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Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous

disease with high morbidity and mortality, which accounts for the fourth

most common cause of cancer-related deaths. Reports suggest that the

neurotransmitter receptor-related genes (NRGs) may influence the tumor

microenvironment and the prognosis of patients with HCC.

Methods: The clinical information and RNA-seq data of patients with HCCwere

acquired from the ICGC-LIRI-JP dataset and the TCGA-LIHC dataset. Effects of

115 NRGs on the prognosis of HCC patients were analyzed in the ICGC-LIRI-JP

dataset. The least absolute shrinkage and selection operator (LASSO) regression

model was utilized to generate a risk score formula based on the critical NRGs.

Next, the risk score effectiveness was validated both in the TCGA-LIHC dataset

and in our clinical HCC samples. Based on the risk scores, patients with HCC

were divided into two groups. Moreover, differentially expressed genes (DEGs)

were screened. The gene ontology (GO) was used to analyze the functional

enrichments of DEGs and to identify potential signaling pathways. To test the

diagnostic effectiveness of our model, the receiver operator characteristic

curve (ROC) analysis and nomogram were used. Finally, potential targeted

drug prediction was performed based on DEGs of nine clinical HCC samples.
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Results: Nine NRGs were correlated significantly with the prognosis of patients

with HCC, and eight NRGs were successfully included in the LASSO regression

model. The Kaplan-Meier analysis of overall survival (OS) suggested that

patients in the high-risk score group had worse prognosis; on the other

hand, ROC analysis revealed a high prognostic value of the risk score in

HCC. Several critical signaling pathways, such as lipid metabolism, organic

acid metabolism, cell migration, cell adhesion, and immune response, were

enriched both in public datasets and clinical samples. Nomogram results also

suggested that the risk scores correlated well with the patients’ prognosis.

Potential targeted drugs prediction revealed that tubulin inhibitors might be the

promising drugs for patients with HCC who have high risk scores based on

the NRGs.

Conclusion: We established a prognostic model based on critical NRGs. NRGs

show a promising prognostic prediction value in HCC and are potential

therapeutic targets for the disease treatment.

KEYWORDS

neurotransmitter receptor, hepatocellular carcinoma, LASSO model, bioinformatic
analysis, TCGA

Introduction

Cancer is still the leading cause of death worldwide (Bray

et al., 2021). The Global Cancer Incidence, Mortality, and

Prevalence (GLOBOCAN) 2020 estimated that there were

19,292,789 cancer cases and 9,958,133 cancer deaths in

2020 globally (Sung et al., 2021; Xia et al., 2022).

Hepatocellular carcinoma (HCC) is one of the most common

cancers worldwide among all types of cancers and is especially

prevalent in Southeast Asia (Llovet et al., 2016; European

Association for the Study of the Liver, 2018). According to

related reports (Xiao et al., 2019; Sarin et al., 2020; Xia et al.,

2022), HCC is the third and second leading cause of death among

all cancers in the world and China, respectively. In 2020, China

contributed more than 45% of new cases and deaths from HCC.

Additionally, the high heterogeneity and lack of biomarkers for

prognosis prediction make it more challengeable for a HCC

treatment (Qing et al., 2021).

To date, the main treatments considered for HCC are

surgical resection, liver transplantation, and local ablation.

However, the HCC recurrence and metastasis rate after

treatments remains high, which greatly affects the prognosis

of patients with HCC (2018). Studies have shown that the

five-year survival for localized HCC is about 32%, while it

drops drastically to 2% for patients with distant metastasis

(Siegel et al., 2022). As a result, high recurrence rate and low

survival rate remain amajor unmet medical need. New targets for

HCC individual therapy and early warning are of high

significance and clinical value for improving outcomes.

Neurotransmitters are chemicals that help signals travel from

one cell to another, which plays a key role in tumor

microenvironment ecology. According to different chemical

structures and properties, neurotransmitters are separated into

four major types as follows: 1) acetylcholine (ACh); 2) amino

acids, including glutamate, glycine, and gamma-aminobutyric

acid (GABA); 3) biogenic amines, that consists of dopamine,

norepinephrine (NE), epinephrine (E), and serotonin; and 4)

neuropeptides, including but not limited to neuropeptide Y

(NPY), neurotensin, and many others (Jiang et al., 2020a). As

important neural signaling messengers, studies have suggested

that neurotransmitters and their receptors contribute to tumor

proliferation, tumor angiogenesis, and tumor metastasis (Boilly

et al., 2017; Monje et al., 2020) through multiple mechanisms.

Neurotransmitter receptors are varied andmainly consist of eight

categories as follows: glutamatergic receptors, glycinergic

receptors, dopaminergic receptors, histaminergic receptors,

adrenergic receptors, 5-HT receptors, GABAergic receptors,

and acetylcholinergic receptors. Cancer cells could not only

produce and secrete neurotransmitters but also

neurotransmitter receptors that are widely expressed in cancer

cells (Jiang et al., 2020a; Zahalka and Frenette, 2020).

Additionally, neurotransmitter receptors are also widely

expressed on the immune cells’ surface and are regulated by

their corresponding neurotransmitters, thus affecting tumor

immune responses (Jiang et al., 2020b; Cervantes-Villagrana

et al., 2020).

A complex role of neurotransmitter receptors in HCC has

been indicated in the literature. Take the dopamine receptor as an

example, Zhang et al. (2016) reported that moderate intensity

swimming that produces dopamine significantly inhibits the

HCC cells’ invasion both in vitro and in vivo. However, other

studies have shown that patients with high dopamine receptor 1

(DRD1) expression have a worse prognosis, while dopamine and

its receptor can promote tumor progression by PI3K/AKT
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signaling pathway activation (Yan et al., 2020). In addition, an

increasing number of studies have focused on exploring

interactions between adrenergic receptors and HCC

progression (Wu et al., 2016; Hong et al., 2021). A study by

Liu et al. (2021) showed that environmental stress could induce

anti-tumor immunity and could sensitize immunotherapy

against HCC by modulating β-adrenergic receptors/CCL2 axis.

Nevertheless, Wu et al. reported that β2-adrenergic receptors

promoted HCC progression and sorafenib resistance by

inhibiting the autophagic degradation of hypoxia-inducible

factor-1α (HIF-1α). Therefore, controversies remain, and more

comprehensive analyses are needed.

Herein, we systematically analyzed the impact of

115 neurotransmitter receptor-related genes (NRGs) within

eight categories through the two public HCC datasets and

one clinical HCC cohort. Furthermore, we identified eight

critical NRGs that significantly influence the overall survival

(OS) of patients with HCC.We constructed a LASSO regression

model to predict the prognosis of patients with HCC, utilizing

the eight critical NRGs. The results demonstrated that NRG

expression levels could effectively predict the HCC malignant

degree through our model. Moreover, we also identified several

potential signaling pathways that may be involved in HCC

development. Together, this study suggests NRG dysfunction

may be a potential target for HCC treatment.

Methods

Data acquisition from the ICGC-LIRI-JP
dataset and the cancer genome atlas-liver
hepatocellular carcinoma dataset

The total transcriptome sequencing (RNA-seq) data and

clinical information of patients with HCC were acquired and

downloaded from the International Cancer Genome Consortium

(ICGC) portal (https://dcc.icgc.org/projects/LIRI-JP) and The

Cancer Genome Atlas Liver Hepatocellular Carcinoma

(TCGA-LIHC) dataset (https://tcga-data.nci.nih.gov/tcga/),

respectively. Furthermore, the 115-NRGs list was obtained

from the National Center for Biotechnology Information,

United States National Library of Medicine (https://www.ncbi.

nlm.nih.gov/gene/).

Establishment of the prognostic model
based on neurotransmitter receptor-
related genes

The univariate cox analysis was used to screen the NRGs

for prognostic value. The cut-off p-value was set at 0.05, and

the selected survival-related genes were used for further study.

Next, we utilized a LASSO regression model (Alhamzawi and

Ali, 2018) for predicting the prognosis of patients with HCC,

using the “glmnet” R package and integrating survival time,

survival status, and gene expression data. Then, we used the

10-fold cross-validation method to obtain the most optimized

model. Finally, eight critical NRGs were included in the

LASSO regression model, and the minimum criteria

determined the penalty parameter (λ). The risk score was

calculated using the formula: risk score = (gene A expression ×

a) + (gene B expression × b) . . . + (gene N expression × n).

Then, a, b, and n represented the regression coefficients. Based

on the risk score median, patients with HCC were divided into

the high-risk group and the low-risk group.

Validation of the prognostic model based
on neurotransmitter receptor-related
genes

To validate the model’s effectiveness, the survival analysis

between two risk groups was carried out using the “survminer”

R package and the log-rank t test. Next, we used the “pROC” R

package to analyze the time-dependent ROC based on survival

time, survival status, and risk score of patients with HCC. In

the meantime, we analyzed the relationship between different

risk scores and follow-up time, the survival status, and the

changes in eight critical gene expressions. The results were

presented by using online bioinformatic analysis tools such as

Sangerbox 3.0 (http://vip.sangerbox.com/home.html).

The ICGC-LIRI-JP dataset was regarded as the internal

validation cohort, and the TCGA-LIHC dataset was regarded

as the external validation cohort to validate the accuracy and

availability of our model. Finally, a clinical trial was carried out in

our center, and the obtained HCC samples (clinical cohort) were

used for further validation.

Principal component analysis and
t-distributed stochastic neighbor
embedding analysis

The PCA and t-SNE analysis were performed by using “Stats”

and “Rtsne” R packages, respectively, to visualize the sample

distribution between the high-risk group and the low-risk

group. The results were then presented by using the “ggplot2”

R package and the website iDEP.95 (http://bioinformatics.

sdstate.edu/idep/) (Ge et al., 2018).

Differentially expressed genes screening
and distributions

The DEGs screening was performed by using the “limma”

R package. Briefly, we first carried out a multiple linear
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regression by using the function “lmFit” and then computed

the moderated t-statistics, moderated F-statistics, and log-

odds of differential expression by empirical Bayes moderation

of the standard errors towards a common value. The DEGs

were screened by the threshold p value < 0.05, FDR < 0.05 and

fold change > 1.5 for the ICGC-LIRI-JP and TCGA-LIHC

datasets, while p value < 0.05 and fold change > 1.5 for the

clinical cohort.

To visualize the distribution of DEGs, the map and

clusters of DEGs were created using the dimension

reduction algorithm t-SNE, and this was created by the

website iDEP.95 (http://bioinformatics.sdstate.edu/idep/). In

the meantime, the top 20 upregulated and downregulated

DEGs heat maps were presented using the “ggplot2” R

package.

Functional enrichment analysis

To understand the potential mechanisms and signal

pathways which DEGs participated in, the gene ontology

(GO) enrichment analyses and circle plots were performed

using the “clusterProfiler” R package (Mi et al., 2019). The

minimum number and maximum number of genes in the

cluster were 5 and 5,000, respectively. The significantly

different GO terms and signal pathways were defined as the

threshold p value < 0.05 and FDR < 0.1. The results were

visualized by using the “ggplot2” R package.

Constructing protein-protein interaction
networks of differentially expressed genes

To understand the potential relationships of DEGs in

protein level, the authors constructed a PPI network using

the Search Tool for the Retrieval of Interacting Genes

(STRING) online database (http://version10.string-db.org/)

(Szklarczyk et al., 2015). The interactions with an

interaction score <0.9 and the genes that had no direct/

indirect interactions with ADRB2 would be hidden.

Establishment of a prognostic nomogram
for hepatocellular carcinoma

By integrating risk score, age, sex, race, and TNM stage

into the Cox regression model, we evaluated the significance of

these factors in predicting the OS of patients with HCC in the

TCGA-LIHC dataset. Also, a novel prognostic nomogram was

developed to offer a reliable and quantifiable method for

predicting patients with HCC survival. The results were

presented by using online bioinformatic analysis tools like

Sangerbox 3.0 (http://vip.sangerbox.com/home.html).

Potential targeted drugs prediction and
interactions between chemicals and
genes

The connectivity map database (CMAP; https://clue.io/, data

version: 1.1.1.2) was used to explore the potential targeted drugs

for HCC treatments, which had a high-risk score based on the

prognostic model. As a collection of genome-wide transcriptional

expression data from cultured human cells treated with bioactive

small molecules, the CMAP database can assist researchers in

discovering the functional connections between genes, drugs, and

diseases through the transitory feature of common gene-

expression changes. We could acquire the candidate drugs

which resulted in opposite gene changes in HCC by inputting

upregulated genes of DEGs and downregulated genes of DEGs

into the CMAP. The top six potential drugs in HCC cell lines

were listed (ranked by the correlation score).

To further explore the interactions between the candidate

drugs and genes, the STITCH (version 5.0) database was used,

and the correlated genes were shown in the network (http://

stitch.embl.de/) (Szklarczyk et al., 2016).

Hepatocellular carcinoma patients
recruitment and clinical hepatocellular
carcinoma samples collection

This was a prospective observational study. The study

complied with the Helsinki Declaration and the Consolidated

Standards of Reporting Trials (CONSORT) statement, and this

was approved by the Renji Hospital Ethics Committee (KY2020-

185). The written informed consents were obtained from all

patients or authorized family members. The inclusion criteria

were as follows: 1) age ≥ 18, 2) primary HCC, and 3) received

HCC excision surgery. The patients were excluded if they 1)

suffered from multiple metastases, 2) combined with other type

of cancers, or 3) the clinical data were missing. Patients with

HCCwhomet the criteria were recruited, and HCC samples were

collected in the operation room immediately and stored in −80°C

refrigerator. All samples of HCC were confirmed by the

pathological diagnosis after surgery.

RNA-seq of clinical hepatocellular
carcinoma samples

The HCC samples were sent for RNA-seq to explore expression

of NRGs and functional enrichment. The HCC tissue (2 cm × 2 cm)

was immediately put into liquid nitrogen for preservation after

excision from the patients. Then, the HCC tissue was ground and

lysed in TRIzol reagent (Invitrogen, United States ), and the total

RNA was extracted for mRNA sequencing. Concentrations and

RNA integrity were verified before the library preparation. Library
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preparation and sequencing were performed by the Biomarker

Technologies Corporation, Beijing, China. Sequencing was

performed on a HiSeq2500 instrument (Illumina, United States )

with 150 bp paired-end reads. By calculating risk scores, patients

were separated into the high-risk group and the low-risk

group. Sequentially, DEGs and functions enrichment were

proceeded.

Statistical analysis

Statistical analyses were completed using IBM SPSS Statistics

23.0 (SPSS Inc., Armonk, NY, United States). Quantitative data

are presented as the mean ± SD, and categorical variables are

presented as frequency (n) or proportion (%). Differences

between the two groups were analyzed with an independent

samples/paired Student’s t-test. Categorical variables were

compared using the χ2 test with the Yates correction or

Fisher’s exact test. Survival curves were created using

Kaplan–Meier survival analysis with a log-rank t-test. All the

statistical tests were two sided with p values < 0.05 being

considered statistically significant.

Results

The design flow chart and validation process of this study are

presented in Figure 1. The full names of the 115 NRGs were

provided in the Supplementary Table S1.

Construction of the prognosis model
based on neurotransmitter receptor-
related genes in the ICGC-LIRI-JP dataset

As shown in Figure 1, 203 patients with HCC were identified

from the ICGC-LIRI-JP dataset, and they were used as the internal

validation cohort. By performing the univariable Cox survival

FIGURE 1
Design flow chart and validation process of prognosis model construction.
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analysis of 115 NRGs in the ICGC-LIRI-JP dataset, nine critical

genes (CHRNA3, GABRR2, GRM2, CHRNG, GRIA2, GRM6,

GRIN2B, ADRA2C, and GRID2), which were significantly

correlated with the OS of the patients with HCC, were identified

(Figure 2A). Next, these genes were included in the LASSO

regression analysis to establish the prognostic model by

integrating survival time, survival status, and gene expression

data. Finally, 8 genes were successfully included into the model,

and the risk score formula is as follows: risk score = 1.389 ×

CHRNA3 + 1.065 × GABRR2 + 0.560 × GRM2 + 1.683 ×

CHRNG + 0.400 × GRIA2 + 1.608 × GRM6–0.606 × GRIN2B

+ 0.006 × ADRA2C (Figures 2B,C). Every patient got a risk score by

integrating the expression level of each gene into the formula. The

results in Figure 2D showed that patients with higher risk scores

displayed more deaths or shorter survival years. Furthermore, the

heat map analysis also indicated that patients with high-risk score

had generally high expression levels of the eight critically predictive

NRGs, except GRIN2B (Figure 2D). Moreover, the survival curve

was consistent with the heat map analysis by showing that patients

with higher risk score had a worse OS (p < 0.001, HR = 3.15,

Figure 2E). The subsequent ROC analysis suggested that this risk

score model could effectively predict patients with HCC survival,

with the area under the curve (AUC) of a 4-year survival reaching to

0.81 (Figure 2F).

FIGURE 2
Prognosis construction model based on the neurotransmitter receptor-related genes in the ICGC-LIRI-JP dataset. (A) Univariable cox survival
analysis of the 115 neurotransmitter receptor-related genes, and nine genes were significantly correlated with the prognosis of patients with HCC.
(B,C) LASSO regressionmodel construction based on the nine predictive genes in the ICGC-LIRI-JP dataset, and 8 genes were successfully included
in the model. (D) Distribution of the risk scores, survival status, and expression of the eight critically predictive genes. (E) The Kaplan–Meier
analysis of overall survival in the high-risk scores group and low-risk scores group. (F) The ROC analysis to evaluate the predictive of risk scores
efficiency. CI, confidence interval; HCC, hepatocellular carcinoma; ROC, receiver operator characteristic.
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Differentially expressed genes validations
and potential pathways enrichments in the
ICGC-LIRI-JP dataset

The 203 patients from the ICGC-LIRI-JP dataset were then

divided into two groups based on the median of all their risk scores.

Furthermore, the DEGs were screened. As shown in Figure 3A;

Supplementary Table S2, 412 downregulated DEGs and

290 upregulated DEGs were identified. In addition, the heat map

of the top 20 upregulated and downregulatedDEGs between the two

groups is shown in Figure 3B. Next, by visualizing the DEGs into the

different clusters (Figure 3C), it suggested that the DEGs were

mainly involved in the immune system process, lipid metabolic

process, organic acid metabolic process, oxoacid metabolic process,

etc. Subsequently, GO pathway enrichment was performed for

upregulated and downregulated DEGs, respectively. The results

revealed that metabolic processes, especially organic acid and

lipid metabolic processes, cell motility, and leukocyte activation,

were enriched (Figures 3D,E; Supplementary Figure S1).

External validations and potential
pathways enrichments in the cancer
genome atlas-liver hepatocellular
carcinoma dataset

The TCGA-LIHC dataset was used for the external

validation to validate the risk score model’s effectiveness.

Three hundred forty seven patients with HCC were

identified from the TCGA-LIHC dataset, and each of them

FIGURE 3
DEGs validation and potential pathway enrichments in the ICGC-LIRI-JP dataset. (A) Volcano plot of DEGs. (B) DEGs heat map between two
groups. (C) Map and clusters of DEGs using t-SNE. (D,E) Top 10 enriched GO-BPs and circle plots for DEGs in the ICGC-LIRI-JP datasets. DEGs,
differentially expressed genes; t-SNE, t-Distributed Stochastic Neighbor Embedding; GO, gene ontology; BP, biological process.

Frontiers in Cell and Developmental Biology frontiersin.org07

Wang et al. 10.3389/fcell.2022.887076

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.887076


got a score calculated with the risk score formula. They were

then separated into two groups based on the median of all

their risk scores. As shown in Figures 4A,B, patients from the

high-risk score group had a worse prognosis compared to

those from the low-risk score group (p < 0.001, HR = 1.61).

Additionally, the prognostic model exhibited a promising

FIGURE 4
DEGs validation and potential pathway enrichments in the TCGA-LIHC dataset. (A)Distribution of the risk scores, survival status, and expression
of the eight critically predictive genes. (B) The Kaplan–Meier analysis of overall survival in the high-risk scores group and low-risk scores group. (C)
The ROC analysis to evaluate the predictive efficiency of risk scores. (D) Volcano plot of DEGs. (E) Heat map of DEGs between two groups. (F) Map
and clusters of DEGs using t-SNE. (G,H) Top 10 enriched GO-BP and circle plots for DEGs in the TCGA-LIHC datasets. DEGs, differentially
expressed genes; t-SNE, t-Distributed Stochastic Neighbor Embedding; GO, gene ontology; BP, biological process. ROC, receiver operator
characteristic.
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FIGURE 5
DEGs validation and potential pathway enrichments both in the TCGA-LIHC dataset and the ICGC-LIRI-JP dataset. (A) Venn diagram was
constructed to showDEGs both in the TCGA-LIHC dataset and the ICGC-LIRI-JP dataset. (B) PPI construction of DEGs both in two datasets. (C) Top
10 enriched GO-BP and circle plots for mutual DEGs. (D,E) Top 10 enriched GO-CC and GO-MF for mutual DEGs. DEGs, differentially expressed
genes; GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function; PPI, protein-protein interaction.
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predictive capability, and the AUC of a 6 months survival

reached to 0.74 (Figure 4C).

A volcano plot of DEGs showed that 2,320 genes were

downregulated and 445 genes were upregulated between the

two groups (Figure 4D; Supplementary Table S3). Moreover,

the heat map of the top 20 upregulated and downregulated DEGs,

respectively, was shown in Figure 4E. DEGs visualization and GO

enrichment analysis revealed that similar pathways were

enriched compared to the ICGC-LIRI-JP dataset (Figures

4F–H and Supplementary Figure S2), indicating that NRGs

might play key roles in acid substances and lipid metabolic

processes, cell adhesion, and migration in HCC.

Mutual differentially expressed genes
validation and pathways enrichment

A total of 447 mutual DEGs which were both in the ICGC-

LIRI-JP dataset and the TCGA-LIHC dataset were screened

(Figure 5A). The PPI network revealed that complex

connections among mutual DEGs, with some critical proteins

accounting for tumor progression [i.e., Src, matrix

metalloproteinase (MMP) family, and chemokine family], are

being identified (Figure 5B) (Kim et al., 2009; Kessenbrock et al.,

2010). GO enrichment analysis also suggested that mutual DEGs

mainly participate in acid substance and lipid metabolic

processes, which is consistent with the above results in

Figures 3, 4 (Figures 5C–E).

Risk score model validation, differentially
expressed genes screen and potential
pathways enrichments in the clinical
cohort

We performed a clinical trial to further validate the model’s

effectiveness. From April 2021 to May 2021, nine patients with

HCC who met the criteria were recruited, and the collected HCC

samples were sent for RNA-seq. The dataset for RNA-seq was

supplied as the Supplementary Material. By calculating the risk

score, patients were separated into two groups. The clinical

characteristics of these patients are shown in Table 1 and

Figure 6A. Patients in the high-risk score group exhibited

more advanced tumor stage and Child-Pugh stage, larger

tumor size, more vascular invasion, and portal vein tumor

thrombus (PVTT). PCA and t-SNE analyses also suggested

that the gene distribution pattern was significantly different in

patients of the two groups (Figure 6B). Nine hundred fifteen

DEGs were identified between the two groups and were shown in

the volcano plot (Figure 6C; Supplementary Table S4).

Furthermore, the heat map of the top 20 upregulated and

downregulated DEGs was shown in Figure 6D, respectively. In

signaling pathway prediction, top-enriched GO pathways were

mainly involved in the cellular metabolic process, response to

stress, and immune-related processes, which were consistent

with the results both in the ICGC-LIRI-JP dataset and the

TCGA-LIHC dataset. Organelle organization, DNA-related

pathways, and glycolipid metabolic processes were enriched as

well (Figures 6E,F). These results support the above hypothesis

that NRGs may play critical roles in cellular metabolic processes

(especially organic acid, inorganic acid, and lipid metabolism)

and in immune response in HCC.

The PPI network was constructed to show the relationship of

DEGs. As shown in Supplementary Figure S3, several critical

proteins in tumor development and progression, such as PTEN,

MAPK8, CUL1, and RAC3, were enriched.

Nomogram construction and potential
targeted drugs prediction for
hepatocellular carcinoma

By integrating risk score, age, sex, race, and TNM stage, we

developed a novel prognostic nomogram to establish a reliable

and quantifiable method for predicting patients with HCC

survival. According to Figure 7A, risk score and TNM stage

significantly affected the OS of patients with HCC (both p <
0.05). In addition, the calibration plots of the nomogram also

suggested a reliable prediction effect based on the model

(Figure 7B).

Potential targeted drugs for HCC treatment were predicted

by using the CMAP dataset. The DEGs of the clinical HCC

samples were put into the dataset, and the top six candidate drugs

which could reverse changes in DEGs were shown in Table 2.

Interestingly, all six candidate drugs were tubulin inhibitors, and

studies have revealed the importance of tubulin in tumor

progression (Gudimchuk and McIntosh, 2021). Two of them

were benzimidazole-related, which were mainly used for worm

infections. Others were vinca-alkaloid-related, which has been

widely used for tumor treatment (Jordan and Wilson, 2004). In

addition, interactions between the top 6 drug candidates and

proteins were presented in Figure 8. These results suggest that

benzimidazole-related drugs and vinca-alkaloid-related drugs

may be potential targeted drugs for patients with HCC with

high-risk scores.

Discussion

The nervous system-cancer crosstalk has emerged as a novel

and crucial cancer progression facilitator with the recent

increasing attention to the indispensable roles of systemic

regulation and tumor (Jiang et al., 2020a; Zahalka and

Frenette, 2020; Huang et al., 2022). Studies have revealed that

the nervous system regulates development, metastasis, tumor

microenvironment, and vascular formation of tumors (Jiang

Frontiers in Cell and Developmental Biology frontiersin.org10

Wang et al. 10.3389/fcell.2022.887076

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.887076


et al., 2020b; Zahalka and Frenette, 2020). However, as an

emerging area of cancer science, the interactions and crosstalk

between the nervous system and cancer remain to be explored.

As a key component of the nervous system,

neurotransmitters and neurotransmitter receptors participate

in the information transmission between neurons and other

types of cells, including tumor cells (Jiang et al., 2020a; Hodo

et al., 2020; Gysler and Drapkin, 2021). Reports also suggest that

neurotransmitter receptors are widely expressed in cancer cells

and contribute to tumor proliferation, tumor angiogenesis,

metastasis, and tumor microenvironment regulation, including

HCC (Jiang et al., 2020a; Hodo et al., 2020). Nevertheless, the

comprehensive effects of the different types of neurotransmitter

receptors on HCC progression were still unclear. Therefore, we

constructed a novel prognostic model based on 115 NRGs and

explored potential mechanisms that NRGs may be involved in. In

our study, we systematically analyzed the effects of NRGs on the

prognosis of patients with HCC. Furthermore, eight critical genes

were selected for model construction. Next, we further verified

the model’s effectiveness in internal validation, external

validation, and clinical validation. The survival analysis

revealed that patients with a high-risk score generally had a

worse prognosis. All validations showed good consistency and

availability, which indicated that our prognostic model was

practical.

The DEGs were screened by dividing patients into two

groups based on risk score. Functional enrichments suggest

that NRGs may play critical roles in cellular metabolic

processes (especially organic acid, inorganic acid, and lipid

metabolism), immune response, and cell motility. Studies have

also validated the lipid metabolism’s prominent status in cancer

progression. Approaches to target dysfunctional lipid

metabolism show prospects (Bian et al., 2021). Recent studies

also have mentioned the regulation among NRGs, immune

response, and cellular metabolism (Jensen et al., 2021;

Mohammadpour et al., 2021; Wan et al., 2021). Apart from

TABLE 1 Clinical characteristics of HCC patients between two groups divided by risk score.

Low-risk score group (n = 6) High-risk score group (n = 3) p value

Risk score 0.1 (0.0) 0.8 (0.1) 0.00

Gender (male/female) 6/0 3/0 1.00

Age (year) 52.3 (5.5) 58.3 (4.1) 0.50

Height (cm) 172.5 (1.7) 169.3 (4.7) 0.45

Weight (kg) 70.5 (3.1) 70.2 (5.1) 0.95

ASA stage (I/II) 3/3 0/3 0.46

Child-Pugh stage (I/II) 6/0 0/3 0.01

TNM stage (I/III) 4/2 0/3 0.17

Hypertension (Yes/No) 4/2 3/0 0.50

Hepatitis (Yes/No) 6/0 3/0 1.00

Cirrhosis (Yes/No) 6/0 3/0 1.00

PVTT (Yes/No) 2/4 3/0 0.17

Artery invasion (Yes/No) 0/6 3/0 0.01

Primary HCC (Yes/No) 6/0 3/0 1.00

Tumor number (Single/Multiple) 6/0 2/1 0.33

Tumor size 2.8 (0.6) 9.0 (1.3) 0.00

ALT (U/L) 56.8 (25.7) 23.0 (5.5) 0.40

AST (U/L) 45.5 (14.4) 24.7 (8.2) 0.37

TBiL (mmol/L) 14.9 (2.1) 14.5 (0.9) 0.89

ALB (g/L) 43.5 (0.9) 41.1 (2.5) 0.30

AFP (ng/ml) 56.5 (38.8) 139.2 (134.9) 0.61

INR 1.0 (0.0) 1.1 (0.1) 0.16

Cr (μmol/L) 56.2 (5.1) 80.7 (4.3) 0.02

White blood cell (109/L) 5.6 (0.7) 5.4 (0.5) 0.89

HB (g/L) 132.0 (7.9) 146.0 (6.4) 0.29

PLT (109/L) 214.5 (50.8) 146.0 (15.3) 0.39

Variables are shown as “mean (SD)”. HCC, Hepatocellular carcinoma; ASA, American Society of Anesthesiologists; TNM, Clinicopathological stage; PVTT, portal vein tumor thrombus;

ALT, Alanine transaminase; AST, aspartate aminotransferase; TBIL, total bilirubin; ALB, serum albumin; AFP, alpha-fetoprotein; INR, International Normalized Ratio; Cr, creatinine; HB,

hemoglobin; PLT, platelets; SD, standard deviation.
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that, drug prediction revealed that benzimidazole-related and

vinca-alkaloid-related drugs could effectively reverse these

changes. These findings bring a new view to cancer

neuroscience research and therapeutic directions for patients

with HCC with high-risk scores.

Among eight critical NRGs, four genes (GRM2, GRM6,

GRIA2, and GRIN2B) are derived from the glutamate

receptor family, which suggests that glutamate receptor family

play important roles in HCC development. Glutamine is an

indispensable nutrient for cell proliferation and nucleotide

FIGURE 6
Risk score model validation, DEGs screen and potential pathways enrichments using nine HCC samples. (A) Correlations among risk score and
clinical characteristics. (B) PCA and t-SNE plot of nine HCC samples. (C) Volcano plot of DEGs. (D) Heat map of DEGs between two groups. (E) Top
ten enriched GO-BP and circle plots for up-regulated DEGs. (F) Top ten enriched GO-BP and circle plots for downregulated DEGs. DEGs,
differentially expressed genes; GO, gene ontology; BP, biological process; HCC, hepatocellular carcinoma; PCA, principal component analysis;
t-SNE, t-distributed Stochastic Neighbor Embedding; TNM, clinicopathological stage; PVTT, portal vein tumor thrombus.
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biosynthesis and can also produce energy via the tricarboxylic

acid cycle (Prickett and Samuels, 2012; Stepulak et al., 2014). In

addition, glutamine also serves as a substrate for fatty acid

synthesis in hypoxic cells or cells with HIF-1 activation (Yi

et al., 2019). Studies have also suggested that glutamine plays

a key role in cancer metabolism. Moreover, glutamatergic

signaling pathway dysfunction was observed in multiple types

of cancers (Stepulak et al., 2014). The abnormal activation of the

glutamatergic signaling pathway was also correlated with tumor

growth, tumor angiogenesis, and tumor metastasis

(Venkataramani et al., 2019; Yi et al., 2019). A study by Zeng

et al. (2019) found that, in a breast-to-brain metastasis model,

N-methyl-D-aspartate receptor (NMDARs) activation promoted

metastatic colonization of breast cancer cells to the brain. Then,

formation of pseudo-tripartite synapses between cancer cells and

glutamatergic neurons was observed. In gastric cancer, Xu et al.

(2018) revealed that the GRINA expression in cancer was

significantly higher than that in normal tissues, GRINA also

promoted the proliferation, migration, and invasion capacity of

gastric cancer cells. There are reports that also identified the

critical glutamate metabotropic receptors’ effects in antitumor

immunity (Kansara et al., 2019; Wan et al., 2021). For instance,

Wan et al. (2021) showed that GRM4 played an important role in

negatively modulating antitumor immunity, and global

FIGURE 7
. Nomogram to predict the probability of a 1-year, a 3-year, and a 5-year OS in patients with HCC based on the TCGA-LIHC dataset. (A) the
nomogram was constructed based on five clinical factors, and results suggested that the risk score and TNM stage significantly affected the OS of
patients with HCC. For the factor sex, 0 represents male and 1 represents female; for the factor race, 0 represents the white, 1 represents the Asian,
and 2 represents others; for tumor stage, 0 represents stage I or II while 1 represents stages III and IV (B). Calibration plots of the nomogram for a
1-year, a 3-year, and a 5-year OS.

TABLE 2 Top 6 small molecular drug candidates for HCC treatments.

Name Cell
line

Major introduction Major
function

Correlation
score

Mebendazole Huh7 Mebendazole is a synthetic benzimidazole derivate and anthelmintic agent. It is used commonly
for parasitic worm infections.

Tubulin inhibitor −0.57

Albendazole Huh7 Albendazole is a benzimidazole medication used for the treatment of a variety of parasitic worm
infestations.

Tubulin inhibitor −0.52

Vinorelbine Huh7 Vinorelbine is a semisynthetic vinca alkaloid. Vinorelbine binds to tubulin and prevents formation
of the mitotic spindle, resulting in the arrest of tumor cell growth in metaphase.

Tubulin inhibitor −0.52

Vinblastine HepG2 Antitumor alkaloid isolated from Vinca rosea. It binds to tubulin and inhibits microtubule
formation, resulting in disruption of mitotic spindle assembly and arrest of tumor cells in the M
phase of the cell cycle.

Tubulin inhibitor −0.52

Vindesine Huh7 Vindesine is an anti-mitotic vinca alkaloid used in chemotherapy. It is used to treat many different
types of cancer.

Tubulin inhibitor −0.50

Vincristine Huh7 Vincristine is a vinca alkaloid and used as a chemotherapy drug. It has a role as a tubulin
modulator, a microtubule-destabilizing agent.

Tubulin inhibitor −0.46
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GRM4 knockout or pharmacological inhibition of GRM4 led to a

significant inhibition of tumor growth in multiple tumor models.

However, research on GRM2 and GRM6 is lacking, which merits

further investigation. As the only protective factor among eight

genes, high GRIN2B expression is associated with a low-risk

score and a better prognosis for patients with HCC. Several

studies also verified this hypothesis (Chung et al., 2011; Park

et al., 2011). Chung et al. (2011) found that GRIN2B

hypermethylation was more frequent in invasive pulmonary

adenocarcinoma, which indicated that GRIN2B dysfunction

might facilitate tumor invasion. Park et al. (2011) showed that

the promoter CpG island methylation of GRIN2B changed

significantly during breast cancer progression. Therefore, the

effects of the glutamate receptor family on cancer were complex

and needed comprehensive consideration.

The other four genes are derived from the acetylcholine

receptor family (CHRNG and CHRNA3), the GABAergic

receptor family (GABRR2), and the adrenergic receptor family

(ADRA2C). Studies have also revealed connections between

acetylcholine receptors and multiple types of cancers such as

lung cancer, head and neck cancer, and gastric cancer (Hayakawa

et al., 2017; Silva et al., 2019; Yi et al., 2021). Also, an increasing

number of studies have reported the key functions of GABAergic

receptors and adrenergic receptors in tumor development

(Zahalka et al., 2017; Jiang et al., 2019; Iftikhar et al., 2021).

However, studies of these four crucial genes in HCC are still

scarce, which needs more exploration.

Many prognostic models have been developed for HCC,

such as the TNM stage, the Barcelona Clinic Liver Cancer

(BCLC) system, the Cancer of the Liver Italian (CLIP)

Program, and the Japan Integrated Staging (JIS) score

(Author anonymous, 2000; Kudo et al., 2003; Reig et al.,

2021), for better prognosis prediction and supply of

individual treatment and follow-up plans. These models

mainly select clinical factors, including tumor size,

metastasis condition, vascular invasion, etc. With the

development of the Human Genome Project and RNA-seq

technology, it has become easy for doctors to acquire more

information at the gene level (Uhlen et al., 2017). Therefore,

new prognostic models, based on gene expression, showed

good prospects. Previous studies have suggested a good

predictive value of new models based on specific gene

clusters such as epithelial-mesenchymal transition-related

genes, pyroptosis-related genes, and ferroptosis-related

genes (Fu and Song, 2021; Wu et al., 2021; Wan et al.,

2022). In this study, we constructed a novel prognostic

model based on NRGs, and it showed a good predictive

value both in public HCC datasets and in clinical validation.

FIGURE 8
Potential targeted drugs prediction and interactions between top six drug candidates and proteins based on DEGs of nine HCC samples.
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Some limitations of the present study are worth noting. Firstly,

functional enrichment validation by fundamental experiments is

needed in the next step. Secondly, gene function and effects of crucial

NRGs should be identified by in vitro study. Thirdly, a multiple-

center, large sample size, and long-term follow-up clinical trial are

needed to validate and improve our prognostic model.

Conclusion

Our study demonstrated that NRGs correlated tightly with

the development of HCC. Furthermore, NRGs are promising

targets for HCC treatment and prognostic prediction. We also

successfully constructed a prognostic model based on critical

NRGs and further tested the internal, external, and clinical

validation effectiveness. We found that the cellular metabolic

processes (especially the acid substances and lipid metabolism)

and immune response were significantly enriched using

functional analysis. Potential targeted drugs prediction

suggests that benzimidazole-related and vinca-alkaloid-related

drugs may be potential targeted drugs for patients with HCCwith

high-risk scores. These findings may provide new targets and

translational applications for clinical HCC therapy.
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