Lipids in Health and Disease

Open Access Research

Association of endothelial nitric oxide synthase promoter region (T-786C) gene polymorphism with acute coronary syndrome and coronary heart disease

Ç Çiftçi*^{†1}, S Melil^{†2}, Y Çebi^{†2}, M Ersöz³, P Çağatay⁴, M Kılıçgedik¹ and B Süsleyici Duman²

Address: ¹Istanbul Science University, Faculty of Medicine, Department of Cardiology, Istanbul, Turkey, ²Istanbul Science University, Faculty of Medicine, Department of Medical Biology and Genetics, Istanbul, Turkey, 3Istanbul Science University, Faculty of Medicine, Basic Sciences Laboratory, Istanbul, Turkey and 4Istanbul University, Cerrahpasa Faculty of Medicine, Department of Biostatistics, Istanbul, Turkey

Email: Ç Çiftçi* - cavlan.ciftci@florence.com.tr; S Melil - sureyyamelil@hotmail.com; Y Çebi - yurdanurcebi@yahoo.com; M Ersöz - mersoz@yahoo.com; P Çağatay - penbecag@istanbul.edu.tr; M Kılıçgedik - cemehtap@hotmail.com; B Süsleyici Duman - belgin.susleyici@istanbulbilim.edu.tr

Published: 25 February 2008

Lipids in Health and Disease 2008, 7:5 doi:10.1186/1476-511X-7-5

This article is available from: http://www.lipidworld.com/content/7/1/5

© 2008 Çiftçi et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 5 December 2007 Accepted: 25 February 2008

Abstract

Background: Nitric oxide (NO) is an endothelium derived relaxing factor (EDRF) which has an important role for regulating the heart-vessel physiology. The objective of this study was to evaluate the effects of the eNOS T-786C polymorphism on lipid parameters and the development of acute coronary syndrome (ACS) and coronary heart disease (CHD) for the first time in a Turkish study group. We have analyzed the genotype frequencies of the T-786C polymorphism of the eNOS gene in 10 ACS patients (5 men, 5 women), 20 CHD patients (14 men, 6 women), and 31 controls (10 men, 21 women), who were angiographically proven to have normal coronaries.

Results: The demographic, biochemical and left ventricule systolic dysfunction data of the ACS, CHD patients and controls were analyzed as a function of eNOS T-786C genotypes. The eNOS gene T-786C polymorphism frequencies for T/T, C/T and C/C genotypes were respectively 10%, 40%, 50% in subjects with ACS; 75%, 20%, 5% in subjects with CHD and 67.7%, 25.8%, 6.5% in the control group. Significant difference was observed in genotype frequencies between the study groups for T-786C polymorphism (p = 0.001). The CC genotype frequency was found to be the most prevalent in ACS group in comparison to CHD and control groups (p = 0.001). TT was the most frequently observed genotype in both CHD patients and controls (p = 0.001). Left ventricule systolic dysfunction frequency was found to be highest in C/T genotype carriers (66.7%) in patients (ACS+CHD). None of the patients with LVSD were carrying the normal genotype (T/T). The eNOS T-786C polymorphism was not found to be effective over any analyzed lipid variable in patients (ACS+CHD). The HDLcholesterol levels were found to be lower in CHD group were compared to controls (p < 0.01), whereas glucose and leucocyte levels of the ACS and CHD groups were both higher than controls (p < 0.001).

Conclusion: The significantly high frequency of eNOS -786C/C genotype in ACS patients than in those of controls, indicate the genotype association with ACS. The finding of significantly high frequency of T/T genotype in the CHD group, may support the relationship of CC genotype with ACS without CHD. The high frequency of the mutant (C/C) and heterozygous (C/T) genotypes found may be linked to left ventricule remodeling after MI.

^{*} Corresponding author †Equal contributors

Background

Nitric oxide (NO) is a key factor in the antiatherosclerotic properties of the endothelium. NO regulates vascular smooth muscle cell proliferation and migration, vascular tone, endothelial permeability, and endothelial-leucocyte interaction, and has antithrombotic effects [1-4]. Genetic polymorphisms of eNOS have been shown to have a significant effect on NO levels, plasma lipids and have been associated with T2DM [5], heart failure [6], coronary spasm [7], atherosclerosis [8], myocardial infarction [9], coronary in-stent restenosis [10] and hypertension [9] in some studies. Because of the pleiotrophic effects of NO, various studies have investigated the link between polymorphisms of the endothelial nitric oxide synthase (eNOS) gene and the development of coronary events. Among the many reported polymorphisms of the eNOS gene, two polymorphisms, namely the Glu298Asp(G:T) polymorphism located in exon 7, and T-786C in promoter have received much interest with respect to the possible association between such polymorphisms and coronary artery disease (CAD) [11,12]. In the present study, we sought to evaluate the effects of the eNOS T-786C polymorphism on the development of ACS and CHD.

Materials and methods Study subjects

We studied 10 ACS patients (5 men, 5 women), 20 CHD patients (14 men, 6 women), and 31 controls (10 men, 21 women), who were angiographically proven to have normal coronaries from Group Florence Nightingale Hospital (Istanbul, Turkey). Patients who had unstable angina pectoris (USAP), ST-elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) were referred as ACS. All the ACS patients had chest pain longer than 20 min, in resting state. All ACS patients serum cardiac enzymes (troponin T, creatine kinase-MB subforms) were high. All ACS patients has ischaemic ST-T changes on electrocardiography. The criteria for CHD was narrowing of artery 50% or more with angiography, who had stable angina pectoris and who were ischaemia positive with noninvasive tests. Left ventricule systolic functions were evaluated with echocardiography. Patients with ejection fraction (EF) between 35 and 50 were accepted to have moderate left ventricule systolic dysfunction (LVSD), whereas below 35 was accepted as severe LVSD. Since only 2 patients had severe LVSD, only 1 patient with moderate LVSD were included in the statistical analysis. The mean EF of the patiens (ACS+ CHD) was 37.4 ± 1.85. Conventional risk factors for CHD such as dyslipidemia (HDL-cholesterol levels <45 mg/dl, triglyceride levels >150 mg/dl and LDLcholesterol levels>130 mg/dl), hypertension (blood pressure > 130/80 or prior therapy), diabetes mellitus (fasting blood glucose of >120 mg/dl or prior therapy), obesity (BMI >25), positive family history for CHD and smoking (current smokers) were obtained by viewing records and interviewing patients. The mean age was 60.20 ± 2.52 for ACS patients, 60.70 ± 1.99 for CHD patients and 59.00 ± 1.68 for controls. Written consent was taken from each patient following a full explanation of the study, which has been approved by the Ethics Committee of the Istanbul Science University. The study groups were matched for age, as well as social and economic status.

Subjects with secondary hypertension (renal artery stenosis, glomerulonephritis), diabetic nephropathy (Kimmelstiel-Wilson syndrome), hypertension with endocrinopathies (phoechromocytoma, Cushing syndrome, hyper and hypothyroidism), patients with pseudohypertension, neoplasia and those who take oral contraceptives and illicit drugs were not included in the study.

Analytical methods

The plasma glucose concentration was measured by the glucose oxidase method using Kit of Biotrol on Bayer/opeRA analyser. Serum Total-Cholesterol was measured using commercial kit of Biotrol; HDL-Cholesterol using by commercial Randox's kit; LDL-Cholesterol was calculated by the formula of Friedewald) and triglyceride determination was made by the method of lipase/glycerol kinase UV endpoint on opeRA analyser.

DNA Extraction and Genotyping

Blood was drawn from the antecubital vein into EDTA. Genomic DNA was extracted from leukocytes by a salting out procedure [13]. Polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis was used for genotyping T-786C polymorphism [14]. Genotyping was conducted in a blinded fashion. A total of 10% of samples were subject to repeat PCR and genotyping, and no discrepancies were detected.

Statistical analysis

Statistical analyses were conducted using the Unistat 5.1 software program. Data were expressed as means \pm SE. Baseline differences between patients and controls were examined by Student t-test. Hardy-Weinberg equilibrium for genotype frequencies was estimated by the Chi-square test. The Bonferroni correction for multiple testing was applied as required. P values less than 0.05 were considered significant.

Results

The clinical characteristics of ACS patients, CHD patients and control subjects were compared in Table 1. Groups were statistically different when compared with chisquare test with respect to hypertension (p = 0.0001), diabetes mellitus (p = 0.0001), dyslipidemia (p = 0.009), heredity (p = 0.0001), recent myocardial infarction (MI)

Table 1: Clinical characteristics of acute coronary syndrome and coronary heart disease patients and control subjects

	ACS n(%)	CHD n(%)	Controls n(%)	P
Hypertension	9 (90.0)	15 (75.0)	2 (6.5)	0.0001
Diabetes mellitus	4 (40.0)	10 (50.0)	0 (0)	0.0001
Dyslipidemia	9 (90.0)	10 (50.0)	10 (34.5)	0.009
Obesity	I (20.0)	8 (5 7.1)	15 (50.0)	0.40
Smokers	4 (40.0)	12 (60.0)	9 (29.0)	0.10
Heredity	7 (70.0)	10 (50.0)	I (3.2)	0.0001
Recent myocardial infarction	4 (40.0)	2 (10.0)	0 (0)	0.002
Left ventricule systolic dysfunction	4 (40.0)	2 (10.0)	0 (0)	0.0001
Left ventricule diastolic dysfunction	9 (90.0)	16 (80.0)	0 (0)	0.016
Left ventricule hypertrophy	3 (30.0)	4 (20)	0 (0)	0.004

The variables were compared with χ^2 test among groups.

(p = 0.002), left ventricule systolic dysfunction (p = 0.0001), left ventricule diastolic dysfunction (p = 0.016) and left ventricule hypertrophy (p = 0.004) (Table 1).

The genotype frequency distributions of ACS, CHD patients and 31 control subjects with respect to T-786C polymorphism was compared in Table 2. The eNOS gene T-786C polymorphism frequencies for T/T, C/T and C/C genotypes were respectively 10%, 40%, 50% in subjects with ACS; 75%, 20%, 5% in subjects with CHD and 67.7%, 25.8%, 6.5% in the control group. Significant difference was observed in genotype frequencies between the study groups for T-786C polymorphism (p = 0.001). In detail, when the ACS, CHD and control groups were compared with respect to eNOS T-786C genotypes, the CC genotype frequency was found to be the most prevalent in ACS group in comparison to CHD and control groups (p = 0.001). Whereas TT was the most frequently observed genotype in both CHD patients controls (p = 0.001).

Distribution of left ventricule systolic dysfunction (LVSD) in ACS and CHD patients as a function of eNOS gene T-786C genotypes were presented in Table 3. Left ventricule systolic dysfunction frequency was found to be highest in C/T genotype carriers (66.7%) in patients (ACS+CHD). None of the patients with LVSD were carrying the normal genotype (T/T) (Table 3).

Table 2: Endothelial nitric oxide synthase gene T-786C genotype frequencies in acute coronary syndrome and coronary heart disease patients and control subjects

	eNOS gene T-786C genotypes		
	T/T;n(%)	C/T;n(%)	C/C;n(%)
Acute coronary syndrome	1(10)	4(40)	5(50)*
Coronary heart disease	15(75)*	4(20)	1(5)
Control	21(67.7)*	8(25.8)	2(6.5)

Genotype frequencies were compared with χ^2 test. * p = 0.001.

The demographic and biochemical data of the ACS patients, CHD patients and control subjects were given in Table 4. The HDL-cholesterol levels were found to be lower in CHD group were compared to controls (p < 0.01), whereas glucose and leucocyte levels of the ACS and CHD groups were both higher than controls (p < 0.001) (Table 4).

The lipid parameters of the patients (ACS+CHD) are compared in Table 5 as a function of eNOS T-786C genotypes. The eNOS T-786C polymorphism was not found to be effective over any analyzed lipid variable (Table 5).

Discussion

Investigations into the relation between eNOS gene polymorphism with ACS and CAD have given various and sometimes contradictory results. Fatini et al. [15] provided evidence that the -786CC pattern modulates the susceptibility to ACS in 4a4a homozygotes and in hyperhomocysteinemic patients. In the Ukrainian population Dosenko et al. [16] showed that the CC genotype of the T-786C polymorphism were found 2.7 times more often in ACS patients than in controls, and thus considered its allelic polymorphism as one of genetic risk factors of ACS development. The findings of Nakayama et al.[17] have strongly suggested that the CC variant in the T-786C polymorphism of eNOS gene reduced the eNO synthesis and

Table 3: Distribution of left ventricule systolic dysfunction in acute coronary syndrome and coronary heart disease patients as a function of eNOS gene T-786C genotypes

	eNOS gene T-786C genotypes		
	T/T;n(%)	C/T;n(%)	C/C;n(%)
LVSD	0 (0)	4 (66.7)	2 (33.3)

LVSD: Left ventricule systolic dysfunction. Genotype frequencies were compared with χ^2 test. p = 0.011. 2 patients with severe LVSD (Ejection fraction <35) were not included in the analysis. Only I patient with moderate LVSD (Ejection fraction between 35–50) were included.

Table 4: Demographic and biochemical data of the acute coronary syndrome and coronary heart disease patients and control subjects

	ACS	CHD	Control
BMI (kg/m²)	26.50 ± 1.69	28.97 ± 1.26	26.04 ± 0.75
Glucose (mg/dl)	134.13 ± 26.21 b	126.80 ± 9.95b	66.97 ± 2.26
Leucocyte (count/mm³)	10466.67 ± 1075.48 b	8825.88 ± 426.73 b	4946.77 ± 154.92
Total-cholesterol (mg/dl)	216.10 ± 15.84	207.53 ± 10.42	198.69 ± 8.70
HDL-cholesterol (mg/dl)	43.70 ± 4,50	39.00 ± 2.29^{a}	47.11 ± 1.87
LDL-cholesterol (mg/dl)	136.90 ± 12.54	134.79 ± 9.16	125.89 ± 7.48
Triglyceride (mg/dl)	152.50 ± 18.08	168.74 ± 17.87	137.14 ± 9.27

Values are represented as mean \pm SD. a: p < 0.01 in comparison to control group, b: p < 0.001 in comparison to control group

predisposes the patients with the mutation to coronary spasm. Additionally the T-786C polymorphism in combination with smoking have been reported to increase the risk of coronary spasm in several studies in Japanese patients [18,19]. In another study of Nakayama et al. [20], the frequency of the T-786C mutation was found to be significantly higher in MI patients with no stenosed vessels (50%) than in those with stenosed vessels (p < 0.003), and concluded the T-786C mutation in strong association with MI, especially without coronary arterial stenosis, in Japanese patients. In the present study, the frequency of eNOS -786C/C genotype was found to be significantly higher in ACS patients (50%) than in those of controls (6.5%), which indicate the association of -786C/C genotype with ACS. Our finding of significantly high frequency of T/T genotype in the CHD group, may support the relationship of CC genotype with ACS without CHD.

Alvarez et al. [21] found eNOS-CC+ACE-DD at a higher risk for early CAD, whereas the GENICA study performed on Caucasions have found the C allele to be associated with increased risk of multivessel CAD [22]. A follow up GENICA cohort study [23] performed on high risk CAD patients evaluating cardiovascular mortality found that, the T-786C SNP in the promoter of eNOS beared independent prognostic information with oxidant stres markers. A meta analysis performed over 26 studies involving 23028 subjects reported lack of influence of T-786C variant on ischaemic heart disease (IHD) risk, but a very small effect of the variant cannot be excluded, since they found only a 73% power to detect an OR of 1.2 at a significance

level of 5% [24]. Gomma et al. [10] have reported T-786C polymorphism to be associated with coronary in-stent restenosis in patients with CAD. In detail, they found that carriers of the -786C allele of the eNOS T-786C polymorphism showed a higher frequency of restenosis [10]. In another study, C allele homozygosity in position -786 of the eNOS promoter has been detected to be an independent risk factor for moderate to severe internal carotid artery stenosis, especially ulcerative lesions [25]. In our study, the mutant genotype (CC) frequency of T-786C polymorphism was found in low percentage (5%) to that of wild type (TT) (75%) and heterozygous (CT) (20%), which indicates that no association persists between T-786C variation and CHD whereas, the frequency distributions of eNOS T-786C genotypes were similar in CHD and control groups in the present study. In a study performed on Japanese population [19] composed of 209 men and 238 women, the frequencies of coronary spasm respectively in non-smokers with C/T or CC genotype was found to be 61% for male and 78% for females; wheras smokers with C/T or CC genotype was found to be 91% for male and 92% for females, which clearly demonstrated the T-786C polymorphism and smoking in combination increasing the risk of coronary spasm. In our study the eNOS T-786C genotype frequencies were not found to differ significantly with respect to smoking in none of the study groups analyzed (data not included).

In 1106 caucasion multivessel CAD patients Rossi et al. [22] reported T-786C T/T, T/C and C/C genotype frequencies to be %41.9, %40.4 and %17.7. Alvarez et al. [21]

Table 5: Associations of lipid parameters with endothelial nitric oxide synthase gene eNOS T-786C genotypes in the patiens (acute coronary syndrome and coronary heart disease patients)

	eNOS T-786C genotypes		
	T/T (n = 16)	C/T (n = 8)	C/C (n = 6)
Total-cholesterol (mg/dl)	207.00 ± 39.81	216.75 ± 42.38	210.83 ± 70.63
HDL-cholesterol (mg/dl)	41.07 ± 13.60	38.50 ± 9.46	42.33 ± 12.69
LDL-cholesterol (mg/dl)	138.07 ± 41.48	134.63 ± 24.52	130.33 ± 53.46
Triglyceride (mg/dl)	164.13 ± 83.70	151.88 ± 53.54	165.67 ± 64.53

reported a significant increase in CC genotype frequency in comparison to C/T and TT in CAD patients. Jeerooburkhan et al. [26] reported significant difference among T-786C genotypes. In detail, the T/T, T/C and C/C genotype frequencies were found to be respectively as %37.7, %47.8 and %14.5 in 3052 middle aged British men initially free of IHD. According to the data of Jeerooburkhan et al. [26] no influence was found between eNOS T-786C polymorphism and the risk of IHD as a result of 8.1 years follow up. Neither Poirier et al. [27] in the French population nor Granath et al. [28] in the Australian Caucasion population did not find significant difference among CAD cases and controls with respect to eNOS T-786C genotype frequencies. Similar to the results of Poirier et al. [27] and Granath et al. [28] we did not observe any significant difference among CAD cases and controls with respect to eNOS T-786C genotype frequencies.

Nitric oxide can modulate many of the processes leading to ventricular remodeling [29]. Endothelium-derived NO causes systemic vascular relaxation [30], thereby reducing cardiac preload and afterload. Recent evidence suggests that NO can increase angiogenesis, decrease cardiac fibrosis, and decrease angiotensin II-induced cardiac myocyte hypertrophy [31], all of which could limit ventricular remodeling after MI. Recently, a eNOS gene polymorphism, G894T, which alters enzyme function [32,33], was associated with an increased risk of CAD [34]. Scherrer-Crosbie et al. [35] have reported the importance of eNOS in limiting LV dilatation, dysfunction, and hypertrophy in murine MI, possibly by limiting the hypertrophic response to MI, and they suggest new strategies for preventing detrimental LV remodeling in patients after MI. In the present study, ACS and CHD patients LVSD with ejection fraction between 35-50%, the eNOS gene -786T/T wild type genotype was not observed, whereas the heterozygous genotype, -786C/T genotype frequency found in highest (66.7%). Since the limitation of this study was the relatively small sample size, the study should be replicated with a larger sample.

In conclusion, The significantly high frequency of eNOS -786C/C genotype in ACS patients than in those of controls, indicate the genotype association with ACS. In addition, the finding of significantly high frequency of T/T genotype in the CHD group, may support the relationship of CC genotype with ACS without CHD. The high frequency of the mutant (C/C) and heterozygous (C/T) genotypes found may be linked to left ventricule remodeling after MI. These findings imply that, although the mechanism underlying the association between the eNOS gene polymorphism and ACS has so far remained elusive, the genetic background controlling nitric oxide may be associated with the pathogenesis of ACS.

Acknowledgements

This study was funded by the Research Fund of the Istanbul Science University, project number: TBG/0162004

References

- Tilburg J, Haeften TW, Pearson P, Wijmenga C: Defining the genetic contribution of type 2 diabetes mellitus. J Med Genet 2001, 38:569-578.
- Morton NE, Lio P: Oligogenic linkage and map integration. In Genetic Mapping of Disease Genes first edition. Edited by: Pawlowitzki H, Edwards JH, Thompson EA. ACHDemic Press, San Diego, CA; 1997:17-21.
- Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH: Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991, 351:714-718.
- Nakane M, Schmidt HHW, Pollock JS, Forsterman U, Murad F: Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 1993, 316:175-180.
- Monti LD, Barlassina C, Citterio L, Galluccio E, Berzuini C, Setola E, Valsecchi G, Lucotti P, Pozza G, Bernardinelli L, Casari G, Piatti P: Endothelial nitric oxide synthase polymorphisms are associated with type 2 diabetes and the insulin resistance syndrome. Diabetes 2003, 52:1270-1275.
- McNamara DM, Holubkov R, Postava L, Ramani R, Janosko K, Mathier M, MacGowan GA, Murali S, Feldman AM, London B: Effect of the Asp298 variant of endothelial nitric oxide synthase on survival for patients with congestive heart failure. Circulation 2003, 107:1598-1602.
- Lüscher T, Noll G: Is it all in genes...? Nitric oxide synthase and coronary vasospasm. Circulation 1999, 99:2855-2857.
- Paradossi U, Ciofini E, Clerico A, Botto N, Biagini A, Colombo MG: Endothelial function and carotid intima-media thickness in young healthy subjects among endothelial nitric oxide synthase Glu²⁹⁸ — Asp and T-⁷⁸⁶ — C polymorphisms. Stroke 2004, 35:1305-1309.
- Yoshimura T, Hisatomi A, Kajihara S, Yasutake T, Ogawa Y, Mizuta T,
 Ozaki I, Utsunomiya T, Yamamoto K: The relationship between
 insulin resistance and polymorphisms of the endothelial
 nitric oxide synthase gene in patients with coronary artery
 disease. J Atheroscler Thromb 2003, 10:43-47.
- Gomma AH, Elrayess MA, Knight CJ, Hawe E, Fox KM, Humphries SE: The endothelial nitric oxide synthase (Glu298Asp and 786T>C) gene polymorphisms are associated with coronary in-stent restenosis. Eur Heart J 2002, 23:1955-1962.
 Colombo MG, Andreassi MG, Paradossi U, Botto N, Manfredi S,
- Colombo MG, Andreassi MG, Paradossi U, Botto N, Manfredi S, Masetti S, Rossi G, Clerico A, Biagini A: Evidence for association of a common variant of the endothelial nitric oxide synthase gene (Glu298-->Asp polymorphism) to the presence, extent, and severity of coronary artery disease. Heart 2002, 87:525-528.
- 12. Hingorani AD, Liang CF, Fatibene J, Lyon A, Monteith S, Parsons A, Haydock S, Hopper RV, Stephens NG, O'Shaughnessy KM, Brown MJ: A common variant of the endothelial nitric oxide synthase (Glu298-->Asp) is a major risk factor for coronary artery disease in the UK. Circulation 1999, 100:1515-1520.
- Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from nucleated cells. Nucleic Acids Research 1988. 16:1215.
- Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988, 239:487-491.
- Fatini C, Sofi F, Sticchi E, Gensini F, Gori AM, Fedi S, Lapini I, Rostagno C, Comeglio M, Brogi D, Gensini G, Abbate R: Influence of endothelial nitric oxide synthase gene polymorphisms (G894T, 4a4b, T-786C) and hyperhomocysteinemia on the predisposition to acute coronary syndromes. Am Heart J 2004, 147:516-521.
- Dosenko VIe, Zahorii VIu, Lutai IaM, Parkhomenko OM, Moibenko OO: Allelic polymorphism of endothelial NO-synthase (T(-786)-->C) promoter gene as risk factor of acute coronary syndrome. Fiziol Zh 2005, 51:72-76.
- Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, Motoyama T, Saito Y, Ogawa Y, Miyamoto Y, Nakao K: T-

- 786--> C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. *Circulation* 1999, **99**:2864-2870.
- Yoshimura M, Yasue H, Nakayama M, Shimasaki Y, Ogawa H, Kugiyama K, Saito Y, Miyamoto Y, Ogawa Y, Kaneshige T, Hiramatsu H, Yoshioka T, Kamitani S, Teraoka H, Nakao K: Genetic risk factors for coronary artery spasm: significance of endothelial nitric oxide synthase gene T-786-->C and missense Glu298Asp variants. J Investig Med 2000, 48:367-374.
- Nakayama M, Yoshimura M, Sakamoto T, Shimasaki Y, Nakamura S, Ito T, Abe K, Yamamuro M, Miyamoto Y, Saito Y, Nakao K, Yasue H, Ogawa H: Synergistic interaction of T-786-->C polymorphism in the endothelial nitric oxide synthase gene and smoking for an enhanced risk for coronary spasm. Pharmacogenetics 2003, 13:683-688.
- Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Ogawa H, Kugiyama K, Mizuno Y, Harada E, Nakamura S, Ito T, Saito Y, Miyamoto Y, Ogawa Y, Nakao K: T(-786)-->C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with myocardial infarction, especially without coronary organic stenosis. Am J Cardiol 2000, 86:628-634.
- organic stenosis. Am J Cardiol 2000, 86:628-634.
 21. Alvarez R, Gonzalez P, Batalla A, Reguero JR, Iglesias-Cubero G, Hevia S, Cortina A, Merino E, Gonzalez I, Alvarez V, Coto E: Association between the NOS3 (-786 T/C) and the ACE (I/D) DNA genotypes and early coronary artery disease. Nitric Oxide 2001, 5:343-348.
- Rossi GP, Cesari M, Zanchetta M, Colonna S, Maiolino G, Pedon L, Cavallin M, Maiolino P, Pessina AC: The T-786C endothelial nitric oxide synthase genotype is a novel risk factor for coronary artery disease in Caucasian patients of the GENICA study. J Am Coll Cardiol 2003, 41:930-937.
- Rossi GP, Maiolino G, Zanchetta M, Sticchi D, Pedon L, Cesari M, Montemurro D, De Toni R, Zavattiero S, Pessina AC: The T(-786)C endothelial nitric oxide synthase genotype predicts cardiovascular mortality in high-risk patients. J Am Coll Cardiol 2006, 48:1166-1174.
- Casas JP, Bautista LE, Humphries SE, Hingorani AD: Endothelial nitric oxide synthase genotype and ischemic heart disease: meta-analysis of 26 studies involving 23028 subjects. Circulation 2004, 109:1359-1365.
- Ghilardi G, Biondi ML, DeMonti M, Bernini M, Turri O, Massaro F, Guagnellini E, Scorza R: Independent risk factor for moderate to severe internal carotid artery stenosis: T786C mutation of the endothelial nitric oxide synthase gene. Clin Chem 2002, 48:989-993.
- Jeerooburkhan N, Jones LC, Bujac S, Cooper JA, Miller GJ, Vallance P, Humphries SE, Hingorani AD: Genetic and environmental determinants of plasma nitrogen oxides and risk of ischemic heart disease. Hypertension 2001, 38:1054-1061.
- Poirier O, Mao C, Mallet C, Nicaud V, Herrmann SM, Evans A, Ruidavets JB, Arveiler D, Luc G, Tiret L, Soubrier F, Cambien F: Polymorphisms of the endothelial nitric oxide synthase gene no consistent association with myocardial infarction in the ECTIM study. Eur J Clin Invest 1999, 29:284-290.
- Granath B, Taylor RR, van Bockxmeer FM, Mamotte CD: Lack of evidence for association between endothelial nitric oxide synthase gene polymorphisms and coronary artery disease in the Australian Caucasian population. J Cardiovasc Risk 2001, 8:235-241.
- 29. Gruppo Italiano per lo Studio della Sopravvivenza nell'infarto Miocardico: GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 1994, 343:1115-1122.
- Furcigott RF, Zawadzki JV: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288:373-376.
- Ritchie RH, Schiebinger RJ, LaPointe MC, Marsh JD: Angiotensin Il-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol 1998, 275:H1370-H1374.
 Tsukada T, Yokoyama K, Arai T, Takemoto F, Hara S, Yamada A,
- Tsukada T, Yokoyama K, Arai T, Takemoto F, Hara S, Yamada A, Kawaguchi Y, Hosoya T, Igari J: Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans. Biochem Biophys Res Commun 1998, 245:190-193.
- Philip I, Plantefeve G, Vuillaumier-Barrot S, Vicaut E, LeMarie C, Henrion D, Poirier O, Levy BI, Desmonts JM, Durand G, Benessiano J:

- G894T polymorphism in the endothelial nitric oxide synthase gene is associated with an enhanced vascular responsiveness to phenylephrine. *Circulation* 1999, 99:3096-3098.
- 34. Hingorani AD, Liang CF, Fatibene J, Lyon A, Monteith S, Parsons A, Haydock S, Hopper RV, Stephens NG, O'Shaughnessy KM, Brown MJ: A common variant of the endothelial nitric oxide synthase (Glu2983Asp) is a major risk factor for coronary artery disease in the UK. Circulation 1999, 100:1515-1520.
- Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT, Lindsey ML, Vançon AC, Huang PL, Lee RT, Zapol WM, Picard MH: Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 2001, 104:1286-1291.

Publish with **Bio Med Central** and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours you keep the copyright

Submit your manuscript here: http://www.biomedcentral.com/info/publishing_adv.asp

