHCII in mPFC, which 

agrees with the bioinformatic analysis of the Im-OL cluster. Analogous expression was 

observed by histological analysis of CSPG4-EGFP+ mice with O4 and complement C3 

markers, revealing a significant upregulation of C3 expression in the oligodendroglia of 

SD-Sus mice at mPFC, and most specifically by the Pre-OL lineage-stage (CSPG4−O4+C3+) 

(Fig. 5f–j). For both MHCII and C3 the Pre-OLs of the SD-Res mice exhibited a 

modest, but significant increase compared to the Con. MHCII and C3 expression in the 

adjacent areas of VO/LO and fmi were also significantly increased in the SD-Sus mice, 

compared to Con and SD-Res (Supplementary Fig. 12a–p). P2RY12, encodes the microglial 

marker purinoceptor 12 (P2RY12)38. Its expression is reported to be downregulated during 

inflammatory responses and stress conditions (M1-like microglial activation)39. P2RY12 

expression levels in mPFC were significantly decreased in the SD-Sus mice compared 

to Con and SD-Res groups (Supplementary Fig. 13g–h). Remarkably, in proximity with 
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the microglial cells (P2RY12+), P2RY12 was also localized in OLN populations and 

significantly upregulated in the SD-Sus groups (most predominantly in Pre-OL stage; 

CSPG4−O4+P2RY12+) (Supplementary Fig. 13i–k). Overall, we validated the existence of 

OLN cells which express immune genes in the RSDS mouse model, analogous to the top 

markers expressed in Im-OL population in the MDD patient cohorts.

Oligodendroglial expression of MHCII in mPFC mediates microglial phagocytosis of myelin 
elements

Microglia are important antigen-presenting cells in CNS that get activated in a MHCII-

dependent manner during neurodegeneration40. Recent evidence from Multiple Sclerosis 

studies have suggested similar roles for OLN cells, including antigen presentation and 

direct communication and recruitment of innate and adaptive immune cells41,42. These 

observations suggest that Im-OL may act as mediators of immune responses. We 

investigated whether Im-OL play a similar role in the RSDS model. We performed IHC 

in CX3CR1-GFP+ mice for CNP (myelin marker) and MHCII to evaluate microglial 

phagocytosis of myelin. Microglial expression of MHCII and dramatic myelin deficits 

(CNP) were evident in the mPFC of SD-Sus mice (Supplementary Fig. 13a–c), where a 

significant percentage of CNP co-localized with MHCII (~12%), compared to the Con and 

SD-Res groups (Supplementary Fig. 13a,d). Focusing on myelin phagocytosis by microglia 

(CX3CR1+CNP+), both SD-Sus (~8.5%) and SD-Res (~7.5%) displayed a significant 

increase compared to Con (~6%), however almost half of the myelin sheath in the SD-Sus 

mice was “tagged” with the MHCII (~4%; CX3CR1+CNP+MHCII+), compared to the 

Con (<1%) and SD-Res (~1%) groups (Supplementary Fig. 13e–f), suggesting an antigen 

presentation role for Im-OL in response to chronic stress.

Discussion

In this study we demonstrated that chronic psychosocial stress disrupts the OPC 

homeostasis, oligodendroglia-lineage progression and causes severe myelin deficits, 

associating a novel population of immune oligodendrocytes with depressive-like behavior 

(Supplementary Fig. 14). We employed the RSDS paradigm, a well-established mouse 

model of depression24, to elucidate the cellular dynamics and molecular mechanisms of 

these perturbations. In line with previous studies8,24, the majority of SD mice displayed 

long-lasting depression-like features (SD-Sus; social aversion, stress/anxiety, anhedonia, 

despair), while a smaller cohort exhibited resilience to stress (SD-Res), reflecting the 

heterogeneous responses to chronic stress in the human population43. We observed that 

chronic stress can lead to major OPC population losses in the mPFC of SD-Sus mice (D6), 

which can persist for several weeks after the end of the paradigm (D25). The results agree 

with previous findings reporting significant OPC reductions in the mPFC of depressive-like 

rodents and MDD patients8,44. These effects did not reflect a generalized response to chronic 

stress, since OPC density was not altered in areas not involved in the MDD pathophysiology 

(somatosensory and motor cortices; data not shown).

Despite the dramatic OPC losses, chronic stress led to a transient proliferation surge of 

OPCs in the SD-Sus mice after miniSD (D6), which was followed by sustained reductions 
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of OPC proliferation post-RSDS in mPFC (D15). The initial proliferative surge of OPCs 

could reflect a regulatory effort to restore their cell density2, or a response to OL/myelin 

deficits and concomitant neuronal activity changes, as reported in the mPFC of MDD 

patients and depression animal models14,20,35. Tracing the oligodendroglial-lineage fate 

by BrdU-labeling or PDGFRα::eYFP+ recombination revealed that the initial proliferative 

response by OPCs was followed by increased differentiation into C-OPCs and Pre-OLs 

in the mPFC of SD-Sus mice. In addition, the dual-pulse labeling of OPCs indicated 

that the aberrant differentiation rates and diminished proliferation persisted for at least 2 

weeks post-RSDS (D25), evidence for long-term OLN deficits in the mPFC response to 

chronic psychosocial stress. Notably, the amplified OPC differentiation did not translate 

into an increase of myelinating OLs post-RSDS (D15) but rather to a significant decrease 

on D25, suggesting that these OPCs may have differentiated but failed to fully mature. 

This is further supported by the OL myelin deficits identified in the mPFC in our study, 

as well as in previous animal13,14 and clinical17 studies. Myelin deficits and alterations in 

OLN-lineage were also reported in the VO/LO and fmi areas, which are associated with WM 

deficits observed in MDD patients26,27. In contrast to the significant compromises of OLN 

homeostasis in the SD-Sus groups, the SD-Res mice demonstrated increased OL density 

(GST-π+ cells), intact myelin content and low OLN cell apoptotic rates. These observations 

along with the increased OPC proliferation at the early (D6) and later stages (D15) of RSDS 

and the modest increase in OLN-progeny progression further strengthen the physiological 

association of OLN homeostasis with the depressive-like pathophenotypic behavior1,8,9.

Previous studies have established that radial morphological features in OPCs associate with 

reception of direct synaptic input and response to neuronal activity changes45,46. Here, we 

revealed dramatic alterations of OPC morphology after chronic stress, suggesting disruption 

of neuro-glial communication. Similar atrophic-like OPC features have been previously 

reported in demyelinating/inflammatory conditions, oxidative stress, and cell apoptotic 

events2,13,28.

Consistent with previous studies implicating neuroinflammation and oxidative stress 

during depression30,47–49, we detected an upregulation of microglial ROS production 

and significant microglial recruitment in SD-Sus mice. The SD-Sus mice also displayed 

a substantial increase of OPC-specific ROS production, indicative of oligodendroglial 

dysfunction post-RSDS. OPCs are vulnerable to sustained oxidative stress 31 due to their 

high metabolic rate and the extensive protein synthesis needed for OL myelin production 
50. ROS production can trigger expression of key members of the ISR pathway by 

depleting the antioxidant defense machinery in OPCs 51, suggesting that ISR plays a major 

homeostatic role in the translational control of OLN progression (proteostasis), myelination, 

and cytoprotection from stress stimuli33,34. Analysis of the ISR mechanism in the SD-Sus 

mice revealed that chronic stress supports a transient induction of OPC-specific p-eIF2α 
on Day6, which was downregulated on Day15. The initial upregulation of p-eIF2α was 

sufficient to promote a sustained induction of ATF4, leading to CHOP activation on D15. 

However, when cellular stress remains unmitigated, the protective abilities of the ISR are 

overwhelmed, inducing the accumulation of the proapoptotic protein CHOP, subsequently 

leading to apoptosis33. Additionally, CHOP induction can result in dephosphorylation of 

p-eIF2α, as a feedback mechanism, through the GADD34-dependent protein phosphatase 
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1 (PP1)52. The latter, along with the significant loss of OPCs on D15 (normally major 

contributors of the total p-eIF2α), could explain the p-eIF2α reduction observed on D15. In 

contrast, the moderate activation of the OPC-specific p-eIF2α and ATF4 did not result in 

ISR exhaustion or CHOP induction in the SD-Res groups, suggesting that manipulation 

of the ISR mechanism could potentially protect the fate and homeostatic function of 

oligodendroglia53. Both ROS and ISR pathways have been shown to converge upon their 

sustained activation into caspase-related apoptotic signals and pro-apoptotic events50. ATF-4 

co-operates with CHOP to induce death in cells overproducing ROS as a corollary to 

increased rates of protein synthesis and a malfunctional protein folding machinery54. In 

support of that, significant OPC and OL apoptosis was evident in the SD-Sus mice 

post-RSDS, as a consequence of the sustained malfunction of the ISR machinery and 

ROS elements after chronic psychosocial stress. Utilizing a sn-RNAseq dataset from the 

dlPFC of MDD patients9, we identified a novel OL MDD-specific population, recently 

described in multiple sclerosis (MS) patients36, the Immune OLs. Im-OL expressed both 

characteristic-OL genes as well as several immune-related factors involved in processes 

and responses usually associated with immune cells (such as microglia). The Im-OL 

molecular signature we determined was highly correlated with the Im-OL population from 

MS patients36 (Supplementary Fig. 20). Significantly, a pseudotime trajectory of OPCs 

revealed an aberrant OLN progression in the MDD patients due to the substantial Im-OL 

myelin gene-expression deficits, which further supports our hypothesis for disturbances in 

the OL-lineage and OL-maturation arrest.

Based on the top-expressed genes of the Im-OL cluster, we demonstrated that 

oligodendroglia (predominantly pre-OLs and OLs) from several depression-affected areas 

significantly expressed the immune-related components: MHCII, C3, P2RY12, in the 

SD-Sus mice. In previous studies with MS patient samples and in diabetic animals, it 

was demonstrated that interferon-γ could induce expression of MHCII55, and modify 

the expression of P2RY1256. It would be interesting to examine whether interferon-γ, 

potentially secreted by microglia is responsible of the upregulation of these immune-related 

genes in the context of RSRS, the induction of ISR, and the differentiation of OPCs 

towards Im-OL. The interaction of Im-OL with microglia suggests that Im-OL may 

mediate microglial phagocytosis of myelin elements. To that end, recent reports note 

that immune-related OLs function as antigen-presenting cells and instigate immune cell 

recruitment in MS41,42,57. These findings further support the hypothesis that Im-OL could 

serve as a “tagging” homeostatic mechanism for clearance of dysfunctional oligodendroglia 

during stressful or inflammatory conditions, emerging as active immune mediators. Further 

phenotypic, and functional characterization of these populations is crucial to better 

understand the role of Im-OL in CNS homeostasis and neuropsychiatric disorders.

Material & Methods

Animals

All animal procedures were approved by the Institutional Animal Care and Use Committee 

(covered by Animal welfare assurance No A3011-0), Renaissance School of Medicine at 

Stony Brook University, and conducted in accordance with the guidelines of the National 
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Institutes of Health “Guide for the Care and Use of Laboratory Animals”. Experiments 

were performed using adult (2–3 months old) male mice [C57BL/6J (wt), CSPG4-

EGFP (Jackson Labs, 022735 model FVB.Cg-Tg(Cspg4-EGFP*) HDbe/J), CX3CR1-GFP 

(Jackson Labs, 005582 model B6.129P-Cx3cr1tm1Litt/J), PDGFRα-CreERT2 (Tg(Pdgfra-

cre/ERT2)1Wdr; from58), Rosa26-ΕYFP (Jackson Labs, 006148 model B6.129X1-

Gt(ROSA)26Sortm1(EYFP) Cos/J)] were used wherever mentioned. All the mouse lines 

were backcrossed to a C57BL/6J background, bred in-house, and genotyped by PCR. CD-1 

retired-breeder male mice (Charles River Laboratories, CD-1 IGS mice, strain code:022) 

were used as aggressors. For induction of recombination in the PDGFRα-CreERT2 :: 

Rosa26-EYFP mice, tamoxifen (Sigma CAS # 10540-29-1) dissolved in ethanol : sunflower 

seed oil was injected intraperitoneally (i.p.) starting at P30, at a daily dose of 75 μg/g body 

weight (from a 10 mg/ml stock), for 5 consecutive days, as in25. All animals were housed in 

12-h light/dark cycle. Food and water were provided ad libitum by the experimenters.

Repeated social defeat stress paradigm (RSDS)

Adult male mice were subjected to repeated bouts of physical aggression (“defeats”) from 

aggressive CD-1 mice for 10 consecutive days, as previously described8,24. The CD-1 

aggressors were screened during a 3-day screening period for adequate aggressive behavior 

and then housed on one side of the divided mouse cage (known as the home cage), at 

least overnight prior to the start of defeat sessions. All defeat experiments were performed 

within that compartment, while the intruders were rotated across defeat days, so that the 

experimental animals would not habituate to a single aggressor. On day 0 (D0) of RSDS 

the ‘socially defeated-to be’ (SD) mice were placed into the aggressor’s space for 10 

min (physical stress), and after the end of the encounter they were returned to their side 

overnight. The mice could see and smell the aggressor through the clear perforated divider 

(sensory stress). The naïve mice were exposed to wt (C57BL/6J) mice, instead, for 1 minute. 

About 80% of the mice that were subjected to social defeat stress displayed depressive-like 

behavior (SD-Sus for Susceptible), whereas the rest 20% were the nonresponding mice 

(SD-Res for Resilient) did not, thus modeling the heterogeneity in individual responses to 

stress in humans59. At the end of RSDS paradigms all animals were singly housed. Socially 

defeated mice were categorized based on the SI output, and further behavioral analyses for 

each group followed this categorization. Both SD-Sus and SD-Res exhibited anxiety-like 

behavior, however the SD-Sus additionally demonstrated social avoidance, reduction of 

reward under stress, anhedonia, despair-like behavior, and elevated plasma corticosterone 

levels (~130 ng/ml)59. In addition to this paradigm, a shorter adaptation (3 days social 

defeat) was also used in this study.

Behavioral analyses

For endpoints D15 and D25, mice were behaviorally tested for 4 days (1 experiment/day), 

while for endpoint D6, mice were tested for 3 days (1 experiment/day) prior to euthanasia. 

Behavioral testing and recordings were performed during the light phase. Both naïve and 

SD mouse groups were tested for behavioral alterations using the i) social interaction test 

(SI; measures social avoidance), ii) elevated plus-maze test (EPM; measures stress/anxiety), 

iii) forced swimming test (FST; measures despair-like behavior), iv) sucrose preference test 

(SPT; assesses anhedonia-lack of feeling pleasure), and v) novelty suppressed feeding test 
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(NSF; assesses reward under stress). All experiments (except for SPT) were performed in 

a light-controlled and sound-isolated behavioral analysis room. The mice were acclimatized 

to the experimental room for 1 hour before the start of each experiment. The SI and EPM 

were performed under red light conditions; the remaining behavioral tests were performed 

with lights on. The software Noldus Ethovision XT16 was used for the automated tracking 

and scoring during the behavioral tests. White noise generator (70–75 dB) was used to mask 

intermittent disturbing sounds (from surrounding areas) that would potentially startle the 

animals.

Social Interaction (SI)—One day after the final social defeat stress interaction, a SI test 

was performed to determine whether the animals display social avoidance, as previously 

established24. Mice were placed into the social interaction open-field arena [(42 cm (w) 

× 42 cm (d) × 42 cm (h)], and the time spent in the interaction zone (<8 cm from the 

wire-mesh enclosure) was monitored for the two 2.5-min phases (without or with a novel 

CD-1 aggressor present in the enclosure), separated by a duration of 30 s. The socially 

defeated mice with SI ratio [(Time in interaction zone with aggressor) / (Time in interaction 

zone without aggressor)] >1, were classified as SD-Res and mice with a ratio below 1 (social 

avoidance), were classified as SD-Sus8. The naïve mice were categorized as Control (C).

Elevated plus-maze test (EPM)—The apparatus used for this test was cross-shaped with 

two open arms (30 cm × 5 cm) and two closed arms (30 cm × 5 cm × 15 cm) that extended 

from a central platform (5 cm × 5 cm), as previously8,60. The entire maze was elevated 

40 cm above the floor. The enclosed arms offered safety when the mouse was stressed; on 

the other hand, the open arms offered the motive of exploration. Each mouse was placed 

in the central square of the apparatus, facing an enclosed arm. The mice were let to roam 

freely for 10 min totally; an arm entry was defined when all four paws entered an arm. The 

total mobility, time spent in open arms and time closed arms were recorded, as an index of 

stress/anxiety60.

Forced swimming test (FSM)—Each mouse was placed in a transparent tank 

[inescapable Plexiglas cylindrical tank (height: 30 cm, diameter: 22.5 cm)] that was filled 

with water (to a depth of 15 cm and maintained at 25 °C) and their escape related mobility 

behavior was measured. Once the mouse was in the water, it was left to swim for 6 min in 

total, assessing the behavior only during the last 4 min, as previously performed61–63. The 

mice that acquired an immobile posture, characterized by motionless floating in the water, 

were termed immobile (immobility time), making only the necessary movements to keep 

the head above the water. Before returning the animals to their home cages, they were dried 

gently using paper towels to prevent hypothermia.

Sucrose preference test (SPT)—The SPT was performed as previously with slight 

modifications8,64. The experimental groups were habituated for 72 h to 2% sucrose, in 

which the bottles were alternated to avoid bias for a specific cage side. The day before the 

testing the mice underwent an 18 h water deprivation period. The day of the testing bottles 

filled with sucrose 2% or water were weighed, and consumption was determined for a 24 h 

period. Bottles were weighed again at the end of the 24 h period. Sucrose preference was 
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expressed as (Δweightsucrose) / Δweightsucrose + Δweightwater) x100. Sucrose preference 

score less than 70% was displaying anhedonia.

Novelty suppressed feeding test (NSF)—The NSF test measures the time that mice 

take to approach and eat food in a novel environment following an extended period of food 

deprivation. Mice were food-deprived for 24 h and moved in freshly prepared home-cages 

(to avoid any pellets remaining on the bedding). The next day, each mouse was placed at the 

corner of an open-field arena [(42 cm (w) × 42 cm (d) × 42 cm (h)] and a pellet of chow 

was already positioned at the center of it. The time until the first bite of the chow pellet 

was recorded, with maximum trial time the 10 min. After the trial, the mice were returned 

to their home cage which contained a pre-weighed food pellet, and food consumption was 

measured for a period of 5 min, as described65,66.

Plasma corticosterone levels

Blood samples were collected from the animals before the euthanasia, unless stated 

otherwise. The subjects were anesthetized by isoflurane, and they were placed in a restrainer 

(for easier extraction). The tail was warmed with a red light and snipped by a scalpel 

blade. Blood samples were collected (~100 μl) into lithium-heparin collection tubes (BD 

Vacutainer® tubes, 265729). Plasma was separated from whole blood by centrifugation 

and was stored at −80°C, until use. For measurement of plasma corticosterone levels, the 

samples were diluted 1:40 in buffer and measured using the Corticosterone EIA kit (Enzo 

Life Sciences, ADI-900-097), according to the manufacturer’s instructions.

BrdU and EdU labeling

For the labeling of proliferating cells, 5-Bromo-2′-deoxyuridine (BrdU;Sigma-B5022) was 

dissolved in drinking water (1 mg/ml), and all mouse groups were given access to the 

water ad libitum throughout the 10 days of the RSDS paradigm8. For dual-pulse labeling of 

proliferating populations, 5-ethyl-2’-deoxyuridine (EdU; ThermoFisher Scientific -E10187) 

was administered i.p. at D17, D19 and D21 (x3 at D17, D19, D21) at a dose of 100 μg/g 

body weight (8 mg/ml EdU in 0.9 % NaCl), as in67.

Reactive oxygen species (ROS) measurement

For the in-situ detection of oxidative stress in the form of ROS production, dihydroethidium 

(DHE; #D1148, ThermoFisher Scientific) was dissolved at 2 mg/ml in 100% DMSO, and 

then diluted 1:1 with sterile saline to 1 mg/ml. Three hours before euthanasia, the subjects 

were i.p. administered a DHE dose of 10 μg/g body weight, as previously described29. 

DHE is a redox-sensitive probe, which is oxidized by superoxide radicals to ethidium68, 

generating the highly superoxide-specific, red fluorescent product 2-hydroxyethidium (2-

OH-E), which intercalates within the DNA. The excitation (Ex) and emission (Em) 

wavelengths used for the 2-OH-E were 405 nm and 580–620 nm respectively, to 

preferentially detect emissions from 2-OH-E and avoid nonspecific detection of ethidium 

(nonspecific product of DHE oxidation), as previously30,69.
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Immunoblot analysis

Mouse subjects were euthanized with isoflurane overdose, and freshly extracted brains were 

micro-dissected using a McIlwain tissue chopper to obtain ~500-μm thick brain coronal 

sections. Medial PFC was dissected out (with the help of a dissecting microscope) from 

+1.2 mm to +2.5 mm anterior to bregma slices. Protein lysate was prepared using RIPA 

buffer (120–150 μl) with protease and phosphatase inhibitors (200 mM PMSF, 100 mM 

sodium orthovanadate, and protease inhibitor cocktail; Santa Cruz, sc-24948A). Lysates 

were shaken for 15 min at 4 °C, cleared by centrifugation at 15,000 g for 10 min at 

4°C, and protein concentration was determined using the Pierce BCA Protein Assay Kit 

(ThermoFisher Scientific; 23225). Samples (15–20 μg) were boiled for 5 min with 5X SDS-

PAGE sample loading buffer (Thermo Fisher Scientific; 39000), separated by SDS-PAGE, 

and transferred to PVDF membranes (ThermoFisher Scientific; 88518) at 30 V for 16–18 

h at 4°C. Membranes were blocked with 5% w/v nonfat dry milk (Cell Signal; 9999S) and 

incubated with primary antibodies (Supplementary Table 2a) for 16–18 h at 4°C. Washes 

with TBST (Cell Signal; 9997S) were followed by incubation with HRP-coupled secondary 

antibodies (Supplementary Table 2b). Signal was visualized by Sapphire Biomolecular 

Imager (Azure Biosystems) using a chemiluminescent substrate mixture (Supersignal West 

Pico Plus; ThermoFisher Scientific, 34580 or Immobilon Western; Millipore, WBKLS0500). 

Optical densities were collected with Fiji ImageJ software70. Where indicated, protein levels 

were expressed as fold change (versus Control) of the arbitrary units (A.U.) following 

normalization to the corresponding loading controls (β-Actin, GAPDH). Samples were 

normalized to the total protein for each sample, as determined by the BCA assay. For 

detailed antibody list used see Supplementary Table 2a.

Immunohistochemistry

Deeply anesthetized mice were transcardially perfused with cold 1X PBS (15 ml) followed 

by cold PFA fixative solution (4% paraformaldehyde in 1X PBS; 20ml) and brains were 

dissected and post-fixed for an additional 24 hours. Then brains were cryoprotected in 30% 

sucrose for 24 hours and sectioned with a sliding microtome. Free-floating brain sections 

(30–40 μm thick) containing the mPFC, VO, LO and fmi were blocked with 10% goat 

serum (ThermoFisher Scientific; 16210072) in 0.3% TritonX-100 in 1X PBS for 1–2 hour 

at room temperature. Tissue sections were incubated with primary antibodies overnight at 

4°C at the indicated concentrations (Supplementary Table 2a). The following day, sections 

were washed in PBS-Triton and incubated with the appropriate cross-absorbed secondary 

antibodies (Supplementary Table 2c). After 4 additional washes nuclei were stained with 

DAPI (Sigma; D9542) and sections were mounted using MOWIOL mounting media. For 

BrdU IHC, sections were pretreated in 2M HCl for 40 minutes at 37°C, followed by 2–3× 5-

minute washes in 0.1 M Boric acid (pH 8.5). For BrdU and EdU double staining, tissue was 

processed for BrdU and followed by EdU labeling with Click-iT Plus EdU Cell Proliferation 

Kit-Alexa Fluor 555 (ThermoFisher Scientific, C10638), according to the manufacturer’s 

instructions. For detailed antibody list used see Supplementary Table 2a.
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Microscopy and histological quantification

The confocal laser-scanning microscopes Leica TCS SP8X and Leica TCS-SP5 were used 

for imaging of FITC, EGFP, EYFP, Alexa-488, Alexa-555, Alexa-594, Alexa-647, 2-OH-E 

and CY3 fluorophores. Optical sections (z = 1.0μm; total stack of 10–16μm for 1 cell layer) 

of confocal epifluorescence images were sequentially acquired using 10x, 20x, 40x (N.A. 

1.30), 63x (N.A. 1.20) and 100x (N.A. 1.40) objectives, with LAS AF software. Fiji ImageJ 

software70 was used for image reconstruction, cell counting, integrated density analysis and 

colocalization analysis. For mPFC analysis, 6 fields (located between +1.2mm to +2.5mm 

anterior to bregma), containing the cingulate cortex (Cg1), prelimbic (PL), infralimbic (IL) 

and medial orbital cortex (MO) were taken from each animal, for quantitative analysis. 

For VO/LO analysis, 4 fields (located between +2.0mm to +2.5mm anterior to bregma), 

containing the ventral orbital cortex (VO), and lateral orbital cortex (LO), were taken from 

each animal for quantitative analysis. For fmi analysis, 3 fields (located between +1.2mm 

to +1.7mm anterior to bregma), containing the forceps minor (fmi), were taken from each 

animal for quantitative analysis. Typically, 3–4 brain slices were analyzed per animal, and at 

least 3 different animals for each experimental condition were evaluated. Cell counts were 

presented as the number of marker+ cells/section (section corresponding to 0.2mm2). Each 

section quantification depicts the sum of the marker+ cells from all the analyzed fields. For 

the integrated density analysis, the IsoData thresholding was applied to each image, and 

the integrated density [is defined as the product of pixel intensity (255 = the maximum 

pixel intensity for an 8-bit image) × area] was measured. For the colocalization analysis, the 

IsoData thresholding was applied to each image, images were merged, compartmentalized, 

and the integrated density was measured for the colocalized signal. Each section with 

integrated density quantification is depicted by the mean of the integrated density from all 

the analyzed fields. Additionally, for the analysis of weak BrdU+ cells the low threshold 

level was set at 120. Any cells not observable at that threshold were termed as weak-labeled 

BrdU+ cells, depicting the diluted labeling cells after several proliferation cycles71. All 

experimental group comparisons were conducted on sections stained and imaged with 

identical exposure and acquisition settings. All analyses were performed on raw images, 

prior to any image processing by Adobe Illustrator CS6 for representation purposes. The 

cell counting was performed in a blinded manner by 4 experimenters collectively, and tissue 

sections were matched across samples.

Glial morphological analysis

To quantitatively examine OPC morphology, unprocessed 30μm z-stack confocal images 

(100x objective; 20 individual images, step size: 1.5μm) of cells for CSPG-EGFP activity in 

the mPFC area were imported into Neurolucida software, as previously described3,72. Cell 

bodies and processes were manually traced (6 cells/mouse), and a 3D rendering was created. 

The 3D reconstructions were imported into Neurolucida Explorer for branched structure 

analysis and Sholl analysis (10μm starting radius, 80μm ending radius, and 10μm step size). 

Number of process intersections, cell surface area, and cell complexity were measured. OPC 

complexity = [Sum of the terminal orders + Number of terminals] * [Total dendritic length / 

Number of primary dendrites]. Terminal orders: Number of “sister” branches encountered 

as proceeding from the terminal to the cell body (calculated for each terminal); Terminal: 

Refers to process endings.
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Bioinformatic Analysis of Publicly Available Dataset

snRNAseq—Raw counts were downloaded from GEO (GSE144136) from Nagy et al.,9, 

and expression objects were created using Seurat73,74. Quality control (QC) was performed, 

and cells with abnormally high or low feature counts and percent mitochondrial gene 

expression ≤2% were removed. Using the WhichCells() function (Seurat) OLN cells were 

subsetted based on their expression of oligo-specific markers (PCDH15, DSCAM, VCAN, 
SOX6, PDGFRα, CSPG4, CLDN11, CNP, PLP1, PCDH9, QKI, MBP, MOG, MAG).

Oligodendroglial-Lineage Classification

To visualize discrepancies between conditions in oligodendroglial cells, the new expression 

object was subset by condition (MDD and Control) and the following hyperparameters were 

used to run UMAP on the two new objects: n.neighbors = 20, min.dist = 0.2. Four similar 

clusters and one MDD-specific cluster resulted from the analysis. The distinct clusters were 

labeled based on their expression of OPC and Committed OPC (PCDH15, DSCAM, VCAN, 
SOX6, PDGFRα, CSPG4, OLIG1, OLIG2), and Immature Pre-myelinating and Mature 

Myelinating Oligodendrocyte (CNTNAP2, CLDN11, CNP, PLP1, PCDH9, QKI, MBP, 
MOG, MAG) markers. The one unique MDD cluster was labeled Immune Oligodendrocytes 

(Im-OL), based on their expression of immune markers (P2RY12, CD74, C3, ITGAX, 

ITPR2, ARHGAP24, ADAM28, LPAR6).

Grouped Violin and Dotplots—To visualize the gene expression of early and late 

oligodendroglia as a whole, we grouped the OPC and Committed OPC clusters (termed 

OPCs), and the Immature Pre-Myelinating OL and Mature Myelinating OL clusters (termed 

OLs). Using the WhichCells() function, we defined which cells belonged to the four 

initial clusters and then re-labeled them using the SetIdent function. The Violin plots 

and Dotplots were then created using the standard Seurat functions. Dotplots displaying a 

hierarchical clustering were also created using the standard Seurat function. To perform this 

hierarchical clustering, after grouping the cells (as mentioned above) the object underwent a 

pseudobulking technique in which we averaged the counts for each of the labeled cell types. 

This new matrix was then cleared of missing values and fed into the hclust() function which 

performed the hierarchical clustering and visualized with as dendrogram() cluster.

Integration with published dataset—To verify the cluster labeling, and the credibility 

of our immune oligodendrocytes cluster, our oligodendrocyte object was integrated with 

those published by Jäkel et al, 201936 using Seurat’s integration and label transfer method. 

Raw counts for the Jäkel data were downloaded from GEO (GSE118257)36, and expression 

objects were created using Seurat. In preparation for the integration, we subset the 

oligodendroglia based on the Jäkel labels. The two objects were then integrated and a 

pseudobulking method was applied, in which we averaged the counts across each of our and 

Jäkel’s labeled cell types. We then computed the correlation coefficient between samples 

(clusters) using the Cor() function and plotted a heatmap using the pheatmap() function75.

Comparison with Microglia—Given that the Im-OL cluster displays several immune 

components, we sought to compare it to the innate immune cells, microglia. To do so, 

we subsetted OL lineage cells and microglia from the originally read in object and again 
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pseudobulked the cell clusters. The correlation coefficient between samples (clusters) was 

then computed using the Cor() function and a heatmap plotted using the pheatmap() 

function.

Pseudotime Analysis—The two separated Seurat objects (MDD and Control) were used 

for the Pseudotime analysis. Separately, the UMAP coordinates and feature loadings for 

each object were passed to Monocle3 and pseudotime graph was learned using default 

parameters37,76.

Gene Scoring—A Gene Scoring technique was used to calculate a Gene Signature 

“Score” for each of the OLN clusters. First, a signature containing the genes of interest was 

created. The raw counts were then extracted from the Seurat object and log normalization 

was performed. We then averaged the log normalized counts for each of the genes in the 

signature. For the HLA gene complex (HLA-A, HLA-DPA1, HLA-DRB1, HLA-DQB1, 
HLA-C, HLA-DPB1, HLA-DOB, HLA-DRB5, HLA-DQB2, HLA-B, CD74), signature 

“score” was added back into the Seurat object metadata and plotted using the VlnPlot() 

function. For the myelin gene scoring (CNP, PLP1, PCDH9, QKI, MBP, MOG, MAG), 

column statistics were performed.

Gene Set Enrichment Analysis

To conduct the gene set enrichment analysis (GSEA) for the Im-OL cluster, the Seurat 

FindMarkers() function was utilized to attain the genes that were differentially expressed 

(DE) in the Im-OL cluster versus the other OL clusters. The DE genes were ranked using the 

following function: sign(average- log2Fold-Change) × −log10(p-value). The ranked gene list 

was then fed into the gseGO() function of the clusterProfiler package77, using “Biological 

Processes” as the ontology. The plot was made using the standard clusterProfiler functions.

Colocalization plots—To visualize the colocalization of OLN and Im-OL characteristic 

genes within the ImOL cluster, the cluster was first subsetted from the rest of the object. 

After re-running standard clustering parameters, the FeaturePlot function from Seurat was 

used with the following hyperparameters: Blend = TRUE.

Statistical analysis

No statistical methods were used to predetermine sample size a priori, but the sample 

sizes used were similar to those reported in8. Furthermore, representative data from each 

experiment were examined by Shapiro-Wilk’s test (p>0.05)78 and a visual inspection of 

their histograms to confirm normal data distribution79,80. The majority of the experimental 

analyses was performed by parametric ordinary one-way analysis of variance (ANOVA), 

followed by Tukey’s multiple comparison post-hoc tests. For the glial morphological 

analyses two-way ANOVA was performed, followed by Tukey’s multiple comparison post-

hoc tests. For the myelin DEG scoring analyses, one-way Kruskal-Wallis analysis was 

performed, followed by Dunn’s multiple comparisons test. The GraphPad Prism 8 and Excel 

(Microsoft) were used for all statistical analyses, except for the Bioinformatic Analyses 

(R-Studio). The data were reported as mean ± S.D. with symbols indicating the following P 
value ranges: *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001).
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Chronic psychosocial stress induces depressive-like behavior leading to OPC reductions 
and impaired proliferation in the mPFC.
(a) Experimental outline for the repeated social defeat stress (RSDS) paradigm in mice. 

5-Bromo-2′-deoxyuridine (BrdU) was administered ad libitum throughout the 10 days 

of RSDS to label proliferating cell populations. Behavioral testing (BH) was performed 

between D11-D15. (b) Summary table with the behavioral effects of chronic stress in 

Susceptible (SD-Sus) and Resilient (SD-Res) groups. Relative comparisons to the Con 

groups: ↑ depicts increase, ↓ depicts decrease, <─> depicts no change. (c) Representative 

heatmaps of social interaction (SI) test (left), and SI ratios (right; F2,101 = 565.8, ****P 
≤ 0.0001). One-way ANOVA with Tukey’s multiple comparisons; Con: n=50, SD-Sus: 

n=37, SD-Res: n=13. (h) Representative images of BrdU+ (magenta) label retaining OPCs 

(PDGFRα+; red) and their current proliferation capacity (Ki67+; green) in mPFC; Scale 

bars: 20 μm; On the right of (h): schematic of the sampled area within the mPFC; red-

dashed rectangle line demarcates the regions examined (Cg1, PrL, IL, MO). (i) OPC density 
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(PDGFRα+; F2,10 = 46.97, ****P ≤ 0.0001). (j) Percentage of OPC proliferation capacity 

(PDGFRα+Ki67+) in the total OPC population (% Ki67+ of PDGFRα+; F2,10 = 47.05, 

****P ≤ 0.0001) at D15 (k) Percentage of OPC proliferation (PDGFRα+BrdU+) during the 

RSDS (% BrdU+ of PDGFRα+; F2,10 = 18.79, ***P = 0.0004). (l) Percentage of OPC label-

retaining cells (PDGFRα+BrdU+Ki67+) proliferating at D15 (% Ki67+BrdU+ of PDGFRα+; 

F2,10 = 53.51, ****P ≤ 0.0001; indicated by white arrows and displayed in the insets). 

Yellow arrows in (h) depict PDGFRα−BrdU+ retaining cells (possibly differentiating OPCs) 

and blue arrow depicts BrdU retaining cells proliferating at D15 (PDGFRα−BrdU+Ki67+). 

For panels (i-l): one-way ANOVA with Tukey’s multiple comparisons; Con: n=4, SD-Sus: 

n=5, SD-Res: n=4. Data are reported as mean ± S.D; *P ≤ 0.05, ***P ≤ 0.001, ****P ≤ 

0.0001. Statistical analysis details are reported in Supplementary Table 1; mPFC: medial 

prefrontal cortex; Cg1: cingulate cortex; PrL: prelimbic cortex; IL: Infralimbic cortex; MO: 

medial orbital cortex; M1, M2: motor cortices.
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Fig. 2 |. Chronic psychosocial stress induces the maturation of label-retaining OPCs into OLs 
post-RSDS in the mPFC.
(a) Experimental outline of RSDS and BrdU administration. (b) Graphical representation 

of oligodendroglial lineage (OLN) stage and respective markers used in this study 

[Oligodendrocyte progenitor cells (OPCs), committed oligodendrocyte progenitor cells 

(C-OPCs), premyelinating immature oligodendrocytes (Pre-OLs) and myelinating mature 

oligodendrocytes (OLs)]. (c) Representative images of BrdU+ (red) label-retaining OPCs 

(CSPG4+; blue) and C-OPCs/Pre-OLs (O4+; cyanine) in mPFC; Scale bars: 100 μm 

(left), 20 μm (right). (d) Percentage of BrdU-retaining OPCs (BrdU+CSPG4+O4−) in the 

total BrdU+ population (% CSPG4+O4− of BrdU+; F2,7 = 1146, ****P ≤ 0.0001). (e) 

Percentage of BrdU-retaining C-OPCs (BrdU+CSPG4+O4+) in the total BrdU+ population 

[% CSPG4+O4+ of BrdU+; F2,7 = 196.9, ****P ≤ 0.0001; indicated by white arrows 

and displayed in the top insets of (c)]. (f) Percentage of BrdU-retaining Pre-OLs 

(BrdU+CSPG4−O4+) in the total BrdU+ population [% CSPG4−O4+ of BrdU+; F2,7 = 102.7, 
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****P ≤ 0.0001; indicated by red arrows and displayed in the bottom inset of SD-Sus 

group in (c)]. (g) Representative images of BrdU+ (red) retaining OPCs (CSPG4+; blue) and 

OLs (GST-π+; grey) in mPFC; Scale bars: 100 μm (left), 20 μm (right). (h) Percentage of 

BrdU-retaining OLs (BrdU+GST-π+) in the total BrdU+ population [% GST-π+ of BrdU+; 

F2,7 = 166.9, ****P ≤ 0.0001; indicated by yellow arrows and displayed in the top inset of 

SD-Sus group in (g)]. (i) OL density (GST-π+; F2,7 = 8.37, *P = 0.0139 (j) Summary table 

with percentages of each OLN cell population versus the total number of BrdU+ cells. IHC: 

Con: n=4, SD-Sus: n=5, SD-Res: n=4; Scale bars: 100 μm (left), 20 μm (right). For panels 

(d-f, h-I): one-way ANOVA with Tukey’s multiple comparisons; Con: n=3, SD-Sus: n=4, 

SD-Res: n=3. Data are reported as mean ± S.D; *P ≤ 0.05, **P ≤ 0.01, ****P ≤ 0.0001. 

Statistical analysis details are reported in Supplementary Table 1.
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Fig. 3 |. Myelin deficits and oligodendroglial apoptosis are induced in response to chronic 
psychosocial stress.
(a) Representative images of OPCs (CSPG4+; blue), pan-OLN marker (Olig2+; magenta) 

and MBP+ (yellow) myelin marker in mPFC; Overlayed mouse brain areas examined at 

Bregma: 2.10 μm; Scale bar: 100 μm. (b) Pan-OLΝ cell density (Olig2+; F2,7 = 120.7, 

****P ≤ 0.0001). (c) Myelin integrated density (MBP+; F2,7 = 159.2, ****P ≤ 0.0001). (d) 

Immunoblot analyses of mPFC assessing the protein levels for the myelin markers MBP, 

CNP, MOG and MOBP at D15 post RSDS. (e) MBP (F2,6 = 8.8583, *P = 0.0174), CNP 

(F2,6 = 20.64, **P = 0.002), MOG (F2,9 = 16.12, **P = 0.0011), MOBP (F2,5 = 13.05, *P 
= 0.0104). For panels (b, c, e): one-way ANOVA with Tukey’s multiple comparisons; For 

panels (b, c): Con: n=4, SD-Sus: n=5, SD-Res: n=4; For panel (e): Con: n=3–5, SD-Sus: 

n=3–4, SD-Res: n=2–3. (f) Representative images of microglia OPCs (CSPG4-EGFP+; 

blue), cell apoptosis (Cleaved Caspase-3+; red), pan-OLN marker (Olig2+; cyanine) and 

DAPI staining (nuclei; grey) in mPFC; Scale bars: 20 μm (left), 10 μm (xy representative 
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planes on the right); yz planes depict OPC with Cl. Caspase-3 expression. (g) Total 

Cl. Caspase-3 integrated density (F2,7 = 261.20, ****P ≤ 0.0001). (h) OPC-specific Cl. 

Caspase-3 integrated density (CSPG4+Olig2+Cl.Caspase3+; F2,7 = 221.80, ****P ≤ 0.0001). 

(i) OL-specific Cl. Caspase-3 integrated density (CSPG4−Olig2+Cl.Caspase3+; F2,7 = 4226, 

****P ≤ 0.0001). For panels (g-i): one-way ANOVA with Tukey’s multiple comparisons; 

Con: n=3, SD-Sus: n=4, SD-Res: n=3. Data are reported as mean ± S.D; *P ≤ 0.05, 

**P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Statistical analysis details are reported in 

Supplementary Table 1; DHE: Dihydroethidium. The representative gels displayed in panels 

(d) are cropped the original images are shown in Supplementary Fig. 18. Statistical analysis 

details are reported in Supplementary Table 1.
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Fig. 4 |. Single-nucleus transcriptomic characterization of oligodendroglial-lineage populations in 
the dlPFC of MDD and Control patients.
(a) Uniform Manifold Approximation and Projection (UMAP) clustering of oligodendroglial 

lineage (OLN) cells per condition: Control (blue shades) and MDD (red shades) patients 

(n.neighbors = 20, min.dist = 0.2). OLN clusters were annotated and subsetted based on 

well-established marker genes (see Methods) for each condition: four common clusters 

(OPCs, C-OPCs, Pre-OLs, OLs) and an MDD-specific cluster (Im-OL in red circle) were 

identified from the analysis. On the right of each UMAP clustering, pie charts indicate 

the raw cell numbers from each cluster. (b) Dotplots depicting the top expressed known 

marker genes [early OLN genes (OPC genes), immune-related genes (Immune genes) and 

late OLN genes (OL genes)] in the clusters of interest. OLN gene markers are color-coded 

with blue shades in control and with red shades in MDD patients. The color intensity 

represents the average expression levels (Change to avg. exp. scale), while the size of 

the dots represents the percentage of cells within each cluster expressing the gene (% 
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Expression). (c) Violin plot of top expressed oligodendroglial-lineage marker genes shared 

in Im-OL and OLN clusters and divided per condition [Control (blue) and MDD (red)]. 

(d) Violin plot of characteristic differentially expressed genes (DEGs) in Im-OL, divided 

per condition (Control and MDD). The HLA complex includes grouped gene scoring from 

the human leukocyte antigen (HLA) family; For the violin plots (c, d) the OPCs and 

Committed OPCs clusters are grouped and termed as OPCs. Immature Pre-myelinating 

OLs and Mature-Myelinating OLs clusters are grouped and termed as OLs; The values 

extend from minimum to maximum and the n value per cluster corresponds to the total 

no. of cells (represented by dots) for each condition. (e) Pseudotime trajectory analysis of 

oligodendroglial developmental stages divided per condition [Control (top), MDD (bottom)]. 

“R” marks the OPCs, the root starting point used for graph learning. The cell color 

indicates the pseudotime trajectory (pseudotime). OPCs: Oligodendrocyte progenitor cells; 

C-OPCs: committed-oligodendrocyte progenitor cells; Pre-OLs: premyelinating immature 

oligodendrocytes; OLs: myelinating mature oligodendrocytes (OLs); Im-OL: immune-

oligodendrocytes; dlPFC: dorsolateral prefrontal cortex.
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Fig. 5 |. Oligodendroglial expression of MHCII and complement C3 in mPFC post RSDS.
(a) Representative images of OPCs (CSPG4+; blue), C-OPCs/Pre-OLs (O4+; green) and 

MHCII (red; indicated by white arrows) antigen presentation marker in mPFC. Scale bars: 

20 μm (left), 10 μm (xy representative planes on the right); yz planes depict oligodendroglia 

with MHCII expression. (b-e) Integrated densities for various markers. (b) Total MHCII 

(F2,7 = 572.80, ****P ≤ 0.0001). (c) OPC-specific MHCII (CSPG4+O4−MHCII+; F2,7 = 

104.0, ****P ≤ 0.0001). (d) C-OPC specific MHCII (CSPG4+O4+MHCII+; F2,7 = 121.1, 

****P ≤ 0.0001). (e) Pre-OL-specific MHCII (CSPG4−O4+MHCII+; F2,7 = 944.0, ****P ≤ 

0.0001). (f) Representative images of OPCs (CSPG4+; blue), C-OPCs/Pre-OLs (O4+; green) 

and complement C3 expression (red; indicated by white arrows) in mPFC. Scale bars: 20 

μm (left), 10 μm (xy representative planes on the right); yz planes depict oligodendroglia 

with complement C3 expression (g-j) Integrated densities for various markers. (g) Total 

complement C3 (F2,7 = 553.50, ****P ≤ 0.0001). (h) OPC-specific C3 (CSPG4+O4−C3+; 
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F2,7 = 186.3, ****P ≤ 0.0001). (i) C-OPC specific C3 (CSPG4+O4+C3+; F2,7 = 176.1, 

****P ≤ 0.0001). (j) Pre-OL-specific C3 (CSPG4−O4+C3+; F2,7 = 454.1, ****P ≤ 0.0001). 

For panels (b-e, g-j): one-way ANOVA with Tukey’s multiple comparisons. Con: n=3, 

SD-Sus: n=4, SD-Res: n=3; Data are reported as mean ± S.D; *P ≤ 0.05, **P ≤ 0.01, ****P 
≤ 0.0001. Statistical analysis details are reported in Supplementary Table 1.
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