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Abstract: In this study, we describe poly (lactic-co-glycolic) acid (PLGA)-based nanoparticles
that combine photothermal therapy (PTT) with epigenetic therapy for melanoma. Specifically,
we co-encapsulated indocyanine green (ICG), a PTT agent, and Nexturastat A (NextA), an epigenetic
drug within PLGA nanoparticles (ICG-NextA-PLGA; INAPs). We hypothesized that combining
PTT with epigenetic therapy elicits favorable cytotoxic and immunomodulatory responses that
result in improved survival in melanoma-bearing mice. We utilized a nanoemulsion synthesis
scheme to co-encapsulate ICG and NextA within stable and monodispersed INAPs. The INAPs
exhibited concentration-dependent and near-infrared (NIR) laser power-dependent photothermal
heating characteristics, and functioned as effective single-use agents for PTT of melanoma cells
in vitro. The INAPs functioned as effective epigenetic therapy agents by inhibiting the expression of
pan-histone deacetylase (HDAC) and HDAC6-specific activity in melanoma cells in vitro. When used
for both PTT and epigenetic therapy in vitro, the INAPs increased the expression of co-stimulatory
molecules and major histocompatibility complex (MHC) Class I in melanoma cells relative to controls.
These advantages persisted in vivo in a syngeneic murine model of melanoma, where the combination
therapy slowed tumor progression and improved median survival. These findings demonstrate the
potential of INAPs as agents of PTT and epigenetic therapy for melanoma.

Keywords: PLGA nanoparticles; photothermal therapy; epigenetic therapy; melanoma; indocyanine
green; HDAC inhibitors; Nexturastat A

1. Introduction

Melanoma is a prevalent cancer of the skin, accounting for over 7000 deaths in the United States
in 2019 [1]. While the 5-year relative survival is 98.7% for localized melanoma, the survival for patients
with regional and metastatic melanoma is dismal (64.7% and 24.8%, respectively). Hence, there is
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an urgent need to develop novel therapies for this patient population. Since melanoma presents on
the skin, it is readily accessible for localized interventions that can elicit potent systemic antitumor
immune responses, which can improve the prognosis for patients with regional and metastatic
disease. Nanoparticles serve as a suitable platform to develop such localized interventions since they
have been used to package and deliver diverse therapeutic agents. In particular, the polymer poly
(lactic-co-glycolic acid) (PLGA), which has excellent biocompatibility and biodegradability, has been
U.S. Food and Drug Administration (FDA) approved and extensively used to deliver synergistic drug
combinations [2–5]. These properties make PLGA an excellent candidate for applications involving the
controlled release of encapsulated agents and improved drug pharmacokinetics in vivo [6,7]. Several
published studies have demonstrated that loading drugs within PLGA can enhance their functionality
over free drugs by improving their pharmacokinetic profiles and decreasing drug thresholds [4,7–9].
For melanoma, recent preclinical studies highlight PLGA as a suitable carrier for immune-stimulating
molecules and anti-angiogenic agents [10–12]. Additionally, PLGA nanoparticles have also been
synthesized with improved colloidal stability and biofunctional coatings that could help improve their
use for therapy [13,14]. An emerging area of investigation with PLGA nanoparticles is their use in
the field of immunoengineering, wherein agents packaged within the nanoparticles elicit responses
from the immune system. To this end, PLGA nanoparticles have been utilized to package and deliver
antigens, immune adjuvants, and immunostimulatory drugs to elicit tumor-specific responses and
stimulate immune cell activation to enhance cancer immunotherapy [15–17].

Premised on these studies, we utilized PLGA nanoparticles to co-encapsulate and administer
photothermal therapy (PTT) and epigenetic therapy as a novel combination therapy for melanoma.
We encapsulated indocyanine green (ICG), a US FDA-approved photoactive dye as the PTT agent, and
Nexturastat A (NextA), an epigenetic drug, within PLGA nanoparticles, generating ICG-NextA-PLGA
nanoparticles (INAPs) to co-administer PTT and epigenetic therapy. PTT is an effective method for
localized tumor ablation using light-responsive nanoparticles and a wavelength-matched light source.
Typically, near infrared (NIR) light-responsive nanoparticles, including nanoparticles containing ICG,
are illuminated with an NIR laser generating heat, which triggers tumor cell death [18]. Previous
studies have demonstrated that PTT can increase tumor immunogenicity, elicit immunogenic cell death,
and be combined with immunological adjuvants (e.g., toll-like receptor agonists) or immunotherapies
(e.g., checkpoint inhibitors) to treat cancer [19–22]. However, PTT alone is not sufficient to generate
effective systemic antitumor immunity. To complement the effects of PTT, we co-encapsulated the
epigenetic drug NextA, a histone deacetylase (HDAC) 6 inhibitor, within the PLGA nanoparticle.

In preclinical studies with melanoma murine models, HDAC6 inhibitors exhibited antitumor
activity and immune marker modulation to increase melanoma immunogenicity through major
histocompatibility complex Class I (MHC-I) and tumor antigen expression on melanoma cells [23–25].
Other groups have also demonstrated that HDAC6 promotes melanoma proliferation and migration,
suggesting its potential as a therapeutic target to control tumor growth [26,27]. While NextA has
been shown to specifically inhibit HDAC6 activity, these effects have not been sufficient to generate
complete tumor regression in melanoma, which can be achieved using PTT. Regardless, NextA differs
from other HDAC inhibitors that are currently FDA approved for epigenetic therapy. These approved
HDAC inhibitors, including vorinostat, romidepsin, and panobinostat, are effective monotherapies for
hematological malignancies; however, they exhibit limited efficacy in treating solid tumors, as evidenced
by low response rates and severe side effects in patients [28–32]. Poor pharmacokinetics and nonspecific
HDAC inhibition by these drugs are potential reasons for this limited efficacy. By packaging the
HDAC6 inhibitor NextA along with ICG into PLGA nanoparticles, we aimed to leverage the advantages
of NextA for melanoma while mitigating some of the aforementioned limitations observed with PTT
and epigenetic therapy as single therapies.

We hypothesized that the combination of PTT with epigenetic therapy administered using the
INAPs would promote better tumor immunogenicity after PTT ablation, leading to slower tumor
progression and improved survival in tumor-bearing mice (Figure 1). Compared with earlier studies,
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our approach using a single PLGA nanoparticle-based platform to combine PTT and epigenetic therapy
is novel. The specific components, ICG, NextA, and PLGA, that constitute the INAPs are all US FDA
approved, providing a sound rationale for combining these non-overlapping yet complementary
therapies. Additionally, the INAPs are administered locally, and based on previous degradation studies
with PLGA-based nanoparticles, we expected the INAPs to completely bio-degrade, which mitigates
concerns associated with the fate and toxicity of the nanoparticles post-treatment [6,33–35]. Finally,
to our knowledge, the specific combination of ICG-based PTT with NextA-based epigenetic therapy for
melanoma using PLGA nanoparticles has not been previously described. In this work, we demonstrate
a proof-of-concept approach using a PLGA nanoparticle-based platform to combine PTT and epigenetic
therapy. We present a facile nanoemulsion synthesis scheme to synthesize the INAPs. We characterized
the size, stability, and encapsulation efficiency of the INAPs. Studies assessing both the PTT and
epigenetic therapy capabilities of the INAPs are presented. Next, we tested the ability of the INAPs to
modify the expression of immunomodulatory markers on melanoma cells in vitro. Finally, we assessed
the efficacy of the INAPs in treating melanoma in a syngeneic, SM1 murine model of melanoma.
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Figure 1. Hypothesized mechanism of action of our approach combining photothermal and epigenetic
therapy for melanoma using poly (lactic-co-glycolic acid) (PLGA) nanoparticles. The photothermal agent,
indocyanine green (ICG), and the epigenetic drug, Nexturastat A (NextA), were co-encapsulated within
PLGA nanoparticles (ICG-Next A-PLGA; INAPs). The INAPs were administered to melanoma tumors
in syngeneic murine models and activated with an 808 nm near infrared laser. ICG-based photothermal
therapy along with concurrent epigenetic drug (NextA) release in the tumor microenvironment causes
tumor cell death and increased immunogenicity, which we expected to slow tumor growth and improve
survival in melanoma when compared to either therapy alone. Further, since PLGA is biodegradable,
we expected our INAP platform to mitigate toxicity concerns associated with the long-term persistence
of nanoparticles in vivo.

2. Materials and Methods

2.1. Chemical and Biological Reagents

Poly (lactic-co-glycolic acid) (PLGA; lactide: glycolide (50:50) and MW 30–60 kDa), poly (vinyl
alcohol) (PVA; MW 89–98 kDa and 99+% hydrolyzed), acetonitrile, indocyanine green (ICG), and
dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Nexturastat
A (NextA) was obtained from StarWise Pharmaceuticals (Madison, WI, USA). The Cell Titer-Glo™
viability assay and the HDAC-Glo™ I/II Assay and Screening System kits were purchased from
Promega (Madison, WI, USA). Phosphate-buffered saline (PBS) was purchased from Thermo Fisher
Scientific (Waltham, MA, USA). The immunoblot antibodies, anti-acetylated-α-tubulin rabbit (3971S),
anti-α-tubulin mouse (3873S), anti-acetylated-H3 rabbit (9649S), and anti-H3 mouse (3638S), were
all purchased from Cell Signaling (Danvers, MA, USA). The antibodies used for flow cytometry,
Alexa Fluor 647 anti-mouse CD80 (clone 16-10A1), PE anti-mouse CD86 (clone GL-1), and Alexa
Fluor 488 anti-mouse H-2kb (clone AF6-88.5), were all purchased from BioLegend (San Diego, CA,
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USA). The water used in all studies was obtained from a Milli-Q ultrapure water system (Millipore
Corporation, Billerica, MA, USA) with a resistivity of 18.2 MΩ-cm.

2.2. Cells Lines and Cell Culture

The murine melanoma cell line SM1 (a BRAFV600E-driven melanoma) was obtained from the
laboratory of Dr. A. Ribas at the University of California Los Angeles [36]. The murine melanoma
cell line B16F10 was purchased from ATCC (Manassas, VA, USA). Cell culture media Dulbecco’s
modified Eagle Medium (DMEM) was purchased from Thermo Fisher Scientific and Hyclone RPMI
1640 media was purchased from GE Healthcare Life Sciences (Pittsburgh, PA, USA). When needed, cell
culture media was supplemented with 1% penicillin/streptomycin (PenStrep) purchased from Corning
(Corning, NY, USA). Fetal bovine serum (FBS) was obtained from Thermo Fisher Scientific.

2.3. Animals and Animal Studies

All animal studies were conducted in accordance with protocols approved by the Institutional
Animal Care and Use Committee of the George Washington University (Protocols A396 and A354).
The studies were conducted to ensure humane care of the animals as per the IACUC’s guidelines.
Further, 4- to 6-week-old female C57B/6 were purchased from Jackson Laboratory (Farmington, CT,
USA). Prior to initiating any study, the animals were acclimated for 7 days.

2.4. Synthesis of ICG-NextA-PLGA Nanoparticles (INAPs)

INAPs were synthesized using a nanoemulsion synthesis scheme. Briefly, NextA (10 mg/mL)
and ICG (10 mg/mL) were both dissolved in DMSO, and 50 µL of each were added to 1 mL of
solution containing PLGA (20 mg/mL) in acetonitrile, and mixed thoroughly by vortexing. This organic
phase was then added to 5 mL of aqueous solution containing 5% PVA, and then vortexed for
approximately 30 s to generate a homogeneous emulsion. The emulsion was then transferred to a
beaker and stirred at 400 rpm for 3 h at room temperature for solvent evaporation. The resulting
INAPs were collected by centrifugation at 10,000× g for 30 min and resuspended in Milli-Q water
by two sonication cycles (40% amplitude at 30 s per cycle) on an ice bath. As controls, ICG-PLGA
nanoparticles (ICG-PLGA), NextA-PLGA nanoparticles (NextA-PLGA), and blank-PLGA nanoparticles
(Blank-PLGA) were synthesized using an identical synthesis scheme by adding 50 µL of either ICG (for
ICG-PLGA) or NextA (for NextA-PLGA) with 50 µL of DMSO or 100 µL of DMSO (for Blank-PLGA)
in the organic phase.

2.5. Size Characterization

The hydrodynamic sizes of the nanoparticles were determined using a Zetasizer Nano ZS (Malvern
Instruments, Worcestershire, UK). The dispersant used for all measurements for the dynamic light
scattering (DLS) analysis was deionized water (Millipore Sigma, Burlington, MA, USA) with a typical
concentration of 10 µg/mL nanoparticles. All readings were done in triplicate with at least 15 scans per
replicate using a 633 nm laser and a 173◦ detection angle.

2.6. SEM Characterization of PLGA Nanoparticles

The morphology and structure of PLGA nanoparticles were characterized by scanning electron
microscopy (SEM) using FEI Teneo LV FEG SEM (Thermo Fisher Scientific) with the Everhart-Thornley
Detector (ETD) for secondary and back-scattered electrons. All types of PLGA nanoparticles were
visualized using a voltage (HV) set to 2.00 kV, and beam current (curr) set to 13, 25, or 50 pA depending
on the magnification. The magnification varied with each image (refer to figure caption for this detail).
The obtained images using the ETD had an electron beam dwell time of 10 microseconds and resolution
of 1536 × 1026 px.
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2.7. Encapsulation Efficiency

After synthesis of the PLGA nanoparticles, the concentrations of the INAPs and control
nanoparticles (mg/mL) used in the studies were determined by oven drying a fixed volume of
the nanoparticles at 80 ◦C for 1 h and measuring the resultant nanoparticle mass. To quantify the
drug loading efficiency (for both ICG and NextA), a fixed mass of dried nanoparticles was dissolved
in DMSO and the concentrations of the loaded drugs were determined by ultraviolet-visible-near
infrared (UV-Vis-NIR) spectroscopy using a Nanodrop (Thermo Fisher Scientific). Standard curves
for free ICG and free NextA were used to determine the encapsulation efficiency. The encapsulation
efficiency for NextA in INAPs and NextA-PLGA was determined by assessing their UV-Vis spectra
and then blanking with the spectra of ICG-PLGA and Blank-PLGA to calculate the contribution of
NextA. The encapsulation efficiency for ICG was determined similarly for INAPs and ICG-PLGA by
blanking the spectra of Blank-PLGA. The encapsulation efficiency was calculated as the amount of
drug encapsulated expressed as a percentage of the amount of drug utilized in the synthesis.

2.8. Photothermal Properties of INAPs

The photothermal heating profiles for INAPs were determined as a function of the nanoparticle
concentration (0.5–4.0 mg/mL) by diluting the nanoparticles in media. Nanoparticles were irradiated
with an 808 nm near infrared (NIR) laser for 5 min (Laserglow Technologies, Toronto, ON, Canada).
The photothermal properties of the INAPs (4 mg/mL) were also measured at varying powers (0.6–1.2 W)
for 5 min. The laser power was confirmed using a power meter (Thorlabs, Newton, NJ, USA).
Temperatures were recorded each minute using an infrared thermal camera (FLIR, Arlington, VA, USA).
The thermal dose was calculated using cumulative equivalent minutes at 43 ◦C (CEM43), as previously
described [37].

2.9. Cellular Viability of Melanoma Cells

The viability of INAPs-treated SM1 or B16F10 (1× 106 cells) was determined at varying nanoparticle
concentrations (0.5–2.0 mg/mL) in the presence or absence of an NIR laser by suspending cells in
PBS (200 µL). Post-PTT, the cells were then transferred to 6-well plates and incubated in media for 24
h. The cells were then collected, suspended in 400 µL of PBS, and assessed for viability in triplicate
using the Cell Titer-Glo ATP assay (following the manufacturer’s instructions) (Promega). As controls,
ICG-PLGA at 0.5 to 2.0 mg/mL and free NextA (5 µM) were used. Luminescence was measured using
a SpectraMax i3x Multi-mode microplate reader from Molecular Devices, LLC (San Jose, CA, USA).

2.10. HDAC Activity Assay

The functionality of encapsulated NextA was determined using an HDAC-Glo™ I/II assay and
screening system kit. Melanoma cells seeded at 10,000 cells per well in a white 96-well flat-bottom plate
were incubated overnight at 37 ◦C and treated with INAPs (1.25 mg/mL) for 1 h. INAPs were diluted
in media (4.0 mg/mL) and either incubated at 37 ◦C or irradiated with the NIR laser before treating
cells. The HDAC-Glo™ I/II assay HDAC-Glo media mix was added to each well under minimal
light exposure. Luminescence was immediately measured afterwards at a signal-steady kinetic state
using the SpectraMax plate reader. Each treatment was repeated in triplicate. Cells were treated with
panobinostat (LBH) (2.5 µM) as a positive control. Blank-PLGA, NextA-PLGA, ICG-PLGA, DMSO,
and Milli-Q water were used as controls.

2.11. Immunoblotting

SM1 cells were cultured with complete RPMI media (RPMI, 10% FBS, 1% PenStrep) and plated at
a 250,000 cell density in 6-well plates overnight. Cells were treated with nanoparticles (1 mg/mL) for
24 h and then harvested with RIPA buffer containing protease and phosphatase inhibitors, purchased
from Thermo Fisher Scientific. Cell lysates were sonicated for 8 min (8 cycles of 30 s on/off) using
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a water bath sonicator purchased from Diagenode (Denville, NJ, USA) and then centrifuged in a
microcentrifuge at 16,000× g at 4 ◦C. Protein concentrations in the supernatants were measured with
the Pierce BCA protein assay purchased from Thermo Fisher Scientific, according to the manufacturer’s
instructions. Proteins from the cell lysate were prepared for immunoblotting by diluting 10 µg of
protein in 4× sample buffer and 10× reducing agent from Thermo Fisher Scientific. Samples were run
on a 4–20% BioRad gel and transferred onto a polyvinylidene difluoride (PDVF) membrane using a
transfer system from BioRad (Hercules, CA, USA). Membranes were blocked with a 1:1 Odyssey buffer
in PBS. Protein bands were detected with an Azure imaging system.

2.12. Immunomodulation of Melanoma Cells in Vitro

In these studies, the melanoma cells were resuspended in PBS (200 µL) and treated with 2.0 mg/mL
of INAPs or ICG-PLGA in the presence or absence of an NIR laser at 0.4 W for 5 min. Other controls
included untreated, vehicle (water), vehicle (DMSO), and free NextA (5 µM). After 24 h of incubation
post-treatment, the supernatants and cells were collected and rinsed with PBS at least twice. The cells
were then resuspended in 200 µL of PBS containing 1 µL of Zombie VioletTM/GreenTM/AquaTM fixable
viability kit and incubated at 4 ◦C for 20 min in the dark. Next, the cells were rinsed with PBS, collected
at 400× g for 3 min, and then resuspended in 100 µL of flow buffer (1% FBS in 1 × PBS) containing
5 µL of mouse Fc blocking buffer and incubated for another 10 min. After cells were washed and
collected, cells were resuspended in flow buffer containing flow antibodies (1 µL PE-CD86, 1 µL
AlexaFluor647-CD80, 1 µL AlexaFluor 488-H-2kb) in 100 µL, and incubated for 1 h. Cells were then
washed and resuspended in 200 µL of flow buffer and then stored at 4 ◦C overnight. Samples were run
on a Celesta Cell Analyzer with HTS (BD BioSciences, Franklin Lakes, NJ, USA) and the analysis was
conducted on a FlowJoTM v10.6.1. Respective fluorescence minus one (FMO) controls were used for
gating analysis. UltraComp beads from Thermo Fisher Scientific were used for single fluorophore
controls (compensation controls).

2.13. Tumor Growth and Survival

Syngeneic melanoma tumor-bearing mouse models were established by subcutaneously injecting
1 million SM1 melanoma cells onto the shaved backs of female C57BL/6 mice. Tumor growth was
monitored by measuring the length and width of the tumor using calipers. For in vivo PTT, SM1
tumor-bearing mice with tumors of at least 60 mm3 in size were anesthetized with 2% to 5% isoflurane
and treated with the INAPs (50 mg/kg) via intratumoral (i.t.) injection. Post-injection, the tumor
area was immediately irradiated with the NIR laser with the NIR laser power adjusted (maximum
reached was 0.4 W) to maintain a temperature of 90 to 100◦C for 10 min. Mice were treated according
to the following groups: (1) Untreated—receiving no treatment; (2) free NextA (intraperitoneal (i.p.),
25 mg/kg)—receiving free NextA (epigenetic therapy) 6× per week; (3) INAPs (i.t., 50 mg/kg)—receiving
i.t. encapsulated NextA (epigenetic therapy); (4) ICG-PLGA-PTT (i.t., 50 mg/kg + NIR laser for
10 min)—receiving PTT; (5) INAPs-PTT (i.t., 50 mg/kg + NIR laser for 10 min)—receiving both PTT
and epigenetic therapy; and (6) INAPs-PTT (i.t. 50 mg/kg + NIR laser for 10 min) + 2 NextA-PLGA
boosters (i.t. 50 mg/kg)—receiving both PTT and epigenetic therapy. For the free NextA group, NextA
was administered daily by intraperitoneal injection until the tumor exceeded 20 mm in any dimension.
When used, NextA-PLGA boosters (50 mg/kg) were i.t. administered on day 3 and 7 after PTT.

2.14. Animal Exclusion and Euthanasia Criteria

Animals were excluded from the study if their tumors failed to grow after SM1 inoculation.
This exclusion criterion was not used in this study as all injected mice developed tumors. Mice were
euthanized when tumor sizes exceeded 20 mm in any dimension. Euthanasia was achieved through
cervical dislocation after CO2 narcosis. If the tumor impaired the mobility of the animal, became
ulcerated or appeared to be infected, or if the mice displayed any signs of distress, such as assuming a
sick mouse posture, the mice were immediately excluded from the study and euthanized. All these



Nanomaterials 2020, 10, 161 7 of 20

steps were conducted in accordance with the approved Institutional Animal Care and Use Committee
(IACUC) protocols.

2.15. Statistical Methods for this Study

Statistical significance was determined using one-way analysis of variance (ANOVA), two-way
ANOVA, and Tukey and Sidek’s multiple comparisons tests. Values with p < 0.05 were considered
statistically significant. Animal survival across the various treatment and control groups were analyzed
by generating Kaplan–Meier curves.

3. Results

3.1. INAPs Successfully Co-Encapsulate ICG and NextA within PLGA Nanoparticles

To co-administer PTT and epigenetic therapy using a single nanoparticle, ICG (a photoactive dye)
and NextA (an epigenetic drug) were encapsulated within PLGA nanoparticles using a nanoemulsion
synthesis scheme. The synthesis resulted in monodispersed INAPs with a mean hydrodynamic
diameter of 220 nm and polydispersity index of 0.103 (Figure 2a). Control nanoparticles containing
ICG (ICG-PLGA), NextA (NextA-PLGA), or vehicle (Blank-PLGA) exhibited similar monodisperse
size distributions (Figure 2a). Importantly, the INAPs exhibited multi-day stability (over 87 days)
when suspended in Milli-Q water, as evidenced by their retained uniform size distributions (Figure 2b).
SEM images of the INAPs confirmed their uniform spherical morphology (Figure 2c). There were
minimal variations in the morphology of INAPs when compared to Blank-PLGA (Figure S1). INAPs
retained the characteristic absorption band of ICG at 780 nm (Figure 2d) and that of NextA at 250 nm
(Figure 2e) as measured by UV-Vis-NIR spectrometry, illustrating the encapsulation of both agents.
For both free NextA and free ICG, the level of absorbance increased with the increasing concentration
(Figure S2a,b). The encapsulation efficiency of the synthesized INAPs was typically 40% to 50% for
ICG and 30% to 70% for NextA, and drug loading was 11 µg ICG/mg INAP and 7 to 18 µg NextA/mg
INAP. These findings demonstrate that both the PTT agent ICG and the epigenetic drug NextA can
be successfully co-encapsulated within INAPs using the nanoemulsion synthesis scheme. Likewise,
stable modular PLGA nanoparticles containing either ICG (ICG-PLGA) or NextA (NextA-PLGA) can
be generated using this scheme.

3.2. INAPs Can Be Photothermally Heated and Trigger Cell Death in Melanoma Cells in Vitro

We conducted studies in vitro to assess the photothermal properties of the INAPs.
When illuminated with an 808 nm NIR laser, INAPs heated in a concentration-dependent manner,
reaching temperatures greater than 50 ◦C at concentrations ≥2.0 mg/mL and a laser power of 0.8 W
(Figure 3a). The concentration-dependent heating is again reflected when the time–temperature
heating curves (Figure 3a) were expressed in terms of the cumulative equivalent minutes at 43 ◦C
(CEM43; Figure 3b), a parameter that allows comparison of the thermal doses administered [37].
The INAPs heating was also NIR laser power dependent, with increasing temperatures achieved with
increasing laser powers (Figure 3c,d). UV-Vis-NIR spectroscopy demonstrated that the encapsulated
ICG degraded after PTT (INAPs-PTT) as evidenced by a decrease in the characteristic ICG absorption
peak compared to the control nanoparticles (INAPs), which exhibited an intact ICG absorption peak
similar to free ICG (Figure 3e). SEM images also captured the morphology change, wherein the INAPs
lost their nanoparticulate structure after PTT, indicating that the INAPs were effective single-use
PTT agents (Figure 3f). Interestingly, INAPs suspended in complete media maintained a similar size
distribution before and after irradiation with the NIR laser when compared to INAPs suspended in
PBS (Figure S3a,b). This can be attributed to the protection conferred by proteins from the serum (FBS)
adsorbing onto the surface of nanoparticles, a phenomenon known as the protein corona effect [38].
The time–temperature heating curves reflect this protection, with maximum INAPs protection at 20%
FBS compared to INAPs in media only (without FBS; Figure S2c). As a final component of this study,
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we tested the ability of the INAPs to be used for PTT of melanoma cells in vitro. When INAPs-PTT
was performed on SM1 cells, cell viability decreased to 20% when heated to ~50◦C, which was
achieved at a 2 mg/mL INAP concentration (Figure 3g and Table S1 for statistical analysis). Similarly,
ICG-PLGA-PTT generated an equivalent decrease in the viability of SM1 cells (also at 2 mg/mL),
indicating that the encapsulated NextA had a minimal effect on SM1 cell viability in the context
of PTT (Figure 3g). When melanoma cells were treated with 3 or 10 mg/mL INAPs for PTT, we
determined that PTT at 0.8 W for 10 min at a concentration of 3 mg/mL or higher reduced tumor
viability to 1% to 2%, thus serving as a positive control for administering PTT (Figure S4). Based on the
NextA toxicity alone (Figure S5), we observed a decrease in the viability in SM1 cells starting at 11
µM in a NextA dose-dependent manner (to 100 µM). This suggests that if the INAPs alone exhibit
high viability, then the functional NextA released from the INAPs is significantly lower than 11 µM.
To ensure our epigenetic therapy with NextA elicited only immunomodulation in combination with
PTT, we performed subsequent studies with free NextA at 5 µM to minimize any cytotoxicity effects in
our combination. An additional rationale for selecting this dose is that previously published studies
utilized 5 µM NextA for immunomodulatory effects in melanoma cells [24,25]. Overall, these results
demonstrate that the INAPs heat in a concentration- and laser power-dependent manner and can be
used for a single administration of PTT, after which they exhibit negligible PTT properties. Further,
INAPs-PTT elicit cell death in targeted SM1 melanoma cells in vitro.
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Figure 2. Characterization of INAPs demonstrate high stability and co-encapsulation of ICG and NextA.
(a) Size distributions (hydrodynamic diameters) of INAPs, NextA-PLGA, ICG-PLGA, and Blank-PLGA
measured by dynamic light scattering (DLS) ranged from 220 to 255 nm. (b) Multi-day stability of
INAPs over 87 days as measured by DLS. (c) Scanning electron microscope images of INAPs at high
magnification (50,000×, curr 13 pA), zoomed out (left) and zoomed in (right). UV-Vis-NIR spectrometry
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measured the absorption peaks of (d) ICG (free agent; green) at 780 nm and (e) NextA (free agent;
gold) at 250 nm to determine the presence of ICG in ICG-PLGA (red) and INAPs (blue), and NextA
in NextA-PLGA (orange) and INAPs (blue). INAPs, ICG-PLGA, and NextA-PLGA spectra were
normalized to Blank-PLGA spectra.
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Figure 3. The photothermal heating of INAPs decreases melanoma cell viability in vitro. (a) Time–
temperature heating curves at 1-min intervals and (b) Thermal doses expressed in log(CEM43) of
varying concentrations of INAPs (0.5–4 mg/mL) exposed to a 0.8 W NIR laser for 5 min demonstrate
concentration-dependent heating. (c) Time–temperature heating curves at 1-min intervals and
(d) thermal doses expressed in log(CEM43) of 4 mg/mL INAPs exposed to varying NIR laser powers
(0.4–2 W) for 5 min demonstrate laser power-dependent heating. (e) UV-Vis-NIR spectroscopy of free
ICG (green), INAPs before (gray), and after (red) exposure to 0.8 W NIR laser for 5 min show lower
ICG presence. (f) SEM images of INAPs show changes in INAP morphology before (Pre-PTT, mag.
50,000×, curr 25 pA) and after (Post-PTT, mag. 50,000×, curr 13 pA) exposure to a 0.8 W NIR laser
for 5 min. (g) SM1 melanoma cells were suspended in PBS and treated with INAPs or ICG-PLGA
at varying concentrations or controls in the presence (red) or absence (black) of the laser. Cells were
subsequently re-plated in media and incubated at 37 ◦C for 24 h, after which the Cell Titer-Glo ATP
assay was performed and determined a decrease of the SM1 cell viability in the presence of the laser.
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3.3. NextA Encapsulated within INAPs Can Inhibit HDAC Activity in Melanoma Cells in Vitro

To determine the functionality of NextA within the INAPs, we conducted studies to assess whether
NextA encapsulated within INAPs can inhibit HDAC activity of SM1 and B16F10 melanoma cells
in vitro using a luminescence-based HDAC activity assay (measuring pan-HDAC activity). SM1 murine
melanoma cells have been used to study immunosensitization for melanoma treatment, whereas B16F10
melanoma cells help study therapeutic applications for metastatic melanoma. We assessed HDAC6
inhibition in both cell lines to verify that NextA could function in both cell types. First, we compared
the ability of the INAPs, control nanoparticles (ICG-PLGA, NextA-PLGA, and Blank-PLGA), free
drug (NextA), and controls to inhibit HDAC activity in the presence or absence of laser exposure.
Importantly, INAPs, NextA-PLGA, free NextA, and the positive control (panobinostat; LBH) all
significantly inhibited HDAC activity (Figure 4a). SM1 cells had HDAC activity levels of less than
5% when treated with INAPs, NextA-PLGA, and LBH, and less than 20% when treated with free
NextA, as compared to the appropriate controls (vehicle-treated cells for free agents and Blank-PLGA
for NextA-containing nanoparticles; Figure 4a). Although cells treated with ICG-PLGA appeared to
decrease HDAC activity levels relative to the control, these changes were not statistically significant
(please refer to Table S2 for the statistical analysis for this study). Importantly, the addition of the laser
did not interfere with the ability of the encapsulated NextA (within INAPs and NextA-PLGA) or free
NextA to inhibit HDAC activity as measured by the unchanged HDAC activity levels for the various
treatment groups with/without laser exposure (Figure 4a). The INAPs inhibited HDAC activity in a
concentration-dependent manner, with increasing INAP concentrations eliciting decreased HDAC
activity levels relative to controls (Figure 4b). Once again, the addition of the laser did not interfere
with the observed HDAC activity levels for a given INAP concentration. As a third component of this
study, we tested whether short-term storage of the INAPs (over 7 days at 4 ◦C) impacted their ability
to inhibit HDAC activity relative to freshly synthesized INAPs. Encouragingly, the INAPs stored
for 7 days at 4 ◦C were able to inhibit HDAC activity at levels similar to freshly synthesized INAPs
in the presence/absence of NIR laser exposure (Figure 4c). To assess the HDAC6-specific inhibition
capabilities (versus pan-HDAC inhibition) of the INAPs and controls, we measured the expression
levels of acetylated alpha-tubulin (Ac-α-tubulin) relative to deacetylated alpha-tubulin (α-tubulin) by
western blot. INAPs treatment induced higher expression levels of Ac-α-tubulin relative to control
treatments, confirming the HDAC6-specific inhibition via the encapsulated NextA within the INAPs
(Figure 4d and Figure S6). However, the Ac-α-tubulin expression levels for INAPs were three-fold lower
compared to free NextA (Figure 4d). We cannot discount the fact that the presence of free NextA (in the
NextA group) directly in contact with target cells in vitro may have generated higher Ac-α-tubulin
expression levels relative to the encapsulated NextA being released from the nanoparticles (in the
INAP group). However, since improved in vitro performance does not necessarily translate to superior
in vivo performance, particularly in the context of blood circulation and perfusion, we did not regard
the increased expression levels of Ac-α-tubulin in the free NextA treatment group compared to the
INAP treatment group to pose a problem for additional testing. These results demonstrate that NextA
within the INAPs can inhibit both pan-HDAC activity and HDAC6-specific activity. Further, the NextA
within the INAPs retains its functionality even after NIR laser exposure and after short-term storage.
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Figure 4. Inhibition of HDAC activity in melanoma cells in vitro by NextA encapsulated within
INAPs. (a) HDAC activity of SM1 melanoma cells in vitro measured by a luminescence reporter assay
when treated with INAPs, ICG-PLGA, NextA-PLGA, Blank-PLGA, free NextA, a positive control
(panobinostat; LBH), and vehicle in the absence (black) and presence (red) of the NIR laser at 0.8 W
for 5 min. HDAC activity decreased after treating with INAPs, NextA-PLGA, free NextA, and LBH.
*** p-value < 0.001. (b) HDAC activity (luminescence) of B16F10 melanoma cells in vitro treated with
varying concentrations of INAPs (0.5–4 mg/mL) and controls in the absence (black) and presence (red) of
the NIR laser at 0.8 W for 5 min showed concentration-dependent HDAC inhibition. ns (not signficiant),
** p-value < 0.01, **** p-value < 0.0001. (c) HDAC activity (luminescence) of B16F10 melanoma cells
in vitro treated with freshly synthesized (Day 0) or short-term stored INAPs (Day 7) and controls in the
absence (black) and presence (red) of the NIR laser at 0.8 W for 5 min demonstrated functionally active
NextA in INAPs after storage. **** p-value < 0.0001. (d) Expression levels of Ac-α-tubulin, α-tubulin,
and acetylated histone 3 (Ac-H3) and histone 3 (H3) in B16F10 melanoma cells treated with INAPs and
controls in vitro demonstrated increased Ac-α-tubulin expression after NextA and INAPs treatment.
Top panel: Western blot image of the various treatment groups, bottom panel: Image analysis of the
expression levels in the top panel (using Image J, National Institutes of Health, Bethesda, MD, USA).
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3.4. INAPs-PTT Increases the Expression of Co-Stimulatory Molecules CD86 and CD80, and MHC Class I
Molecules on Melanoma Cells in Vitro

Our findings thus far have demonstrated that the INAPs retain their PTT properties as well as their
ability to inhibit HDAC6 expression in melanoma cells (SM1 and B16F10) in vitro. Next, we studied
the effects of combined photothermal and epigenetic therapy on tumor immunogenicity.

Previous studies have demonstrated tumor immunomodulation of immune markers, such as
MHC-I, in melanoma cells after treatment with HDAC6 inhibitor. For this study, we administered
INAPs, ICG-PLGA, the free NextA, and controls with and without NIR laser exposure to SM1 melanoma
cells in vitro. We determined the effects of the treatments on the surface expression of co-stimulatory
molecules (CD86 and CD80) and MHC Class I (MHC-I) molecules, as a measure of the immunological
effects elicited on the target cells by our combination therapy. When exposed to NIR laser, cells treated
with INAPs-PTT as well as ICG-PLGA-PTT attained similar maximum temperatures (~50 ◦C) and
thermal doses (~1.6 log(CEM43) (Figure 5a). The specific temperatures and thermal doses administered
were chosen to ensure that there were sufficient numbers of viable cells for the analysis and comparison
of surface marker expression levels between groups. Cells treated with INAPs-PTT, which combined
PTT and NextA therapy, expectedly exhibited the lowest viability of ~40% (Figure 5b), potentially
from the slightly higher temperatures observed at minute 1 and 2 with INAPs-PTT (Figure 5a).
In terms of the surface expression quantitated through the median fluorescence intensity (MFI), CD86,
CD80, and MHC-I expression on SM1 tumor cells (Figure 5c–e) markedly increased after INAPs-PTT
(red) and ICG-PLGA-PTT (blue) treatment compared to controls in vitro. The encapsulated NextA
in the INAPs further enhanced the expression in the combined therapy with INAPs-PTT (red) in
comparison to ICG-PLGA-PTT (blue). When expressed in terms of the percentage of cells expressing the
aforementioned markers, INAPs-PTT and ICG-PLGA-PTT yielded 89.8% and 81.1% CD86 expression
and 86.8% and 80.3% MHC-I expression (Figure S7), respectively. For CD80 expression, there was
only a marginal increase in the percentage after INAPs-PTT compared to ICG-PLGA-PTT. In B16F10
cells, the INAPs-PTT and ICG-PLGA-PTT yielded 54.3% and 38.2% MHC-I expression, respectively
(Figure S8). These results implicate that PTT greatly induces immune marker immunomodulation on
tumor cells, when compared to NextA alone, and could be dependent on the thermal dose, although
more studies would be needed to verify this phenomenon. Overall, these findings demonstrate that
the simultaneous administration of photothermal and epigenetic therapy via INAPs-PTT induces
increased expression of co-stimulatory molecules (CD86 and CD80) and MHC Class I expression
relative to the control treatment, a measure of potentially improved immunological responses elicited
by the combination therapy.
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measured by flow cytometry. Cell surface expression levels of co-stimulatory molecules (c) CD86, (d) 
CD80, and (e) MHC-I increased after INAPs-PTT and ICG-PLGA-PTT but not with other control 
treatment groups, as measured by flow cytometry (panels c-e x-axis units: logarithmic fluorophore 
expression levels, y-axis units: acquired events normalized to mode). 
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Figure 5. Increased cell surface expression of co-stimulatory molecules and MHC Class I on melanoma
cells in vitro after INAPs-PTT. (a) Time–temperature heating curves at 1-min intervals and thermal doses
expressed in terms of log (CEM43) of SM1 melanoma cells treated with INAPs-PTT and ICG-PLGA-PTT
using a 0.4 to 0.6 W NIR laser for 5 min showed heating to approximately 50 ◦C with a log (CEM43)
value of ~1.6. (b) Viability of SM1 melanoma cells treated with INAPs-PTT, ICG-PLGA-PTT, and other
control treatment groups showed 40% or higher viability after treatment, as measured by flow cytometry.
Cell surface expression levels of co-stimulatory molecules (c) CD86, (d) CD80, and (e) MHC-I increased
after INAPs-PTT and ICG-PLGA-PTT but not with other control treatment groups, as measured by flow
cytometry (panels c–e x-axis units: logarithmic fluorophore expression levels, y-axis units: acquired
events normalized to mode).

3.5. INAPs-PTT Slows Tumor Progression and Increases Median Survival in a Syngeneic Murine Model
of Melanoma

To evaluate the therapeutic efficacy of combining PTT with epigenetic therapy, we conducted
a preliminary study in a syngeneic murine melanoma model. Specifically, mice bearing established
(tumor volumes ~60 mm3) SM1 melanoma tumors were divided into the following five groups (n = 5
per group; Figure 6a): (1) Untreated—receiving no treatment; (2) NextA (i.p., 25 mg/kg)—receiving
free NextA (epigenetic therapy) 6× per week through the entire study until the tumor exceeded
20 mm in any dimension; (3) INAPs (i.t., 50 mg/kg)—receiving i.t. encapsulated NextA (epigenetic
therapy); (4) ICG-PLGA-PTT (i.t., 50 mg/kg + NIR laser for 10 min)—receiving PTT; (5) INAPs-PTT
(i.t., 50 mg/kg +NIR laser for 10 min)—receiving both PTT and epigenetic therapy; and (6) INAPs-PTT
(i.t., 50 mg/kg + NIR laser for 10 min) + 2 NextA-PLGA boosters (i.t. 50 mg/kg)—receiving both PTT
and epigenetic therapy. Group 6 received NextA-PLGA boosters to maintain sufficient concentrations
of NextA within the tumor microenvironment (TME) to complement the effects of PTT. Additionally,
the dosing for free NextA in group 2 was based on the optimal doses previously determined
to elicit antitumor activity [23–25]. The average final tumor temperature achieved during PTT
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measured by the thermal imaging camera was ~95◦C and the corresponding thermal doses were
~16.8 log(CEM43) (Figure 6b). Groups receiving epigenetic therapy alone in free drug (NextA; yellow) or
encapsulated drug (INAP; blue) form showed similar tumor growth curves to untreated tumor-bearing
mice (Figure 6c). Importantly, nearly daily systemic administration of free NextA conferred no
tumor progression benefit compared to untreated controls. By comparison, groups receiving PTT
(ICG-PLGA-PTT; light blue) and PTT plus epigenetic therapy (INAPs-PTT + NextA-PLGA boosters;
red) exhibited markedly slower tumor progression (Figure 6c). This sustained pressure of epigenetic
therapy after PTT in the INAPs-PTT + NextA-PLGA boosters group also delayed the rate of tumor
recurrence in treated mice (Table 1), which was not evident after only one INAPs injection without
NextA-PLGA boosters as observed in the INAPs-PTT group. Treatment with ICG-PLGA-PTT and
INAPs-PTT (for both the INAPs-PTT group and INAPs-PTT + NextA-PLGA booster group) effectively
ablated the SM1 tumors on tumor-bearing mice, as the treated mice for each of these groups presented
no tumor on day 1 post treatment (indicated by “no tumor” in Table 2). When the tumor progression
in the INAPs-PTT-treated and INAPs-PTT + NextA-PLGA boosters-treated mice were compared to
that of the ICG-PLGA-PTT-treated mice (Table 2), the sustained NextA pressure by the NextA-PLGA
boosters caused a slower tumor progression compared to INAPs-PTT up until day 11. This was evident,
for example, by day 8, where tumors in the INAPs-PTT + NextA-PLGA booster-treated group had
an average tumor volume of only 19% that of the ICG-PLGA-PTT-treated group. In contrast, on the
same day (day 8), this slower tumor growth was not evident in INAPs-PTT-treated mice as their tumor
volumes were on average 156% that of ICG-PLGA-PTT-treated mice, indicating that INAPs-PTT tumors
were on average 56% larger than ICG-PLGA-PTT tumors. At day 18 (9 days after the last NextA-PLGA
booster), the benefit of controlling the tumor size with the sustained epigenetic therapy was no longer
observed, as the tumor volume of the INAPs-PTT + NextA-PLGA booster group was 105% of that
of the ICG-PLGA-PTT group, indicating that by day 18, tumors of the INAPs-PTT + NextA-PLGA
booster group were on average 5% larger than in the ICG-PLGA-PTT group. Further, in terms of
survival, there was no survival benefit observed in the tumor-bearing animals treated with free NextA
or INAPs relative to untreated controls. However, all animals treated with PTT exhibited an increased
median survival relative to untreated controls. The median survival was 18 days in the INAPs-PTT
plus NextA-PLGA boosters group, 17 days in the ICG-PLGA-PTT, and 14 days in the untreated controls
(Figure 6d), although there was no statistically significant differences in the long-term survival between
the treatment groups. Overall, this preliminary study suggests that PTT combines with epigenetic
therapy to slow tumor progression early after treatment and improves median survival in a syngeneic
melanoma model.

Table 1. Comparison of the number of tumor-bearing mice several days after ICG-PLGA-PTT,
INAPs-PTT, and INAPs-PTT + NextA-PLGA booster treatments.

Number of Tumor-Bearing Mice

Days Post-Treatment ICG-PLGA-PTT INAPs-PTT INAPs-PTT +
NextA-PLGA Boosters

Pre-Treatment 5 5 5
1 0 0 0
3 0 0 0
7 2 1 0
8 2 4 1
11 4 5 4
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median survival with sustained epigenetic therapy after PTT (INAPs-PTT + NextA-PLGA boosters). 

  

Figure 6. INAPs-PTT slows tumor progression and increases median survival in local melanoma-bearing
mice. SM1 melanoma cells were inoculated on the right flank of C57BL/6 mice. (a) Schematic for the
combination therapy in a primary tumor model. (b) Temperatures for PTT groups were measured
every minute by a thermal camera and maintained at approximately 95 ◦C, with the corresponding
log(CEM43) ~16.9. (c) Individual tumor growth curves (n = 5/group) and (d) the overall Kaplan–Meier
survival plots demonstrate short-term delay of tumor recurrence and increased median survival with
sustained epigenetic therapy after PTT (INAPs-PTT + NextA-PLGA boosters).
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Table 2. Quantitative comparison of tumor sizes in mice several days after INAPs-PTT and INAPs-PTT
+ NextA-PLGA booster treatments, relative to ICG-PLGA-PTT.

Tumor Sizes Compared to ICG-PLGA-PTT
(Expressed as % of ICG-PLGA-PTT Tumor on a Particular Day)

Days Post-Treatment ICG-PLGA-PTT INAPs-PTT 1 INAPs-PTT +
NextA-PLGA Boosters 2

1 no tumor no tumor no tumor
7 100% 53% 0
8 100% 156% 19%

11 100% 169% 27%
18 100% 162% 105%

1 Last day for NextA administration (via INAPs) was day 0; 2 Last day for NextA administration (via NextA-PLGA
booster) was day 7.

4. Discussion

In this study, we described a PLGA nanoparticle-based approach to combine photothermal and
epigenetic therapy as a novel combination therapy for melanoma (Figure 1). Our nanoemulsion synthesis
scheme resulted in the stable encapsulation of both ICG and NextA within 220 nm PLGA nanoparticles
(INAPs; Figure 2). The consistent temporal size distributions of the INAPs (as measured by DLS)
indicated stability of the INAPs in suspension. For translation purposes, high stability of therapeutic
agents is critical for clinical applications and effective storage. However, upon administration, such
PLGA-based nanoparticles would be expected to degrade overtime [34]. PLGA nanoparticle integrity
can be affected by pH, with an acidic pH increasing the degradation rate and cargo release. Through
their intratumoral localization, we expected that INAPs would not persist for long before the acidic
tumor conditions initiate degradation of INAPs [3,35]. Current research on nanoparticle stability also
demonstrate that the type of stabilizers used to coat and encapsulate drugs into nanoparticles could
improve their stability properties that allow them to function as multifunctional carriers or enhance
permeation through the skin to improve drug delivery [39,40]. Through UV-Vis-NIR spectrometry,
we detected the encapsulation of ICG and/or NextA within the INAPs, ICG-PLGA, and NextA-PLGA.
Although the amount of ICG loaded into the ICG-PLGA and INAPs were equivalent, as measured
by their similar absorbance peaks (Figure 2d), the amount of NextA loaded into the INAPs and
NextA-PLGA was significantly different (Figure 2e). Specifically, the amount of NextA loaded within
the dual-agent INAPs was significantly higher than that loaded within the single-agent NAPs as
evidenced by a higher NextA absorption band for INAPs compared to NAPs. One potential explanation
is that with both ICG and NextA dissolved with PLGA in the organic phase, there is a higher solid-state
drug–polymer solubility, which has been reported to increase drug loading since the entropy of the
solution increases [41].

Through our analysis of INAPs to mediate PTT, we observed a difference in the temperatures
and thermal doses achieved between the concentration-dependent and NIR laser power-dependent
curves (Figure 3a–d). Based on these data, heating of INAPs is dependent on each batch of INAPs
synthesized as there is a slight variability (40–50%) in the amount of ICG encapsulated, which results in
small differences in the heating trajectories of the INAPs. However, regardless of this small variability
between batches, the observed trends for increased heating with increasing concentration and laser
power were retained. The laser exposure appeared to photobleach ICG and consequently diminish their
PTT capabilities (Figure 3e). This bleaching of ICG after NIR laser exposure was evident in Figure 3a,
specifically at 0.5 to 2.0 mg/mL, where the nanoparticle heating appeared to decrease after the initial
heating. Thus, the amount of ICG encapsulated, the irradiation time, and the rate of photobleaching
all impact the ability of INAPs to function as PTT agents, which provides further evidence for their
use as a single administration of PTT. When melanoma cells were treated with INAPs-PTT in vitro,
the encapsulated NextA had a minimal effect on viability, suggesting that the INAPs are releasing
NextA at concentrations that have low cytotoxicity (Figure S2).
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The NextA encapsulated within PLGA nanoparticles (INAPs and NextA-PLGA) retained their
ability to inhibit pan-HDAC activity (Figure 4a). This finding is consistent with earlier published reports
where encapsulated agents in PLGA particles were shown to work similarly to or better than free agents
(Table S3) [4,7–9]. Critically, the activity of NextA was not diminished even in the presence of NIR
laser activation, suggesting the compatibility of administering NextA with ICG-based PTT. The INAPs
were able to exhibit concentration-dependent (Figure 4b) and temporal (Figure 4c) inhibition of HDAC
activity, once again, both in the presence or absence of the NIR laser. The INAPs were able to inhibit
HDAC6-specific activity as evidenced by the increased expression of Ac-α-tubulin in melanoma cells
in vitro relative to controls (Figure 4d and Figure S6). The findings in Figures 3 and 4 provide evidence
for the use of PLGA nanoparticles to co-localize complementary therapies, such as PTT and epigenetic
therapy, and is consistent with earlier studies using PLGA to co-localize therapies (Table S3) [22,42].

Our studies demonstrated an improved expression of immunological markers expressed by
melanoma cells induced by the combined photothermal-epigenetic therapy via the INAPs (Figure 5).
Specifically, treatment with INAPs-PTT increased the expression of co-stimulatory markers CD80
and CD86 on melanoma cells in vitro. While tumor cells are not professional antigen-presenting cells,
the expression of these co-stimulatory molecules on these cells helps T cells engage with tumor cells,
facilitating the activation of primed effector T cells [43]. INAPs-PTT also increased MHC-I expression
in melanoma cells in vitro. Since most cancers, including melanoma, evade immune detection by
downregulating MHC-I, by inducing a higher MHC-I expression, we could potentially improve the
tumor recognition by infiltrating CD8+ T cells through the MHC-I/TCR interaction [44]. While PTT
alone (ICG-PLGA-PTT) increased CD80, CD86, and MHC-I expression, the addition of NextA further
increased these expression levels on melanoma cells in vitro. It is important to note here that these
studies were conducted at sub-lethal PTT conductions (~50 ◦C) to uncouple the cytotoxic effects of
PTT from the immunomodulatory effects of PTT and NextA on tumor cells. Future studies would
help validate if the increased expression of these immune markers (1) positively correlates with
administered thermal temperature/doses for optimal PTT, and (2) if it could improve tumor-specific
killing by activated T cells as a potential mechanism of action.

In our in vivo studies in the syngeneic SM1 melanoma model, the combined therapy slowed early
tumor growth and improved median survival (Figure 6). Sustained epigenetic therapy improved the
response to PTT by delaying the timing of recurrence (Table 1), as observed in the early tumor growth
curves (Figure 6) and by the tumor sizes for mice in the INAPs-PTT + NextA-PLGA booster-treated
group compared to the ICG-PLGA-PTT-treated group (Table 2). Yet, it is important to note that
the most prominent therapeutic efficacy was largely driven by PTT, as evidenced by nearly equal
median survival for ICG-PLGA-PTT-treated mice compared with INAPs-PTT + NextA-PLGA boosters.
The NextA-PLGA boosters post-INAPs-PTT appeared to improve the number of tumor-free days,
which suggests that NextA acted on the tumor microenvironment to prevent tumor growth, but the
modulation mediated by HDAC6 inhibition was not sufficient for maintaining long-lasting antitumor
effects or improving long-term survival. Additional studies maintaining a sustained release of NextA
would be needed to study the modulation in the TME driven by HDAC6 inhibition after INAPs-PTT.
Further, a role of the drug in tumor priming prior to PTT cannot be discounted, which was not explicitly
tested here.

In conclusion, by formulating a nanoparticle-based approach to combine photothermal and
epigenetic therapy, we demonstrate the feasibility of combining disparate yet complementary therapies
to treat melanoma. Characterization of the nanoparticles suggested that the INAPs could simultaneously
administer both therapies in vitro, and our preliminary in vivo studies suggests the combined therapy
elicits improved therapeutic efficacy early on during treatment. Future studies conducted to assess
the immunomodulation elicited by each therapy alone and in combination will further describe the
complementary antitumor effects of the combined photothermal-epigenetic therapy to maximize their
therapeutic benefits for melanoma, and potentially other tumors.
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14. Bazylińska, U.; Kulbacka, J.; Chodaczek, G. Nanoemulsion Structural Design in Co-Encapsulation of Hybrid
Multifunctional Agents: Influence of the Smart PLGA Polymers on the Nanosystem-Enhanced Delivery and
Electro-Photodynamic Treatment. Pharmaceutics 2019, 11, 405. [CrossRef] [PubMed]

15. Audran, R.; Peter, K.; Dannull, J.; Men, Y.; Scandella, E.; Groettrup, M.; Gander, B.; Corradin, G. Encapsulation
of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and
macrophages in vitro. Vaccine 2003, 21, 1250–1255. [CrossRef]

16. Cruz, L.J.; Tacken, P.J.; Rueda, F.; Domingo, J.C.; Albericio, F.; Figdor, C.G. Chapter eight-Targeting
Nanoparticles to Dendritic Cells for Immunotherapy. In Methods in Enzymology; Düzgüneş, N., Ed.; Academic
Press: Cambridge, MA, USA, 2012; Volume 509, pp. 143–163.

17. Sunshine, J.C.; Perica, K.; Schneck, J.P.; Green, J.J. Particle shape dependence of CD8+ T cell activation by
artificial antigen presenting cells. Biomaterials 2014, 35, 269–277. [CrossRef]

18. Doughty, A.C.V.; Hoover, A.R.; Layton, E.; Murray, C.K.; Howard, E.W.; Chen, W.R. Nanomaterial
Applications in Photothermal Therapy for Cancer. Materials 2019, 12, 779. [CrossRef]

19. Bear, A.S.; Kennedy, L.C.; Young, J.K.; Perna, S.K.; Mattos Almeida, J.P.; Lin, A.Y.; Eckels, P.C.; Drezek, R.A.;
Foster, A.E. Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and
adoptive T cell transfer. PLoS ONE 2013, 8, e69073. [CrossRef]

20. Sweeney, E.E.; Cano-Mejia, J.; Fernandes, R. Photothermal Therapy Generates a Thermal Window of
Immunogenic Cell Death in Neuroblastoma. Small 2018, 14, e1800678. [CrossRef]

21. Cano-Mejia, J.; Bookstaver, M.L.; Sweeney, E.E.; Jewell, C.M.; Fernandes, R. Prussian blue nanoparticle-based
antigenicity and adjuvanticity trigger robust antitumor immune responses against neuroblastoma. Biomater.
Sci. 2019, 7, 1875–1887. [CrossRef]

22. Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant
nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7,
13193. [CrossRef]

23. Woan, K.V.; Lienlaf, M.; Perez-Villaroel, P.; Lee, C.; Cheng, F.; Knox, T.; Woods, D.M.; Barrios, K.; Powers, J.;
Sahakian, E.; et al. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor
immunity and impaired cell proliferation. Mol. Oncol. 2015, 9, 1447–1457. [CrossRef] [PubMed]

24. Lienlaf, M.; Perez-Villarroel, P.; Knox, T.; Pabon, M.; Sahakian, E.; Powers, J.; Woan, K.V.; Lee, C.; Cheng, F.;
Deng, S.; et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol. Oncol. 2016, 10,
735–750. [CrossRef] [PubMed]

25. Knox, T.; Sahakian, E.; Banik, D.; Hadley, M.; Palmer, E.; Noonepalle, S.; Kim, J.; Powers, J.;
Gracia-Hernandez, M.; Oliveira, V.; et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint
blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of
immunosuppressive proteins in tumor cells. Sci. Rep. 2019, 9, 6136. [CrossRef] [PubMed]

26. Liu, J.; Luan, W.; Zhang, Y.; Gu, J.; Shi, Y.; Yang, Y.; Feng, Z.; Qi, F. HDAC6 interacts with PTPN1 to enhance
melanoma cells progression. Biochem. Biophys. Res. Commun. 2018, 495, 2630–2636. [CrossRef] [PubMed]

27. Namdar, M.; Perez, G.; Ngo, L.; Marks, P.A. Selective inhibition of histone deacetylase 6 (HDAC6) induces
DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. USA 2010, 107,
20003–20008. [CrossRef]

28. Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: Giving histone deacetylase inhibitors all
they need to succeed. Future Med. Chem. 2012, 4, 505–524. [CrossRef]

29. Ahuja, N.; Sharma, A.R.; Baylin, S.B. Epigenetic Therapeutics: A New Weapon in the War Against Cancer.
Annu. Rev. Med. 2016, 67, 73–89. [CrossRef]

30. Luu, T.H.; Morgan, R.J.; Leong, L.; Lim, D.; McNamara, M.; Portnow, J.; Frankel, P.; Smith, D.D.; Doroshow, J.H.;
Wong, C.; et al. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer:
A California Cancer Consortium study. Clin. Cancer Res. An Off. J. Am. Assoc. Cancer Res. 2008, 14, 7138–7142.
[CrossRef]

http://dx.doi.org/10.1016/j.bbrc.2019.10.084
http://www.ncbi.nlm.nih.gov/pubmed/31668370
http://dx.doi.org/10.1016/j.colsurfa.2017.04.027
http://dx.doi.org/10.3390/pharmaceutics11080405
http://www.ncbi.nlm.nih.gov/pubmed/31405247
http://dx.doi.org/10.1016/S0264-410X(02)00521-2
http://dx.doi.org/10.1016/j.biomaterials.2013.09.050
http://dx.doi.org/10.3390/ma12050779
http://dx.doi.org/10.1371/journal.pone.0069073
http://dx.doi.org/10.1002/smll.201800678
http://dx.doi.org/10.1039/C8BM01553H
http://dx.doi.org/10.1038/ncomms13193
http://dx.doi.org/10.1016/j.molonc.2015.04.002
http://www.ncbi.nlm.nih.gov/pubmed/25957812
http://dx.doi.org/10.1016/j.molonc.2015.12.012
http://www.ncbi.nlm.nih.gov/pubmed/26775640
http://dx.doi.org/10.1038/s41598-019-42237-3
http://www.ncbi.nlm.nih.gov/pubmed/30992475
http://dx.doi.org/10.1016/j.bbrc.2017.12.145
http://www.ncbi.nlm.nih.gov/pubmed/29278704
http://dx.doi.org/10.1073/pnas.1013754107
http://dx.doi.org/10.4155/fmc.12.3
http://dx.doi.org/10.1146/annurev-med-111314-035900
http://dx.doi.org/10.1158/1078-0432.CCR-08-0122


Nanomaterials 2020, 10, 161 20 of 20

31. Haigentz, M., Jr.; Kim, M.; Sarta, C.; Lin, J.; Keresztes, R.S.; Culliney, B.; Gaba, A.G.; Smith, R.V.; Shapiro, G.I.;
Chirieac, L.R.; et al. Phase II trial of the histone deacetylase inhibitor romidepsin in patients with
recurrent/metastatic head and neck cancer. Oral Oncol. 2012, 48, 1281–1288. [CrossRef]

32. Hainsworth, J.D.; Infante, J.R.; Spigel, D.R.; Arrowsmith, E.R.; Boccia, R.V.; Burris, H.A. A Phase II Trial of
Panobinostat, a Histone Deacetylase Inhibitor, in the Treatment of Patients with Refractory Metastatic Renal
Cell Carcinoma. Cancer Investig. 2011, 29, 451–455. [CrossRef]

33. Dunne, M.; Corrigan, O.I.; Ramtoola, Z. Influence of particle size and dissolution conditions on the
degradation properties of polylactide-co-glycolide particles. Biomaterials 2000, 21, 1659–1668. [CrossRef]

34. Mohammad, A.K.; Reineke, J.J. Quantitative Detection of PLGA Nanoparticle Degradation in Tissues
following Intravenous Administration. Mol. Pharm. 2013, 10, 2183–2189. [CrossRef]

35. Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery
Carrier. Polymers 2011, 3, 1377–1397. [CrossRef]

36. Koya, R.C.; Mok, S.; Otte, N.; Blacketor, K.J.; Comin-Anduix, B.; Tumeh, P.C.; Minasyan, A.; Graham, N.A.;
Graeber, T.G.; Chodon, T.; et al. BRAF Inhibitor Vemurafenib Improves the Antitumor Activity of Adoptive
Cell Immunotherapy. Cancer Res. 2012, 72, 3928. [CrossRef]

37. Sapareto, S.A.; Dewey, W.C. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys.
1984, 10, 787–800. [CrossRef]

38. Nguyen, V.H.; Lee, B.-J. Protein corona: A new approach for nanomedicine design. Int. J. Nanomed. 2017, 12,
3137–3151. [CrossRef]
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