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Introduction

The argonautes are a family of highly evolutionarily conserved 
proteins that bind small-RNAs (sRNA) and have essential roles 
in the RNA interference and microRNA pathways (reviewed 
in ref. 1). Argonaute proteins are broadly classified into two 
main evolutionary clades; the Ago clade binds small ~20–30 
nt non-coding RNAs which include microRNAs (miRNAs) 
and small interfering RNAs (siRNAs), while the Piwi clade 
Ago binds P-element induced wimpy testis (PIWI)-interacting 
RNAs  (piRNAs). Wago, a third clade, is particular to nematode 
worms.2 Argonautes are characterized by a Piwi-Argonaute-
Zwille (PAZ) domain and a PIWI domain. This PAZ domain 
functions by binding specifically to the 3′ end of single-stranded 
RNA and is also found in the Dicer enzyme.3 The Piwi path-
way is thought to be confined to regulating RNA expression in 
germ cells (reviewed in ref. 4). The Ago pathway is ubiquitously 
expressed and in mammals is composed of four enzymes, 
Ago1, Ago2, Ago3, and Ago4 which are all capable of loading 
small RNA. This review will focus on the Ago pathway.

Ago2 is well studied as it is the “catalytic engine” that drives 
mRNA cleavage at miRNA target sites5,6 and is required for 
embryonic development.5,7 Ago2 is best characterized in its 
role in post-transcriptional gene silencing (PTGS). PTGS is a 
cytoplasmic process which involves the loading of the guide 
strand of the ~20–24 nt sRNA species, siRNA or miRNA, 
into the Ago2-containing RNA induced silencing complex 
(RISC), which can then recognize a complementary mRNA 
target and bind to inhibit translation or destabilize through the 
Ago2 endonuclease activity (reviewed in ref. 8). While PTGS 
was first characterized as a genome/viral defence, there are 
many small endogenous RNAs, in particular, miRNAs and 

endo-siRNA in mammalian embryonic stem cells.9 siRNA are 
generated by Dicer RNase cutting of long dsRNA, such as 
that produced in virus replication, while miRNA are processed 
from nuclear hairpin dsRNA into short hairpin pre-miRNA by 
DGCR8 and Drosha, an RNAse III–type endonuclease, with 
subsequent transport to the cytoplasm and further cleavage 
by Dicer (reviewed in ref. 10) (Figure 1a). Except, in the case 
of miR-451, as its pre-miRNA is processed directly by Ago2 
instead of Dicer.11,12 The loading of the sRNA guide strand 
into Ago requires the Dicer and TRBP containing RISC, with 
subsequent activation requiring the C3PO complex for effi-
cient passenger strand removal.13,14 In humans, it is thought 
C3PO may be the sole loader and activator of Ago2.15

While Ago2 is well studied, much less is known about the 
function of the other argonautes. Ago1 is 80% identical to 
Ago2 but lacks a key catalytic residue and cannot cleave RNA 
efficiently. It is associated with the loading of specific sRNAs 
derived from the Epstein–Barr virus16 and Ago1 and/or Ago3 
is required for optimal resistance to influenza-A in mice.17 Little 
is known about the function of Ago1 except that its overexpres-
sion slows neuroblastoma growth.18 Ago3, like Ago2, contains 
the catalytic residues essential for cleavage and is required to 
induce human embryonic stem cell proliferation arrest through 
binding of sRNA generated from transcribed Alu repeats and 
subsequent PTGS of critical stem cell mRNAs.19 Ago4 has 
been reported to localise to mouse spermatocyte nuclei during 
meiotic prophase and regulate meiotic entry.20

Sequencing or microarray analysis of endogenous sRNA 
bound to human Ago1, Ago2 and Ago3 shows that the great 
majority is miRNA, which has been loaded with no particu-
lar strand bias towards the pre-miRNA 3p (antisense) or 5p 
(sense) strand.21–23 However, those miRNA preferentially 
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Figure 1 The role of argonaute in transcriptional gene silencing (TGS) and activation (RNAa). (a) The dicer-generated small RNA 
(sRNA) species which are loaded into argonaute (gray box) can be derived from shRNA expressed from plasmids or viral vectors transfected 
into the cell, or from endogenous processes, such as miRNA biogenesis or dsRNA resulting from bivalent transcription. Alternatively, 
siRNA directly transfected into the cell may be loaded. The sRNA species have a single “guide” strand loaded into argonaute while the other 
“passenger” strand is degraded. (b) Loaded Ago1 (Ago1+sRNA) may enter the nucleus and together with a nuclear RISC (nucRISC) and 
in association with active RNAPII and sense transcripts, initiate chromatin remodelling and transcriptional gene silencing (TGS) by such 
enzymes as histone 3 lysine 9 methyltransferases (H3K9 HMTase). The loaded Ago2 (Ago2+sRNA) is catalytically active and may direct 
the silencing of mature mRNA in the cytoplasm via the post-transcriptional gene silencing (PTGS) pathway, or it may be migrate to the 
periphery of the nucleus and (perhaps in association with a nucRISC), degrade primarily antisense transcripts. This process is associated 
with remodeling to active chromatin by histone 3 lysine 4 histone methyltransferases (H3K4 HMTase) and subsequent transcriptional gene 
activation (RNAa). There is also evidence nuclear Ago2 is associated with TGS.
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loaded into Ago1 or Ago2 had distinct antisense and sense 
bias, respectively.23 Other endogenous sRNA are also bound 
to Ago, as well as sRNA from intronic and exonic coding 
gene regions and promoter regions of coding genes.24 Many 
of these sRNA species were longer than the 21 nt canonical 
length, in particular promoter-derived RNAs were mostly of 
21–24 nucleotides in length and mostly associated with Ago1 
and Ago3. The differential loading between Ago1 and Ago2 
might be due, in part, to editing of the 3′-end, with miRNA 
terminating in 3′ adenine and uracil preferentially loaded 
into Ago1 and Ago2, respectively.22 This differs from piRNA 
loaded into PIWI-clade Ago, as these are 2′-O-methylated 
at the 3′ termini and often include uracil at the 5′ end.25–27 
Recent findings show that in Ago1-4 knockout mouse embry-
onic stem cells, expression of inducible Ago2 confers miRNA 
stability.28 Interestingly, this same work unveiled a new class 
of Ago/Dicer-dependent miRNAs which arise from the tran-
scription start site (TSS-miRNA) of RNAPII protein-coding 
gene promoters.

Function in the Nucleus

Over the last decade or so, Ago has been recognized as hav-
ing a role in the nucleus. RNA-induced silencing complexes 
(RISCs) containing Ago1 and Ago2 are present in both the 
cytosolic and nuclear fractions of human cells29–32 and Ago1 
and Ago2 are known to associate with promoter DNA.33 
Argonaute–RNA complexes can regulate nuclear events 
such as transcriptional silencing and activation as well as 
alternative splicing and DNA repair.34–36 Nuclear Ago1 directly 
interacts with RNA polymerase II (RNAPII)30,37,38 and binds 
to the promoters of actively transcribed genes.30,38 There are 
two contrary reports that describe human nuclear Ago2 as 
part of a multiprotein complex together with Dicer, TRBP and 
TRNC6A/GW182,39 or conversely in solitary form.40 However, 
both of these studies agree that Ago2 is loaded in the cyto-
plasm and imported into the nucleus (Figure 1b).

Using immunofluorescence microscopy, two groups have 
shown that tagged Ago1 and Ago2 have different nuclear 
distributions. Ago1 is scattered throughout the nuclear inte-
rior, whereas Ago2 co-localizes with siRNA primarily in the 
inner nuclear envelope.30,41 ChIP-seq data shows that Ago1 
is associated with thousands of chromosomal loci throughout 
the genome, but in particular with the promoters of actively 
transcribed genes and distributed in highly punctate peaks 
mostly overlapping with histone 3 lysine 4 tri-methylation 
(H3K4me3).30 In the same study, there was no evidence to 
suggest Ago2 interacts with chromatin. Sequencing of sRNA 
bound to argonaute in whole-cell lysate from mouse T cells, 
shows that ~0.02% of reads map to promoter regions, with 
twofold more bound to Ago1 and Ago3, than to Ago2. Around 
0.2% of Ago1 tags mapped to coding regions, which was six- 
and twofold more than Ago2 and Ago3, respectively. Over 
80% of tags mapping in the antisense direction were bound 
to Ago1, while for sense tags, the split was closer across 
Ago proteins.22

Dicer also has a nuclear localization signal, in the dsRNA 
binding domain42 and there is clear evidence it is nuclear-
imported. Nuclear Dicer has been variously reported as 

located in the nuclear periphery in association with NUP153, a 
component of the nuclear pore complex,43 or spread through-
out the nucleoplasm with a punctate distribution.44 Nuclear 
Dicer is associated with RNAPII at actively  transcribed genes 
and is required for Ago1-mediated TGS.44 Furthermore, 
nuclear Dicer is catalytically active and will cleave target 
RNA,29,39,44,45 with knockdown resulting in accumulation of 
endogenous double-stranded RNA (dsRNA), induction of the 
interferon-response pathway and cell death.44 Dicer is known 
to be important for the epigenetic regulation of the cell as its 
activity is required for the correct formation of heterochroma-
tin structure in mammalian cells.46

Collectively, evidence suggests nuclear Ago1 binds mostly 
antisense sRNA and is distributed throughout the nucleus at 
promoters of active genes in association with RNAPII and 
Dicer, while nuclear Ago2 complexes are at the nuclear 
periphery and contain both sense and antisense sRNA.

Exogenous Small RNA Transcriptional Silencing and 
Activation

RNA-directed transcriptional gene silencing (TGS) is an 
important means of regulation, evident by the conserva-
tion of mechanism from yeast to plants to higher mammals 
(reviewed in ref. 47). The phenomenon of mammalian TGS 
was first reported by Morris et al. in 2004.48 They described 
transcriptional silencing of both endogenous and integrated 
proviral elongation factor 1-alpha 1 (EEF1A1) by delivery of a 
siRNA targeting the promoter region. This study was closely 
followed by those from several other groups also reporting 
TGS driven by promoter-directed siRNA targeting the HIV-1 
viral LTR,49 CDH1,50 RASSF1,51 PGR, MVP, both AR and 
PTGS2 (ref. 52) and NOS3.53 The phenomenon has contin-
ued to be observed and clarified (Table 1).29,33,37,54–72

The counter-phenomenon of mammalian sRNA-induced 
transcriptional gene activation (RNAa) was reported in 2006 
by Li et al.73 who observed that transfecting siRNA comple-
mentary to the promoter regions of CDKN1A, CDH1, and 
VEGFA resulted in increased transcription of the respective 
gene. Unlike the early TGS studies, their promoter-directed 
dsRNA designs avoided promoter CpG-rich regions. These 
observations were soon supported by work from two other 
groups that reported RNAa of the HIV-1 viral LTR74 and 
PGR,75 respectively. RNAa resulting from a single trans-
fection could be observed for between 9 and 13 days.73,75 
Paradoxically, Janowski et al. showed that 21-mer ds siRNA 
designed against the progesterone receptor (PGR) as little as 
a few nucleotides apart could profoundly affect the activation 
potential and in some cases, cause TGS instead of RNAa.75 
Subsequently, there are many more reports of small-RNA 
directed RNAa, including by groups also demonstrating TGS 
(Table 2).29,51,54,64,65,72,76–89

Results showing suppression or activation of transcrip-
tion by promoter-directed siRNA need to be interpreted with 
some caution. It is possible that alteration of observed tran-
scriptional levels attributed to RNAa or TGS may in fact be 
the result of sequence-specific off-target effects. These off-
target effects have been reported for siRNA designed against 
the VEGFA promoter90 and the HIV-1 LTR promoter.74
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Requirement for Argonaute in Nuclear Processes

Knockdowns of argonaute protein have shown it is required 
for small-RNA induced TGS or RNAa (Tables 1 and 2). 
Some controversy exists about whether Ago1 or Ago2 is 
the main argonaute recruited to enact TGS. The first stud-
ies reported Ago1 as the key argonaute driving TGS, while 
some latter studies show evidence that only knockdown 
of Ago2 resulted in abrogation of TGS, with knockdown of 
Ago1, Ago3, or Ago4 not overly reducing the effect. In an 
early study, the Corey group reported that both Ago1 and 
Ago2 were required for TGS,33 however in later work they 
rationalized that off-target knockdowns may explain their 
earlier results.29 In the case of RNAa, fewer studies have 
examined the requirement for argonaute; however, there 
is no disagreement; all suggest that only Ago2 is required 
(Figure 2).

Association with Transcription, Epigenetic Regulation, 
and RISC Subunits

Early models speculated that siRNA might directly base-pair 
with DNA and recruit DNA methyltransferase (DNMT), but 
work by ourselves and others has shown that DNMTs can-
not methylate DNA:RNA hybrid structures91 and that instead, 
Ago-loaded nuclear siRNA binds to nascently transcribed 
RNA.56,64 There are a number of reports that TGS requires 
active transcription by RNAPII and expression of sense-
strand mRNA through the gene promoter.56,57,63,71 However, 
other data shows that Ago1 and Ago2 bind to antisense tran-
scripts during TGS.29 Interestingly, transfection of only the 
siRNA anti-sense strand is sufficient to silence the EEF1A1 
gene.56,57 Matsui et al.89 report Ago2-dependent transcrip-
tional gene activation of PTGS2 by the endogenous miRNA, 
miR-589. As only one strand of miR-589 is complementary 

Table 1 List of transcriptional gene silencing (TGS) studies

Study Gene symbol Cell line Effector name
Effector 

type Transfection
Location  
(wrt TSS)a Year Citationsb Reference

1 CCR5/RASSF1 HEK293T R61 ds siRNA MPG NS 2006 247 37

2 CDH1 HCT-116/MCF-7 dsCDH1-1, 2 ds siRNA Lipid NS 2005 193 50

3 CDKN1A MCF-7 Bx332409 ds siRNA Lipid NS 2008 133 54

4 CDKN2A HEK293T p16siRNA U6shRNA-
cassette

Calcium phos-
phate

NS 2007 16 55

5 EEF1A1 293FT EF52 ds siRNA MPG −106 2004 570 48

6 EEF1A1 Many EF52 ds siRNA Lipid −106 2007 160 56

7 EEF1A1/HIV-1 
(Viral LTR)

HEK293T EF52/siRNA-247 ds or ss 
siRNA

MPG −125/viral 247 2006 151 57

8 HIV-1 (Viral LTR) TZM-bl 247as, 362as antisense-
RNA

Lipid NS 2009 27 58

9 HIV-1 (Viral LTR) MAGIC-5 HIV-prom-A siRNA Lipid −100 2005 74 49

10 HIV-1 (Viral LTR) MAGIC-5 HIV-prom-A ds siRNA Electroporation −100 2008 46 59

11 HIV-1 (Viral LTR) Molt-4 shKB U6shRNA Retrovirus NS 2009 25 60

12 HPA PC3/EJ/SGC-
7901

siH3 siRNA, 
shRNA

Lipid −9 2012 15 61

13 MSTN Mouse C2C12 siMstn-P2 siRNA Lipid −153 2012 3 62

14 MYC PC3, DU145, 
LNCaP

myc13 ds siRNA Lipid −13 2009 58 63

15 NOS3 HAEC “microRNA” 27mer-
siRNA

Lipid Intron-4 2005 74 53

16 PGR T47D PR9 ds siRNA Lipid −9 2008 121 64

17 PGR T47D PR9 ds siRNA Lipid −9 2010 41 29

18 PGR T47D PR13580 ds siRNA Lipid +13580 2010 34 65

19 PGR, AR, HTT T47D/MCF-7 Many ds siRNA Lipid Many 2006 176 33

20 PGR, IGSF1 T47D/MCF-7 miR-423-5p ds miRNA Lipid −59 2011 41 66

21 PGR, MVP, AR, 
PTGS2

T47D Many ds siRNA Lipid Many 2005 98 52

22 PLAU PC3/DU145 siuPA pool of 4 ds siRNA Lipid −213, −131, 
−111, −50

2007 50 67

23 POLR3D HEK293 miR-320 ds miRNA Lipid −132 2008 254 68

24 RASSF1 HeLa ShPr21 U6shRNA Vector −28 2005 94 51

25 SIV (Viral LTR) MAGIC-5, 
CEMx174

Many ds siRNA Lipid NS 2008 20 69

26 TGFbRII Rat SBC10 siRNA-p-412 U6shRNA Vector −412 2007 23 70

27 UBC HEK293T UbC167 ds siRNA Lipid −167 2009 86 71

28 VEGFA C166 LV-856 U6shRNA Retrovirus NS 2009 43 72
a5′-most location with respect to the transcriptional start site of the target. A negative number implies an upstream location and “NS” denotes the location was 
not stated. bCitations according to Web of Science (July 2014).
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to the promoter RNA, they posit that the sense strand is 
the only potential partner for gene activation. In agreement, 
microarray data shows that in MCF7 cells, miRNA with 
biased Ago2 association are predominantly derived from 
sense strands of the corresponding pre-miRNA, while the 
majority of Ago1-associated miRNAs originate from the anti-
sense strand.23

In accord with expectation, there is clear evidence that, 
after TGS, less RNAPII is found at promoters,29,33,53,61–66 
while after RNAa, there is enrichment for RNAPII.29,38,65,76,85 
Most studies that have examined chromatin regulation 
found promoters after TGS to be enriched for histones with 
silencing marks and those after RNAa with active marks 
(Figure 2). In particular, TGS is associated with enrich-
ment for the repressive histone 3, lysine 9 di- and tri-meth-
ylation (H3K9me2, H3K9me3) and lysine 27 tri-methylation 
(H3K27me3) marks, with loss of the active histone 3 lysine 
9 acetylation(H3K9Ac), lysine 14 acetylation (H3K14Ac) 
marks and in some cases loss of the active H3K4me3 
mark. For RNAa, histone regulation is reversed, with loss 
of repressive H3K9me2 and H3K27me3 marks and gain of 
the activating H3K4me2 and H3K4me3 marks. Intriguingly, 
like TGS, RNAa is associated with the loss of H3K9ac and 
H3K14ac marks. These marks are associated with active 

and bivalent promoters in mouse cells.92 Some TGS studies 
report an increase in DNA methylation at the targeted pro-
moter (Figure 2). The de novo methyltransferase Dnmt3a is 
required to establish DNA methylation at the targeted region 
of the promoter and Dnmt1 is required for maintenance of 
that methylation.58,71

Knockdown experiments suggest a TGS requirement for 
the chromatin condensation-associated histone deacetylase 
HDAC, perhaps the H3K9 methyltransferase G9a, but not the 
polycomb-group H3K27 methyltransferase, EZH2.58,71 How-
ever, in ChIP experiments from two TGS studies, EZH2 is 
enriched at target promoters.37,68 There is also a requirement 
in TGS for the RISC-loading complex subunit, TARBP2.37 
For RNAa, it has been reported that activation of the PTGS2 
locus required the WD repeat-containing protein 5 (WDR5) 
and the argonaute-interacting, GW182.89 Interestingly, the 
long intergenic ncRNA (lncRNA), HOTTIP, transcribed from 
the 5′-end of the HOXA locus, binds to WDR5 and in turn, 
mixed-lineage leukaemia (MLL) histone methyltransfer-
ase, which drives gene activation and H3K4 trimethylation 
(H3K4me3). This same histone mark is known to be enriched 
in RNAa (Table 2).72,75,89 This suggests transcriptional gene 
activation by short RNA and lncRNA may share a number of 
features in common.

Table 2 List of transcriptional gene activation (RNAa) studies

Study
Gene  

symbol
Cell  
line

Effector  
name

Effector  
type Transfection

Location 
(wrt TSS)a Year Citationsb Reference

1 CCNB1 TRAMP C1 miR-744,  
miR-1186

ds miRNA Lipid, Retro-
virus

−192/−699 2012 34 38

2 CDH1 PC3 miR-373 ds miRNA Lipid −645 2008 358 76

3 CDH1 MB-453/MCF-7, 
in vivo

dsEcad-215 ds siRNA Lipid −215 2010 12 77

4 CDKN1A A549 and in vivo dsP21-322 ds siRNA Lipid −322 2010 18 78

5 CDKN1A MCF-7 p21-322 ds siRNA Lipid NS 2008 133 54

6 CDKN1A T24/J82 dsP21 ds siRNA Lipid −322 2008 48 79

7 CDKN1A A498 dsP21-322 ds siRNA Lipid −322 2009 18 80

8 CDKN1A T24 dsP21-322 ds siRNA Lipid −322 2008 24 81

9 CDKN1A 5637 dsEcad-215 ds siRNA Lipid −215 2008 20 82

10 CDKN1A PC3 dsEcad-215 ds siRNA Lipid −215 2010 6 83

11 CDKN1A, 
CDH1, VEGFA

Many Many ds siRNA Lipid Many 2006 297 73

12 HIV-1 (Viral LTR) 1G5 LTR-247as+7 siRNA-cassette Vector Viral 254 2007 21 74

13 KLF4 Many dsKLF4-496 ds siRNA Lipid −496 2010 40 84

14 LDLR HepG2 LDLR-24, 
LDLR-28

ds siRNA Lipid −24/−28 2010 24 85

15 Many Mammalian cell 
lines

Many ds siRNA Lipid NS 2010 49 86

16 NANOG NCCIT dsNanog-752 ds siRNA Lipid −752 2012 9 87

17 PAWR Many dsPAWR-435 ds siRNA Lipid −435 2013 2 88

18 PGR T47D/MCF-7 PR11 ds siRNA Lipid −11 2007 214 75

19 PGR MCF-7 PR11 ds siRNA Lipid −11 2008 121 64

20 PGR MCF-7 PR11 ds siRNA Lipid −11 2010 41 29

21 PGR MCF-7 PR13515 ds siRNA Lipid +13515 2010 34 65

22 PTGS2 A549 miR-549/RNA12 ds miRNA/
siRNA

Lipid −57/−34 2013 5 89

23 VEGFA C166 LV-451 U6shRNA Retrovirus NS 2009 43 72
a5'-most location with respect to the transcriptional start site of the target. A negative number implies an upstream location and “NS” denotes the location was 
not stated. bCitations according to Web of Science (July 2014).
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Endogenous Small RNA Transcriptional Silencing and 
Activation
miRNA
The initial observation of exogenous small-RNAs direct-
ing TGS suggested endogenous sRNAs such as miRNA 
or endo-siRNA may elicit the same phenomenon. The first 
examples of endogenous TGS and RNAa in mammals were 
of genes with predicted miRNA binding sites in their pro-
moters; in particular the silencing of POLR3D by miR-320 
(ref. 68) and PGR and IGSF1 by miR-423-5p66 and the acti-
vation of CDKN1 transcription by miR-373, (ref. 76) PTGS2 
transcription by miR-549 (ref. 89) and CCNB1 by miR-744 
and miR-1186 (ref. 38) (Tables 1 and 2). Huang et al. found 
Ago1 was enriched at the CCNB1 promoter, just proximal 
to the predicted miR-744-binding site, but did not find any 
enrichment for Ago2.38 Particular miRNA 5′ sequence ele-
ments may direct import of the mature miRNA back into 
the nucleus93 with this re-importation dependent on the 
association of Importin8 with Ago2.31,94 There is evidence 
that Ago2 is involved in control of chromatin structure at 

a genomic miRNA site,95,96 with Ago2 knockdown corre-
lated with upregulation of expression of the miRNA-155 
host gene primary transcript (miR-155HG), the overlapping 
antisense long noncoding RNA transcript and an increase 
in acetylation of histone 4 in the promoter region.95

Benhamed et al. describe senescence-associated 
transcriptional gene silencing (SA-TGS); during cellular 
senescence miRNA such as let-7 direct Ago2 to promot-
ers of the tumor suppressor gene/transcription factors 
repressor complex (RB1/E2F) target genes (such as 
CDC2 and CDCA8). These miRNA/Ago2 complexes block 
RNAPII engagement at target promoters and cooperate 
with E2F/RB1 complex to repress E2F-target promoters, 
resulting in increased H3K9me2 and H3K27me3 hetero-
chromatin associated marks and a decrease in the active 
mark, H3K4me3.96 Ago2 accumulates in the nucleus of 
senescent cells, with Ago2 knockdown resulting in delayed 
senescence. This transcriptional repression of prolifera-
tion-promoting genes by SA-TGS may contribute to tumor 
suppression.

Figure 2 Required and enriched factors for transcriptional gene silencing and activation.
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lncRNA
miRNA have an epigenetic TGS role either in cis as anti-
sense targeting its own genomic location to silence adjacent 
gene transcription, or by associating with a methyltransferase 
such as EZH2, they may also function more broadly in TGS 
to target gene promoters in trans.68 lncRNA can also have 
both a cis and trans epigenetic role and can function in cis as 
antisense at the transcriptional level, regulating protein cod-
ing gene expression or in trans acting as scaffolds to mediate 
interactions that guide enzyme complexes to specific RNA or 
DNA target sites in order to exert their effect.

Despite lncRNA frequently being nuclear-localized, many 
have been found to interact with miRNA,97,98 suggestive of a 
role for nuclear Ago-miRNA complexes; however, direct evi-
dence is lacking. Functionally, these miRNA-binding lncRNA, 
known as competing endogenous RNA (ceRNA), act like a 
“microRNA sponge” effectively reducing available miRNA.99 
By antagonizing miRNAs, lncRNA are known to regulate sev-
eral developmental processes.100–102 lncRNA interacting with 
miRNA can also result in histone modification and subse-
quent gene repression.103,104 For example, the lncRNA-miRNA 
complex of HULC and miR-372 recruits the histone modifying 
enzyme P300, a histone acetyltransferase and subsequently 
causes heterochromatin formation resulting in TGS.105

Sense-antisense transcription frequently results in formation 
of dsRNA.106 It has long been known in Schizosaccharomyces 
pombe that dsRNAs target complementary mRNAs for degra-
dation via the Ago1 RNAi pathway (reviewed in ref. 107) and 
these interactions result in heterochromatin formation at specific 
DNA loci. Recently, antisense ncRNAs have been implicated 
in the silencing of tumor suppressor genes through epigenetic 
remodeling events in humans.54,57 miRNAs can recruit Ago2 
to antisense lncRNA transcripts that overlap their target gene 
promoter.66,73,108 Younger et al. found miR-423-5p binds to RNA 
within the target progesterone receptor (PR) gene promoter, 
as well as ncRNA transcribed from the PR promoter, with TGS 
associated with recruitment of Ago2 to this ncRNA with subse-
quent decrease in promoter RNAPII occupancy and increase 
in the H3K9me2 mark.66 Other data shows nuclear Ago2-medi-
ated regulation of the lncRNAs MALAT1 and the star-strand 
HOTAIR* by miR-9 and miR-141, respectively.99,109 It appears 
that both MALAT1 and HOTAIR and most likely other lncRNAs 
may be functioning as a ceRNA110 and competing for miRNA 
target sites, mediated by Ago2. Evidence for this appears in 
recent global analyses of Ago-bound transcripts.111–113

In the human genome, antisense transcription is wide-
spread,106 which suggests a large potential for convergent 
transcription of overlapping transcripts to form endogenous 
dsRNA and to regulate the transcriptome. In S. pombe and 
mammals, convergent transcription induces TGS in trans.45 
Antisense ncRNAs have been implicated in the silencing 
of tumor suppressor genes through epigenetic remodeling 
events in humans.54,57

Argonaute Association with Other Endogenous 
Processes
Alternative splicing
The introduction of exogenous duplex RNAs into the nucleus 
has been shown to redirect exon splicing of aberrant splice 
sites of the disease-associated SMN2 and dystrophin 

genes.35 The duplex RNAs recruited Ago2 to pre-mRNA tran-
scripts and altered splicing without nuclear cleavage of the 
pre-mRNA. The first reported involvement of endogenous 
sRNA pathways in alternative-splicing was of the regulation of 
pre-mRNAs by MALAT.114 Subsequently, Ago1 and Ago2 have 
been identified in physical association with MALAT, chroma-
tin modifiers and splicing factors.36 Using the CD44 gene as 
a model, the authors show that Dicer-dependent recruitment 
of Ago1 and Ago2 facilitated spliceosome recruitment and 
modulated RNAPII elongation rate thereby affecting alter-
native splicing. The recruitment of Ago1 and Ago2 to CD44 
transcribed regions required the Dicer and histone modifying 
enzymes which resulted in increased H3K9 methylation on 
variant exons associated with heterochromatin and TGS.36

Double strand break repair
The double strand break (DSB) repair role of Ago in plants is 
well known, however, this function has been recently found 
conserved in humans, with a reduction of DSB repair ability 
observed after knockdown of Dicer or Ago2.115 These DSB-
induced small RNAs (diRNA) are produced from sense and 
antisense strands of DSB proximal sequence. In mammals, 
like in plants and Drosophila, diRNAs may function as guide 
molecules directing chromatin modifications which cause 
heterochromatin formation or the recruitment of protein com-
plexes to DSB sites to facilitate repair. diRNA binding and 
catalytic activity of Ago2 are required for recruitment of the 
repair protein Rad51 to DSBs.34

Model of Action

In the literature, there is conflicting information about the 
involvement of Ago1 and Ago2 in enacting transcriptional 
gene silencing and activation (see previous sections). More 
recent evidence suggests reconciliation into one central 
model is unnecessary. Instead, there is evidence for two dis-
crete but overlapping pathways involved in TGS and RNAa 
(Figure 1b).

Generally, exogenous promoter-directed sRNA data shows 
that Ago1 is associated with TGS and transcription of sense 
promoter-associated RNA, while Ago2 is associated with 
both TGS and RNAa and antisense transcription (Figure 2). 
With regard to endogenous nuclear miRNA bound to Ago, 
the evidence suggests overlapping functionality of Ago1 and 
Ago2, but with some clear exceptions. Some miRNA species 
exhibit pre-miRNA antisense strand loading bias into Ago1 
and the sense strand into Ago2.23 The interactions and loca-
tion of argonautes within the nucleus reinforce the idea of 
discrete pathways of action. Ago1, but not Ago2, interacts 
directly with RNAPII and binds to the promoters of actively 
transcribed genes30,37 and only Ago1 has readily observable 
interactions with chromatin.30 Furthermore, Ago1 is dispersed 
throughout the nucleus, whereas Ago2 is primarily localized 
to the inner nuclear envelope.30,41 At the nuclear periphery 
are lamina associated domains (LADs), DNA which is known 
to be mostly maintained in a silent state with activation upon 
cellular differentiation (reviewed in ref. 116). The distribution 
of Ago2 in the vicinity of LADs is consistent with its involve-
ment primarily in RNAa.
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Ago2-induced RNAa has some seemingly paradoxical 
observations, in particular, the observation that the PGR 
promoter-directed siRNAs PR9 and PR11 (Tables 1 and 2), 
designed only two nucleotides apart, may induce TGS in high 
PGR-expressing T47D cells and RNAa in low PGR-express-
ing MCF-7 cells, respectively.29,33,64 RNAa at the PGR locus is 
known to depend upon antisense transcription and involves 
the PR11-loaded Ago2.29,64

Perhaps these results can be explained by consideration of 
the findings by Morris et al.54 In their 2008 study, they provide 
evidence that sense transcription from the p21 (CDKN1A) 
locus is held in balance by transcription from overlapping 
antisense transcripts; i.e., Ago2-mediated PTGS of antisense 
transcription results in activation of p21 sense transcription, 
while—conversely—PTGS of p21 sense mRNA results in 
activation of p21 antisense transcription and the recruitment 
of Ago1 at the p21 promoter. They also show the presence 
of p21 antisense transcript and Ago1 are required for regula-
tion of promoter-associated sense RNA and suppression of 
the p21 promoter. Their findings imply that apparent RNAa 
is, in fact, the result of post-transcriptional repression of 
antisense RNA at bidirectionally transcribed loci. If instead 
PTGS is directed towards the sense RNA, this may result in 
increased promoter RNA transcription and reinforcement of 
silencing through recruitment of Ago1. This suggests that at 
bidirectional promoters, Ago1 and Ago2 may work in concert 
in the nucleus to reinforce cytoplasmic PTGS of gene loci. 
Indeed, genome-wide data shows that candidate antisense 
promoter-associated ncRNAs (pancRNAs) are associated 
with active chromatin marks, with the forced expression or 
knockdown of these pancRNAs causing DNA demethylation 
and methylation at the gene promoter, respectively.117,118

The association of Ago1, active RNAPII, Dicer and promoter 
sense transcription with TGS suggests a rapid monitoring 
system for aberrant transcription such as might be expected 
by transcription from transposons, repeated sequences and 
proviruses, or from chromosome abnormalities.29,48,117–119

Presently, it is unknown why there is a distinct strand load-
ing bias between Ago1 and Ago2. These argonautes are 
structurally very similar and it remains to be seen whether 
the loading bias is an intrinsic property of argonaute or of co-
factors in a loading complex.

Disease Therapy

The demonstrated specificity and potentially long-term effi-
cacy of exogenous sRNA in vitro, raises the potential for a 
new class of RNA-based drugs. It may be possible to develop 
cancer therapies or to stably suppress HIV-1 replication in 
the CD-4+ T cells of HIV patients. Indeed, many TGS and 
RNAa studies target genes associated with cancer and the 
HIV-1 virus in cultured cells (Tables 1 and 2). To this end, the 
field has now matured to the point where in vivo experiments 
are being undertaken. The efficacy in vivo of sRNA-directed 
transcriptional silencing or activation to control tumor growth 
has been demonstrated using mouse xenograft models. In 
vivo, stable RNAa activation of CCNB1 by miRNA constructs 
resulted in tumors with reduced size compared to controls.38 
Similarly, treating established tumors with lipid transfections 

of siRNA targeting CDKN1A78 or CDH1 (ref. 77) every three 
days showed reduced tumor growth, relative to controls. In 
addition, dsRNA chemically modified for lipidoid-encapsu-
lated nanoparticle delivery is efficacious in promoting RNAa 
of CDKN1A in mouse xenografts.120,121

Effective lentiviral delivery of shRNA has also been dem-
onstrated in vivo. The lentiviral transfer of VEGF promoter tar-
geted shRNAs has been observed to increase blood flow in 
the hindlimbs of ischemic mice72 and recently, in this journal, 
Suzuki et al. showed that shRNA targeting the HIV-1 LTR was 
able to inhibit HIV-1 replication in lentiviral transduced human 
peripheral blood mononuclear cells circulating in humanized 
mice.122 These results show promise in the translation of 
exogenous sRNA therapy to the clinic. It is foreseeable that 
RNA-based drugs may eventually be used to reprogram epi-
genetic state at a targeted locus.

Also, as we better understand endogenous nuclear 
sRNA processes, the mechanisms behind some diseases 
may be uncovered. In a now classic case, Tufarelli et al. 
documented a rare α-thalassaemia resulting from a dele-
tion truncating LUC7L and bringing it, juxtaposed, within 
proximity of the HBA2 hemoglobingene. Expression of the 
LUC7L antisense transcript resulted in epigenetic silencing 
of HBA2.123
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