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ABSTRACT

RNA-sequencing (RNA-seq) is a powerful technique
to investigate and quantify entire transcriptomes. Re-
cent advances in the field have made it possible
to explore the transcriptomes of single cells. How-
ever, most widely used RNA-seq protocols fail to
provide crucial information regarding transcription
start sites. Here we present a protocol, Tn5Prime,
that takes advantage of the Tn5 transposase-based
Smart-seq2 protocol to create RNA-seq libraries that
capture the 5′ end of transcripts. The Tn5Prime
method dramatically streamlines the 5′ capture pro-
cess and is both cost effective and reliable. By ap-
plying Tn5Prime to bulk RNA and single cell sam-
ples, we were able to define transcription start sites
as well as quantify transcriptomes at high accuracy
and reproducibility. Additionally, similar to 3′ end-
based high-throughput methods like Drop-seq and
10× Genomics Chromium, the 5′ capture Tn5Prime
method allows the introduction of cellular identifiers
during reverse transcription, simplifying the analysis
of large numbers of single cells. In contrast to 3′ end-
based methods, Tn5Prime also enables the assembly
of the variable 5′ ends of the antibody sequences
present in single B-cell data. Therefore, Tn5Prime
presents a robust tool for both basic and applied re-
search into the adaptive immune system and beyond.

INTRODUCTION

As the cost of RNA-sequencing (RNA-seq) has decreased,
it has become the gold standard in interrogating complete
transcriptomes from bulk samples and single cells. RNA-
seq is a powerful tool to determine gene expression pro-
files and identify transcript features like splice sites. How-

ever, standard approaches lose sequencing coverage toward
the very end of transcripts. This reduced coverage means
that we cannot confidently define the 5′ ends of mRNA
transcripts which contain crucial information on transcrip-
tion start sites (TSSs) and 5′ untranslated regions (5′UTRs).
Analyzing TSSs can help infer the active promoter land-
scape, which may vary from tissue to tissue and cell to cell.
Analyzing 5′UTRs, which may contain regulatory elements
and structural variations can help infer mRNA stability, lo-
calization and translational efficiency. Identifying such fea-
tures can help elucidate our understanding of the molecular
mechanisms that regulate gene expression.

The loss of sequencing coverage toward the 5′ end of
transcripts is often attributed to how sequencing libraries
are constructed. For example, the widely used Smart-seq2
RNA-seq protocol, a powerful tool in deciphering the com-
plexity of single cell heterogeneity (1–3), features reduced
sequencing coverage toward transcript ends. This lost in-
formation is a result of cDNA fragmentation using Tn5
transposase. Several technologies have tried to compen-
sate for the lack of coverage by specifically targeting the
5′ ends of transcripts. The most notable methods include
cap analysis of gene expression (CAGE), NanoCAGE and
single-cell-tagged reverse transcription sequencing (STRT)
(4–7). CAGE uses a 5′ trapping technique to enrich for
the 5′-capped regions by reverse transcription (7). This
technique is extremely labor intensive and involves large
amounts of input RNA. The NanoCAGE and STRT meth-
ods target transcripts using random or polyA priming and
a template-switch oligo (TSO) technique to generate cDNA
(4,6). While NanoCAGE can analyze samples as low as a
few nanograms of RNA, and STRT can be used to ana-
lyze single cells, they both require long and labor-intensive
workflows including fragmentation, ligation or enrichment
steps. These workflows can become costly and labor inten-
sive, making it difficult to interrogate complex mixtures of

*To whom correspondence should be addressed. Tel: +1 831 459 4678; Fax: +1 831 459 4482; Email: vollmers@ucsc.edu
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

C© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com



e62 Nucleic Acids Research, 2018, Vol. 46, No. 10 PAGE 2 OF 12

cells like those found in the adaptive immune system or can-
cer.

New droplet based high-throughput single-cell RNAseq
approaches like Drop-seq and 10× Genomics Chromium
platform can process thousands of cells but require intri-
cate or expensive proprietary instrumentation. Importantly,
they are primarily focused on the 3′ end of transcripts due
to integrating a sequencing priming site on to the oligodT
primer used for reverse transcription. By losing information
of the 5′ end almost entirely, these approaches are not capa-
ble of comprehensively analyzing cells of the adaptive im-
mune cells which express antibody or T-cell receptor tran-
scripts featuring unique V(D)J rearrangement sequence in-
formation on their 5′ end. While 10× Genomics has recently
introduced their new Single Cell V(D)J solution platform to
address this, there is currently no published data available
evaluating its characteristics.

To overcome this lack of easy-to-implement, inexpen-
sive and high-throughput single cell 5′ capture methods, we
chose to modify the Smart-seq2 library preparation proto-
col which is relatively cost-effective and simple with features
of STRT which captures 5′ ends effectively. Here we describe
a robust and easily implemented method called Tn5Prime
that performs genome-wide profiling across the 5′ end of
mRNA transcripts in both bulk and single-cell samples. The
protocol is based on integrating one sequencing priming site
into the template switch oligo used for reverse transcrip-
tion and subsequently tagmenting the resulting amplified
cDNA by Tn5 enzyme loaded with an adapter carrying the
other sequencing priming site. This combination allows for
the construction of directional RNAseq libraries with one
read anchored to the 5′ end of transcripts without the need
for separate fragmentation, ligation, and, most importantly,
enrichment steps. Additionally, incorporating cellular iden-
tifiers into the template switch oligo makes it conducive for
pooling samples after reverse transcription, thereby increas-
ing throughput and reducing cost. Finally, data produced
by this novel approach allow for the identification of tran-
scription start sites, the quantification of transcripts, and
the assembly of antibody heavy and light chain sequences
from single B cells at low sequencing depth.

MATERIALS AND METHODS

Cell purification, RNA isolation and sorting

GM12878. RNA from 500 000 GM12878 cells was ex-
tracted using the RNeasy kit (Qiagen) according to man-
ufacturer’s instructions.

Murine B2 cells. Mice were maintained in the UCSC
(University of California, Santa Cruz) vivarium according
to IACUC (Institutional Animal Care and Use Committee)
approved protocols. Single murine Ter119-CD3-CD4-CD8-
B220+ IgM+CD11b− CD5− B2 cells were isolated from
wild-type C57Bl/6 mice by peritoneal lavage and incubated
with fluorescently labeled antibodies prior to sorting. The
following antibodies were used to stain B cells: Ter119, CD3
(Biolegend; 145-2C11), CD4 (Biolegend; GK1.5), CD8a
(Biolegend; 53–6.7), B220 (Biolegend; RA3-6B2), IgM (Bi-
olegend; RMM-1), CD5 (Biolegend; 53-7.3) and CD11b
(Biolegend; M1/70). Cells were analyzed and sorted using a

fluorescence-activated cell sorting (FACS) Aria II (BD), as
described (8–10).

Human B cells. Primary human cells were collected from
the blood of a fully consented healthy adult in a study ap-
proved by the Institutional Review Board at UCSC. For the
Tn5Prime analysis, single human B cells were isolated from
peripheral blood mononuclear cells (PBMCs) using nega-
tive selection using Rosette (StemCell). The resulting B cells
were sorted for CD19+ CD27high and CD38high. The follow-
ing antibodies were used for staining B cells: CD19 (BD
Pharmingen; HIB19), CD27 (Biolegend; 0323) and CD38
(Biolegend; HB-7). Cells were sorted using FACS Aria II
(BD) and analyzed using FlowJo v10.2 (FlowJo, TreeStar
Software, Ashland, OR, USA). For the Smart-seq2 analy-
sis, individual PBMCs were sequenced and B cells for fur-
ther analysis were identified based on their expression of an-
tibody genes.

Both murine and human single cells were sorted into
96-well plates and directly placed into 4 �l of lysis
buffer––0.1% Triton X-100, 0.2 �l of SuperaseIn (Thermo),
1 �l of oligodT primer (IDT), 1 �l of dNTP (10 mM
each)(NEB)––and frozen at −80◦C.

RNA-seq library construction and sequencing

A total of 2 �l of RNA (5 ng) or single cell lysate was re-
verse transcribed using Smartscribe Reverse Transcriptase
(Clontech) in a 10 �l reaction including either a Smart-
seq2 TSO (Smart-seq2 libraries) or a Nextera A TSO
(Tn5Prime libraries) according to manufacturer’s instruc-
tions for 60 min at 42◦C (Supplementary Table S1). The
resulting cDNA was treated with 1 �l of 1:10 dilutions of
RNAse A (Thermo) and Lambda Exonuclease (NEB) for
30 min at 37◦C. The treated cDNA was then amplified us-
ing KAPA Hifi Readymix 2× (KAPA) and incubated at
95◦C for 3 min, followed by 15 cycles (GM12878) or 27 cy-
cles (single B cells) of (98◦C for 20 s, 67◦C for 15 s, 72◦C
for 4 min), with a final extenssion at 72◦C for 5 min. For
our Tn5Prime method, the cDNA amplification requires
both the ISPCR primer and a Nextera A Index primer. For
the Smart-seq2 method, the cDNA amplification requires
only the ISPCR primer (Supplementary Table S1). The re-
sulting polymerase chain reaction (PCR) product was then
treated with our Tn5 enzyme (11) custom loaded with either
Tn5ME-A/R and Tn5ME-B/R (Smart-seq2) or Tn5ME-
B/R adapters only (Tn5Prime). The Tn5 reaction was per-
formed using 5 �l of the PCR product, 1 �l of the loaded
Tn5 enzyme, 10 �l of H2O and 4 �l of 5× TAPS-PEG buffer
and incubated at 55◦C for 5 min. The Tn5 reaction was then
inactivated by the addition of 5 �l of 0.2% sodium dodecyl
sulphate and 5 �l of the product was then nick-translated
at 72◦C for 6 min and further amplified using KAPA
Hifi Polymerase (KAPA) using Nextera Primer B and Nex-
tera Primer A Universal (Tn5Prime) or Nextera Primer A
(Smart-seq2) (Supplementary Table S1) with an incubation
of 98◦C for 30 s, followed by 13 cycles of (98◦C for 10 s,
63◦C for 30 s, 72◦C for 2 min) with a final extension at 72◦C
for 5 min. The Tn5 treated PCR product was then size se-
lected using a E-gel 2% EX (Thermo) to a size range of
400–1000 bp. GM12878 RNA Smart-seq2 and Tn5Prime li-
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braries were sequenced on an Illumina HiSeq2500 2 × 150
run, mouse B2 cell Tn5Prime libraries were sequenced on
a Illumina MiSeq 2 × 300 run, human B-cell Tn5Prime li-
braries were sequenced on two Illumina HiSeq3000 2 × 150
run and human B cell Smart-seq2 libraries were sequenced
on a MiSeq 2 × 75 run.

Sequencing alignment and analysis

Datasets generated from Smart-seq2, Tn5Prime, ENCODE
CAGE (GEO accession GSM849368; produced by the lab
of Piero Carnici at RIKEN) and ENCODE RNAseq (GEO
accession GSM958742; produced by the lab of Barbara
Wold at Caltech) (12) derived from the GM12878 cell line
were all trimmed of adapters and low quality bases us-
ing trimmomatic (v0.33) (13) with a quality cutoff of Q15.
Tn5Prime and Smart-seq2 data generated from human sin-
gle B cells were all trimmed of adapters containing low qual-
ity bases using Cutadapt (14) and with a quality cutoff of
Q15. All paired reads where one or more of the reads con-
tain a post-trimming length of <25 bp were filtered out.

Trimmed reads derived from the GM12878 cell line and
human single B cells were aligned to the human genome
(GRCh38) annotated with Ensembl GRCh38.78 GTF re-
lease using STAR (v2.4) (15). Trimmed reads derived from
the B2 cells were aligned to the mouse genome (GRCm38)
annotated with Ensembl GRCm38.80 GTF release using
STAR (v2.4). Expression levels were quantified using fea-
tureCounts (v1.4.6-p1) (16) and normalized by total read
number resulting in RPM (Reads Per Million).

Peaks for CAGE, Tn5Prime and Smart-seq2 data were
called by counting the number of unique fragments which
began their forward read alignments (R1 for Tn5Prime) at
each position within each chromosome and for each orien-
tation (positive or negative). A peak was called at a position
and orientation if at least five alignments begin at that po-
sition, the position one nucleotide downstream has fewer
alignments beginning at that position and the position 1 nt
upstream has fewer alignments beginning at that position.
For the single cell data, peaks were filtered out unless they
appeared in more than one cell. The distance between the
Tn5Prime/Smart-seq2 peaks and the nearest CAGE peak
was called by inserting the nucleotide coordinates of the
CAGE peaks into kd-trees and then performing a nearest
neighbor search on them using the Tn5Prime/Smart-seq2
peak coordinates. Each chromosome and orientation had
its own kd-tree.

Antibody assembly

Data generated from our single human B cells were used to
identify antibody transcripts.

After assigning reads into each cell based upon their cel-
lular index, they were then assembled into transcriptomes
using rnaSPAdes (17) using the single-cell parameters. Puta-
tive immunoglobulin transcripts are detected and annotated
by running IGBLAST (18) against the assembled transcrip-
tome using Human V,D and J segments from the IMGT
database (19). Isotypes are assigned to putative IG tran-
scripts by aligning constant regions to the transcripts with
BWA-MEM (http://arxiv.org/abs/1303.3997) (20).

Antibody transcripts were filtered using the following
process:

i. A table is generated from the SPADES/IGBLAST/B
WA pipeline listing each putative IG transcript for
each cell in which each row represents one assembled
antibody transcript and contains information indicat-
ing which cell it came from, overall abundance (as de-
termined by BWA), the CDR3 sequence and the type
IGH (Heavy),IGK (Kappa), IGL (Light) as well as the
inferred segments used during VDJ recombination.

ii. The transcripts are then clustered by CDR3 sequenc-
ing similarity using a single-linkage clustering algo-
rithm based on the Levenshtein distance where two
clusters of transcripts are merged when at least one
transcript CDR3 has a Levenshtein distance of two or
less with the CDR3 of any transcript in another clus-
ter.

iii. Transcripts belonging to the same cluster are merged
so that highly similar transcripts belonging to the same
cell are combined and their transcript counts are added
together. This is done to correct the spurious alterna-
tive assemblies produced by SPADES within each cell’s
assembled transcriptome.

iv. A list is then generated for each transcript of the cells
in which they appear. The lists are then sorted by the
transcript abundance within each cell.

v. Each entry in the list is marked by its relative abun-
dance. If the number of reads aligned to the transcript
in a cell is <10% of the largest amount of reads aligned
to that transcript within any cell, it is marked as being
a potential contaminant.

vi. For each type of immunoglobulin transcript (i.e. IGH,
IGK, IGL) found within each cell, the largest unique
(non-contaminant) transcript (i.e. only found in that
cell) is chosen. If a unique transcript cannot be found,
then the most highly expressed immunoglobulin tran-
script is selected.

vii. If both, an IGK and IGL, are present within a cell,
the unique transcript is selected. If both are unique or
non-unique then the most highly expressed transcript
is selected unless either transcript has an abundance of
at least 10% of the other.

viii. After this elimination process, most cells should have
a single heavy chain and light chain.

Visualization

All data visualization was done using Python/Numpy/Sci
py/Matplotlib (21–24). Schematics were drawn in Inkscape
(https://inkscape.org/en/).

RESULTS

Construction of Tn5Prime libraries

Tn5Prime libraries can be constructed from either puri-
fied total RNA or single cells sorted by FACS into multi-
well PCR plates. Tn5Prime creates directional paired-end
Illumina RNAseq libraries with read 1 anchored to the 5′
end of transcripts. Directionality and read 1 anchoring is

http://arxiv.org/abs/1303.3997
https://inkscape.org/en/
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achieved through the use of our modified TSO and cus-
tom Tn5 enzyme. After the addition of reverse transcrip-
tase to total RNA or cell lysate, first-strand synthesis oc-
curs using a modified oligo-dT and a TSO containing a
partial Nextera A adapter sequence and, optionally, a cel-
lular index sequence (Supplementary Table S1 and Figure
1A). During reverse transcription, the oligo-dT serves as a
primer at the 3′ polyA tail of mRNA transcripts, while the
sequence of the partial Nextera A TSO is attached to the 3′
end of the synthesized cDNA corresponding to the 5′ end
of transcript sequences. After reverse transcription, samples
with non-overlapping cellular indexes can be pooled. The
cDNA product is then amplified using a complete Nextera
A primer and a primer complementary to the modified 5′
end of the oligo-dT. After amplification, the cDNA prod-
uct will contain a complete Nextera A adapter including
Illumina indexes. At this point, samples that contain non-
overlapping Illumina indexes can be pooled. By pooling
after reverse transcription and PCR amplification, we can
dramatically reduce the workflow complexity and reagent
usage.

Next, Tn5 transposase, loaded only with a partial Nex-
tera B adapters, fragments the cDNA and attaches the par-
tial Nextera B adapters to the cDNA in a single reaction.
The cDNA fragments are then amplified using a univer-
sal A primer and a Nextera B primer that primes off the
partial Nextera B adapter sequences attached by the Tn5
enzyme. The final product is compatible with the Illumina
platform by containing the complete Nextera A and Nex-
tera B adapters. Libraries are then ready to be size selected
and quantified prior to sequencing. At this point, no enrich-
ment step is necessary, as only molecules containing both
Nextera A and B adapters will be targeted for sequencing.
Since only the TSOs associated with the 5′ end of transcripts
contain Nextera A adapters, read 1 of all read pairs in the
sequencing reaction begins at these 5′ ends and extends into
the transcript body, thereby identifying transcription start
site and directionality (Figure 1A–C). Read 2 is distributed
throughout the gene body, as each location represents the
random insertion of Nextera B adapters by Tn5 and library
size selection (Figure 1B and C).

Creating and analyzing Tn5Prime data of GM12878 cell line
RNA

To evaluate whether our Tn5Prime protocol consistently
identifies the 5′ end of the transcript we first performed
low coverage RNAseq of total RNA of GM12878 cultured
lymphoblast cells. We performed a side-by-side compari-
son of our protocol with a modified version of the Smart-
seq2 (1,25) (see ‘Materials and Methods’ section) proto-
col using the same starting material. Using the HiSeq2500
platform (Illumina) we obtained 570805 and 453761 raw
read pairs for two replicate Tn5Prime libraries. We next
obtained 1094530 raw read pairs from the Smart-seq2 li-
brary. Adapter sequences and low quality reads were re-
moved using Trimmomatic (13). In the Tn5Prime replicates,
92.51 and 92.62% of the trimmed and filtered reads mapped
uniquely to the human genome using the STAR alignment
tool (15), surpassing the Smart-seq2 protocol at 88.50%.
The uniquely aligned reads from the TN5Prime replicates

collectively had a redundancy of 1.34. This high unique
alignment percentage indicates that our Tn5Prime protocol
produces libraries of high complexity.

Detecting transcription start sites using Tn5Prime

We analyzed the read distribution across transcripts both
visually and systematically to determine the 5′ specificity
of our protocol. Visual inspection found that while Smart-
seq2 reads are distributed across the entire body of genes,
Tn5Prime reads follow two distinct patterns: first, the start
of the read 1 is anchored to the transcription start site. Sec-
ond, the start of read 2 is variable and likely dependent
on size selection during library preparation (Figure 1B and
C). Next, systematic analysis was based on mapping the
start of read 1 to identify putative transcription start sites
(TSSs). To test our ability to identify TSSs, we compared
our Tn5Prime data to the Gencode genome annotation and
CAGE data which was generated from the same GM12878
cell line from the ENCODE project. We identified putative
TSSs by calling peaks enriched from the start of read 1 in
our Tn5Prime data (see ‘Materials and Methods’ section).
We found that 89.7% of the 17 853 peaks fell within TSSs
(0–25 bp upstream) with the vast majority of them falling
near promoter regions (26–1000 bp upstream) or 5′UTRs
(Figure 2A). Next, we subsampled the CAGE data to levels
similar to the Tn5Prime data and called peaks in the same
manner. We found 73% of the 17 853 Tn5Prime peaks fell
within 25 bp to the nearest of 27 526 CAGE peaks, indi-
cating high concordance between the two approaches (Fig-
ure 2B). Tn5Prime peaks (3746) that were not within 25
bp of a CAGE peak contained far fewer sequencing reads
on average than Tn5Prime peaks within 25 bp of a CAGE
peak. These results indicate that these transcripts might be
expressed at lower levels and show more variance between
the Tn5Prime and CAGE datasets (Figure 2B). Next, we
analyzed our GM12878 data generated using the Smart-
seq2 method in the same way. We found that 7.9% of the
23 451 peaks called based on the Smart-seq2 fell within
TSSs (0–25 bp upstream) (Figure 2C). Further, we found
10.4% of the 23 451 peaks fell within 25 bp to the nearest
CAGE peaks (Figure 2D). This comparison showed that,
in contrast to the Smart-seq2 method it is derived from,
our TN5Prime approach effectively identified putative TSS
sites. Ultimately, this data suggests that our Tn5Prime pro-
tocol is equivalent to the gold standard CAGE technique in
targeting transcription start sites.

Quantifying the transcriptome using Tn5Prime

After validating the ability of Tn5Prime to detect tran-
scription start sites, we next wanted to examine whether
it is capable of transcript quantification. To determine
whether our Tn5Prime method is quantitative we com-
pared GM12878 data generated from four different pro-
tocols: Tn5Prime, Smart-seq2 data generated by our lab,
as well as CAGE and RNA-seq data produced by the En-
cylopedia of DNA Elements (ENCODE) project (Figure
3). We used the Tn5Prime data mentioned in the previ-
ous section and generated the Smart-seq2 data on the same
cell line as described by (1). We performed replicates us-
ing the Tn5Prime protocols to define overall reproducibility
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Figure 1. Tn5Prime Library construction and 5′ capture. (A) Schematic of the Tn5Prime library construction. No enrichment steps are required to generate
a library that captures the 5′ end of transcripts. (B and C) Examples of 5′ end capture by Tn5Prime compared to random fragmentation by Smart-seq2.
Libraries for either technology were generated from 5 ng of GM12878 total RNA and sequenced on an Illumina MiSeq. Individual alignments for the first
(Read1, blue) and second (Read2, red) read of each read pair are shown. Read1 density is shown for both library types as a histogram (blue). Gene models
are shown on top (color indicates transcriptional direction).

and accuracy. Based upon our results, transcript quantifica-
tion by Tn5Prime replicates showed extremely high correla-
tion with a Pearson correlation coefficient of r = 0.97 (95%
C.I. 0.97–0.97). Quantification by Tn5Prime also correlated
very well with Smart-seq2 with a Pearson r of 0.87 (95%
C.I. 0.86–0.87). Tn5Prime and Smart-seq2 data were com-
parable with ENCODE RNA-seq and CAGE data (Fig-
ure 3), indicating that the Tn5Prime protocol is equivalent
to the conventional Smart-seq2 method in measuring tran-
script abundance. Together, these data show that Tn5Prime
can accurately identify transcription start sites and quanti-
tatively measure transcript abundance.

Transcript quantification and transcription start site localiza-
tion in single B cells

As the Tn5Prime protocol is based on the same cDNA
amplification strategy as the Smart-seq2 protocol, we ex-
pected it capable of generating sequencing libraries from
single cells. Indeed, we successfully generated single cell li-
braries using the Tn5Prime protocol from primary murine
B-lymphocytes (B2 cells; IgM+B220+CD5-CD11b-) (n =
12) isolated from the peritoneal cavity. We generated be-
tween 17 534–93 429 2 × 300 bp read pairs per cell using
the Illumina MiSeq of which 62% passed quality filtering.
Of the filtered reads, an average of 91.48% uniquely mapped
to the mouse genome. The high alignment percentage in-
dicates we are able to generate high quality libraries from

single cells using our Tn5Prime. Despite the very low total
number of read pairs we collected, we still detected 339 ex-
pressed genes per cell on average. Although these numbers
may seem low, they are in line with previous published sin-
gle B-cell RNAseq studies (26–28). Also, it is known that
B cells can show transcriptional heterogeneity depending
upon their cell state (29). Among the genes expressed in
many of the single cells were genes corresponding to B-cell
function, including CD19, CD79a and components of the
major histocompatibility complexes (MHCs) (Supplemen-
tary Figure S1). These data indicate that we can efficiently
identify cell type-specific genes.

Analysis of 192 Single CD27high CD38high human B cells

After successfully testing our Tn5Prime method on sin-
gle mouse B cells, we next wanted to develop a multiplex
approach capable of evaluating hundreds of human single
cells. To this end, we FACS sorted 192 single B cells into in-
dividual wells of 96-well plates using the canonical surface
molecules CD19, CD27 and CD38 to sub-select the plas-
mablast subpopulation (Supplementary Figure S2). Plas-
mablasts are one of the most widely studied B-cell popu-
lations and are frequently monitored after vaccination or
infections by flow cytometry. The plasmablast cell compart-
ment is defined by high levels of surface markers CD27 and
CD38, but separation from memory B cells which also ex-
press these markers, albeit at lower levels, can be challeng-
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Figure 2. Tn5Prime peaks are highly concordant with GENCODE annotation and CAGE peaks. Peaks were detected from sequencing reads produced by
Tn5Prime and Smart-seq2 libraries generated from total GM12878 RNA. (A and C) Tn5Prime (A) and Smart-seq2 (C) were matched to features in the
Gencode annotation and the feature they matched are shown as a pie chart. (B and D) Tn5Prime (B) and Smart-seq2 (D) peaks were matched to CAGE
peaks. The green bar on top indicates the peaks within 25 bp and the yellow bar indicates all other peaks. Peaks in each were rank sorted according to their
read coverage and shown as a histogram.

ing. Therefore, analyzing these cell types at the single cell
level should help further delineate these populations.

Our multiplex strategy entails inserting cellular indexes
into the template switch oligo allowing the libraries to
be pooled after reverse transcription. This streamlines our
method and increases our throughput by decreasing the
PCR and Tn5 reactions required. Using our multiplexing
strategy we generated Tn5 libraries for 192 single B cells us-
ing 192 RT reactions, 24 PCR reactions and 24 Tn5 reac-
tions. Although this was not performed, library pools car-
rying distinct Illumina sample indexes could have been fur-
ther pooled following PCR to reduce the numbers of Tn5
reactions from 24 to 2. The entire Tn5Prime library prepa-
ration workflow for hundreds of cells can be completed in 2
days.

We generated 194 553 648 150 bp paired end reads to-
tal. To determine gene expression for each cell, reads were
assigned to one of 192 single cells based on its Illumina in-
dex reads and by comparing the sequence of the first eight
bases of read 1 to the cellular index sequences. About 91%
of the 194 553 648 150 bp paired end reads were successfully
assigned to one of the 192 single B cells. About 90.75% of
cell-assigned reads were successfully aligned to the human
genome using the STAR alignment tool with a median of
74.59% or 505 665 of cell-assigned reads being uniquely as-

signed to an annotated gene. Each cell expressed a median
of 534 genes. We then compared the number of genes de-
tected by Tn5Prime and modified Smart-seq2. To this end,
we sequenced 13 Smart-seq2 B cells libraries to a median
depth of 275 762 reads uniquely aligned to genes. When sub-
sampled to the median Smart-seq2 read depth of 275 000
reads Tn5Prime detected a median 409 genes while Smart-
seq2 detected 910. While detecting less genes than Smart-
seq2, the Tn5Prime method is comparable to other high-
throughput single cell methods like MARS-seq (28) (me-
dian of 671 genes per B cell), 10× Genomics (27) (Median
of 478 genes per B cell) and seq-well (26) (median of 874
genes per B cell).

Overall, of the 58 234 annotated genes in GENCODE,
5414 genes had at least one read per cell on average among
the 192 B cells analyzed with Tn5Prime. The median redun-
dancy for each cell is 13.92 which means that, on average,
each uniquely aligned cDNA fragment was sequenced 13.92
times. This indicates that the libraries were sequenced ex-
haustively.
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Figure 3. Tn5Prime quantifies transcriptomes accurately and reproducibly. Pairwise correlations of gene expression levels as determined by Tn5Prime,
Smartseq2, ENCODE CAGE and ENCODE RNAseq for the GM12878 cell line are shown as scatter plots. Each transcript is shown as a black dot with
an opacity of 5%. Distribution of transcript levels is shown on the outside of the plots in gray histograms.

Detecting transcription start sites in single CD27high

CD38high B cells using Tn5Prime

To determine if transcription start site specificity is main-
tained within the single cell data, read 1 start distribution
was compared to annotated transcription start sites found
in the ENCODE and CAGE datasets. By calling peaks,
we found that our single cell results were able to maintain
transcription start site specificity, with peaks predominantly
falling within the annotated transcription start sites with
92.4% of the peaks falling within TSSs (Figure 4A and B).
In addition to the transcription start site, the directionality
of transcription can be inferred due to our custom template
switch oligo incorporating a forward-read priming site to
the 5′ region of the transcript which is an advantage over
many other single cell RNAseq protocol (Figure 4C and D).

Detecting subpopulations within CD27high CD38high B cells
using Tn5Prime

Since separating memory B cells and plasmablasts by FACS
based on surface markers can be challenging, especially
when the adaptive immune system is unperturbed, we
wanted to see whether we could do so post-sorting using
their gene expression profiles. Cells outside more than three
median absolute deviations from the median for percent
alignment, mitochondrial transcript percentage or num-
ber of detected genes were marked as outliers and elimi-
nated prior to normalization of transcript counts (Supple-
mentary Figure S3). After normalizing raw gene expres-
sion counts and removing non-recombined and therefore
non-applicable antibody gene segments from the annota-
tion (30), we clustered the remaining 159 sorted B cells
using t-SNE dimensional reduction. The clusters were ro-
bust when the data was subsampled to 100 000 reads per
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Figure 4. Transcription start sites are detected in single CD27high CD38high B cells. (A) CD27high CD38high Tn5Prime peaks were matched to features in
the Gencode annotation and the feature they matched are shown as a pie chart. TSS = on or <25 bp behind the start of an annotated GENCODE gene,
5′UTR = inside 5′ prime UTR, Promoter = between 26 and 1000 bp behind start of annotated gene. (B) Tn5 peaks were categorized into two groups. One
group contains all peaks within 25 bp of a peak identified in the complete RIKEN CAGE peak Human peak database and the other group contains all
other peaks. These peaks were sorted by the number of cells associated with that peak in the CD27high CD28high B cell dataset and displayed in Figure 2B,
D. The yellow bar indicates the peaks within 25 bp and the green bar indicates all other peaks. (C and D) Genome browser view of reads of several cells
aligned to Actb (C) and LTB (D) genes. In addition to TSS information, read alignments also show differential isoform usage between cells.

cell (Supplementary Figure S4). We then identified genes
that showed significant differences between the two clus-
ters. We detected 411 genes with significant changes includ-
ing J-chain, LTB (Lymphotoxin Beta), XBP-1 (X-box bind-
ing protein 1), HSPA5 (Heat-shock protein family A) and
MZB1 (Marginal Zone B1). We also found genes HLA-
DRA, HLA-DRB5 and HLA-DPB1 which encode for the
alpha and beta chains of the MHC II to be differentially
expressed (Supplementary Table S2). The J-chain was up-

regulated in cluster 2 and is involved in antibody secretion
of IgM and IgA (31) (Figure 5). XBP-1, MZB1 and HSPA5
were upregulated within cluster 2 and are known targets of
BLIMP-1. BLIMP-1 and XBP-1 are known to be essen-
tial in plasmablast differentiation (Supplementary Figure
S5) (32,33). LTB was downregulated in cluster 2 and has
been shown to be downregulated upon B-cell activation (34)
(Figure 5). HLA-DRA, HLA-DRB5 and HLA-DPB1 were
downregulated in cluster 2, indicating less MHC II presen-
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Figure 5. Clustering of CD27high CD38high B cells. A total of 159 B cells
were divided into two populations by t-SNE dimensionality reduction (15).
In the three subplots, cells are colored based on their expression of example
genes that were significantly differentially expressed between the two pop-
ulations as determined by a multiple hypothesis testing corrected Mann–
Whitney U tests. The cells inside the boxed area belong to cluster 2 and all
other cells belong to cluster 1.

tation to T cells which is indicative of plasma cells and plas-
mablasts (35). Together, this suggests that cluster 2 does rep-
resent activated plasmablasts which are known to secrete
more antibody and display less MHC II than the memory
B cells represented in cluster 1.

Assembly of antibody heavy and light chain sequences from
single B-cell Tn5Prime data

Ideally, we would not only want to identify plasmablasts
based on their gene expression profile, but also determine
their antibody sequences. Sequencing antibodies has been
a long-standing challenge in B-cell biology and antibody
engineering because it requires the identification of unique
pairs of rearranged antibody heavy and light chains for each
cell. Current techniques rely either on the targeted amplifi-
cation and sequencing of antibody heavy and light chain
genes (36) in single cells or on the assembly of their se-
quences from non-targeted RNA-seq data (37). As a result,
our 5′ capturing approach we could potentially provide an-
tibody sequence information in addition to genome wide ex-
pression profiling, because the 5′ region contains the unique
V(D)J rearrangement of heavy and light chain transcripts.

To determine if our Tn5Prime protocol could be used
for assembling antibody heavy and light chain sequences,
we assembled whole transcriptomes using SPAdes (17). Ig-
BLAST (18) was then used to identify transcripts contain-
ing V, D and J gene segments rearranged in a productive
manner. These transcripts were aligned on to constant gene
segments to identify isotype. The list of putative antibod-
ies was then filtered for obvious cross-contamination and
mis-assemblies (see ‘Materials and Methods’ section). In
this way, we effectively determined heavy and light chain
sequences and identify their unique pairings within single B
cells (Figure 6A).

Of the 192 B-cells we analyzed, we were able to assemble
one heavy chain and one light chain to 117 B cells. Of these
117 B-cells 46 cells had a Lambda light chain and 71 cells
had a Kappa light chain. Five additional cells had one heavy
chain and two light chains, 35 cells had no heavy chains but
at least one light chain and 35 cells had no heavy chains
and no light chains. To determine the sequencing depth re-
quirement for successful heavy and light chain assembly,
subsampling was performed on the reads and the assembly

and pairing analysis redone (Supplementary Figure S6). We
found 100 000 reads per cell was sufficient to assemble one
heavy and one light chains for 91 of 117 B cells with suc-
cessfully assembled chain pairs without subsampling.

We found that 101 of the 117 cells with paired heavy and
light chains also passed all other quality filters and were
clustered by t-SNE into the putative plasmablast and mem-
ory B-cell clusters. This combination of single cell identity
and paired antibody sequences allowed us to perform de-
tailed analysis of differences in antibody usage and charac-
teristics between those two populations. Firstly, the putative
plasmablast population featured less IgM antibodies than
the memory B-cell population (19% IgM in plasmablasts
versus 53% in memory B cells). Second, using IgBlast (18),
we found that both heavy (Figure 6B) and light chain se-
quences showed significantly higher levels of somatic hy-
permutation in plasmablasts than memory B cells (Heavy
chain: median 8.0 versus 3.8% somatic hypermutation, two-
sided Monte Carlo permutation test P-value = 0.0081; light
chain: median 4.9 versus 2.7% somatic hypermutation, two-
sided Monte Carlo permutation test P-value = 0.0117).
Third, by counting and normalizing sequencing reads orig-
inating from antibody transcripts, we could determine and
compare heavy and light chain expression in these two pop-
ulations. Generally, light chains were expressed about 3-
fold higher than heavy chains (Figure 6C) with no signif-
icant difference between plasmablasts and memory B cells
(two-sided Monte Carlo permutation test P-value = 0.533).
However, the percentage of all aligned sequencing reads
that originated from antibody transcripts showed dramatic
differences between plasmablasts and memory B cells. The
median percentage of reads that originated from antibody
transcripts was 23.5% in plasmablasts and only 2.2% in
memory B cells (Figure 6D) (Monte Carlo Permutation test
two-sided P-value = 0). In one plasmablast over 60% of
all aligned sequencing reads originated from antibody tran-
scripts indicating just how much of the plasmablast tran-
scriptome can be dedicated to the production and secretion
of antibodies. In summary, our analysis of antibody usage
and characteristics showed that plasmablasts express more
mutated and class-switched antibodies at much higher levels
than memory B cells.

DISCUSSION

Here we present a novel method for the genome-wide iden-
tification of transcription start sites in bulk samples and sin-
gle cells. The method combines aspects of Smart-seq2 and
STRT. By modifying TSOs used during reverse transcrip-
tion to carry one sequencing adapter and loading the other
sequencing adapter on the Tn5 enzyme used for cDNA frag-
mentation we anchor the sequence priming sites for read 1
of an Illumina read pair to the 5′ end of transcripts without
the need for fragmentation, ligation and enrichment steps.
The resulting workflow is easy to implement and capable
of generating hundreds of libraries within a day. An impor-
tant feature of our Tn5Prime method is the option to inte-
grate cellular indexes during reverse transcription and Illu-
mina sample indexes during PCR before Tn5 tagmentation.
This allows the pooling of samples early in the workflow and
thereby reduces experiment complexity and reagent costs.
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Figure 6. Assembling antibody transcripts from Tn5Prime data. Antibody transcripts were assembled by generating complete assembled transcriptomes
for each cell with SPADES and then using IGBLAST to search for transcripts with antibody features. (A) Antibody transcripts for each cell were filtered
for mis-assemblies and mis-annotations. Cells were sorted by the abundance of heavy chain transcripts in their Tn5Prime data and V(,D,) and J segment
information for their heavy and light chains are shown in the schematic in the center. The putative cell type determined by clustering with t-SNE is indicated
on the left. Yellow: plasmablasts, Green: Memory B cells. (B–D) Antibody usage and characteristics were compared between plasmablasts and memory B
cells. Somatic Hypermutation rates (B), light to heavy chain expression ratios (C) and the percentage of all aligned sequencing reads that originated from
antibody transcripts (D) were compared using dotplots. Yellow: plasmablasts, Green: Memory B cells. Medians are shown as red lines. All P-values are
calculated using two-sided Monte Carlo permutation test with 10 000 permutations.

We validated the Tn5Prime protocol on both bulk RNA
and single cells. First, using 5 ng of total RNA from the
GM12878 cell line, we yielded similar results as the EN-
CODE CAGE data with respect to the identification of
transcripts start sites. However, the CAGE protocol used by
the ENCODE consortium used several order of magnitude
more RNA. As the Smart-seq2 protocol is already widely
used, we expect that the Tn5Prime assay with its similar
workflow and low RNA input has the potential to become
a valuable tool for transcriptome annotation and quantifi-
cation in the RNA-seq toolbox.

In addition to the analysis of bulk samples, we show that
our Tn5Prime method can be utilized for interrogating sin-
gle cells, both human and mouse. The TSO-based multi-
plexing approach we implemented makes it possible to ef-
ficiently analyze thousands of cells, thereby increasing the
throughput of plate based RNAseq library protocols in a
manner that is straightforward and economical. While the
Tn5Prime approach detects less genes than the Smart-seq2

approach it is based on, this could be improved in the future
by increasing the amount of cDNA pooled for amplification
(currently only ∼50% of cDNA is used) as well as by using
Locked Nucleic Acids (LNA) bases in the Tn5Prime TSOs
(1), although the latter approach might affect 5′ specificity
(38).

Our Tn5Prime approach interrogates the 5′ ends of tran-
scripts, thereby capturing the unique sequence information
of adaptive immune system receptors expressed on B and
T cells. These receptors are often hard to assemble due to
their unique genomic rearrangement. Our data shows that
by limiting sequencing reads to the 5′ end of transcripts
we can analyze both transcriptomes as well as paired an-
tibody heavy and light sequences with the low sequencing
coverage of ∼100 000 reads per cell, thereby enabling the
analysis of thousands of B cells in a single sequencing run.
This approach should, without any modification, also be
applicable to T cells to map re-arrangement of the T-cell
receptors. This can provide novel insights into the compo-
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sition of B- and T-cell malignancies as well as the state and
composition of the adaptive immune system with regards to
solid tumors. This sets Tn5Prime apart from general pur-
pose high-throughput single cell library preparation meth-
ods like drop-seq, seq-well and 10× Genomics which tar-
get the 3′ end of the transcripts making them incapable of
interrogating antibody sequences. We are looking forward
to published data on the recently released 10× Genomics
Single Cell V(D)J platform which should be able to, like
Tn5Prime, investigate V(D)J expression and gene expres-
sion in parallel. Determining per cell library preparation
cost, required sequencing depth and cell capture rate will
help establish ideal use-cases for either Tn5Prime or 10×
methods.

To highlight the power of our Tn5Prime approach we iso-
lated 192 single human B cells from PBMCs using canon-
ical plasmablast markers. Not only were we able to assem-
ble paired antibody transcripts, but we succeeded in clus-
tering the cells into two populations based on their gene ex-
pression profiles. The genes differentially expressed between
those clustered suggested their putative cell types. Cells in
the putative plasmablast cluster expressed more XBP-1, J-
chain, HSPA5 and MZB1, which are all involved in either B-
cell activation or antibody production and secretion. Con-
sistent with less antigen presentation, cells in the putative
plasmablast cluster also expressed less MHC II transcripts
including HLA-DRA, HLA-DRB5 and HLA-DPB1. Fi-
nally, MS4A1 (CD20) is also expressed less in the cells of the
putative plasmablast cluster and is known to be downreg-
ulated in activated B cells. Overall, this clearly established
that we could distinguish activated, antibody secreting plas-
mablasts from resting, antigen presenting memory B-cells;
cell-types which are difficult to distinguish using conven-
tional FACS analysis.

In addition to cell-types, we showed that Tn5Prime can
be used to determine individual B cells’ paired antibody se-
quences. Together, these data allowed us to compare an-
tibody usage in plasmablasts and memory B cells, show-
ing that plasmablast expressed higher levels of more mu-
tated and class-switched antibodies. In addition to provid-
ing functional insight into cell populations, this information
will make it possible to make informed decisions as to which
antibody sequences could be further cloned and tested func-
tionally for clinical, diagnostic, and research applications.

In summary, Tn5Prime is an RNAseq library construc-
tion protocol with a streamlined workflow that surpasses
the economy and throughput of other plate-based proto-
cols. While not reaching the throughput of droplet- and
microwell-based protocols, it generates high quality data
that enables the identification of transcription start sites and
could be useful for analyzing 5′ UTR features or help im-
prove incomplete genome annotations. Finally, Tn5Prime
presents the currently highest throughput library prepara-
tion method that does not require proprietary instrumenta-
tion to comprehensively analyze the individual cells of the
adaptive immune system by determining both paired adap-
tive immune receptor sequences and gene expression pro-
files.

DATA AVAILABILITY

A UCSC genome browser track is available
at https://genome.ucsc.edu/cgi-bin/hgTracks?
hgS doOtherUser=submit&hgS otherUserName=
chkcole&hgS otherUserSessionName=
TN5 Prime Alignments

The Tn5Prime/Smart-seq2, and CAGE Peak Caller and
peak distance calculator are available at https://github.com/
chkcole/Peak-Calling. All other scripts are available upon
request.

Raw data have been uploaded to the Sequence Read
Archive (SRA). Bioproject accession for the SRA are
as follows: PRJNA320873 (GM12878 Smart-seq2 and
Tn5Prime), PRJNA320902 (Mouse B2 Cells), and PR-
JNA415475 (Human CD27high CD38high Tn5Prime) and
PRJNA433736 (Human B cells Smart-seq2).
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