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Magnetic resonance imaging (MRI) is a crucial tool for clinical brain tumor detection and
delineation. Since the process of gross tumor volume delineation resides with clinicians,
a better understanding of how they perform this task is required if improvements
in life expectancy are to be made. Novice-expert comparison studies have been
used to examine the effect of expertise on abnormality detection, but little research
has investigated expertise-related differences in brain tumor delineation. In this study,
undergraduate students (novices) and radiologists (experts) inspected a combination of
T1 and T2 single and whole brain MRI scans, each containing a tumor. Using a tablet
and stylus to provide an interactive environment, participants had an unlimited amount of
time to scroll freely through the MRI slices and were instructed to delineate (i.e., draw a
boundary) around any tumorous tissue. There was no reliable evidence for a difference
in the gross tumor volume or total number of slices delineated between experts and
novices. Agreement was low across both expertise groups and significantly lower at
peripheral locations within a tumor than central locations. There was an interaction
between expertise level and location within a tumor with experts displaying higher
agreement at the peripheral slices than novices. An effect of brain image set on the order
in which participants inspected the slices was also observed. The implications of these
results for the training undertaken by early career radiologists and current practices in
hospitals are discussed.

Keywords: brain tumor, novice-expert differences, tumor delineation, medical image perception, radiological
diagnosis

INTRODUCTION

Brain tumors are the consequence of abnormal and uncontrollable cell growth in the brain and
lead to deficits in the functioning of the body (Soltaninejad et al., 2015). Malignant brain tumors
are cancerous, fast-growing and spread to other areas of the brain and spine whilst benign brain
tumors grow more slowly and typically do not spread. In 2016, an estimated 77,670 primary brain
and central nervous system (CNS) tumors were expected to be diagnosed in the United States
(Ostrom et al., 2015). Clearly, accurate and reproducible detection and delineation of any brain
tumor is essential for early diagnosis, patient monitoring, and treatment planning (Wu et al., 2013).
Unhealthy brain tissue (i.e., tumor, necrosis) must be segmented from healthy brain tissue (i.e.,
gray and white matter, cerebrospinal fluid) and edema (Gordillo et al., 2013) to facilitate, where
required, the surgical removal of a tumor, irradiation of the tumor bed, and monitoring of tumor
growth or shrinkage (Mazzara et al., 2004; Bauer et al., 2013).
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Despite considerable advances in computerized tools for
brain tumor delineation (e.g., McBain et al., 2014; Weizman
et al., 2014; Joshi et al., 2015) clinical acceptance of such
tools has not yet been obtained. Therefore, in most clinical
settings clinicians are responsible for the delineation of brain
tumors. Particularly with infiltrative tumors, this task is time-
consuming and challenging due to variations in tumor size,
shape, and location. Clinicians must develop perceptual expertise
to extract critical visual information from an image and
then apply their clinical knowledge to successfully delineate a
tumor (Porz et al., 2013). Brain tumor delineation is therefore
constrained by clinician’s idiosyncratic perceptual and cognitive
capabilities and thus the focus of this article is on better
understanding where clinicians may differ from one another and
non-clinicians in the delineation of healthy and unhealthy brain
matter.

Magnetic resonance imaging (MRI) is widely used in
delineation of brain tumors (DeAngelis, 2001; Wen et al., 2010)
with 582,905 scans performed in the United Kingdom in 2014/15
(NHS England, 2015). This non-invasive technique generates
images of comparable resolution to computed tomography (CT)
using a strong magnetic field instead of the ionizing radiation
used in CT and so is harmless to patients (Bhadauria et al.,
2013). Different pulse sequences can be applied which enable
the enhancement of specific tissues and so facilitates delineation
(Bhadauria et al., 2013; Wu et al., 2013). In addition, since the
MRI signals penetrate bone as well as soft tissue it is ideal for
brain investigation (Islam and Hall, 2016). Manual outlining
of gross tumor volume (GTV) is typically done on a slice-
by-slice basis whereby clinicians scroll through a stack of 2D
images reflecting the 3D volume of the brain, using sophisticated
graphical user interfaces (Porz et al., 2013). Research is therefore
needed to better understand performance in 3D dynamic stack-
viewing of medical images which better characterizes the real-
world (Ravesloot et al., 2015; Nakashima et al., 2016) and is
fundamentally different to visual search in static medical images
(Kunar and Watson, 2011). Moreover, given the extensive use of
MRI scans in brain tumor delineation, more research is required
to understand how clinicians delineate brain tumors using this
specific modality.

Many studies have examined the degree of agreement between
clinicians (i.e., inter-observer) in tumor delineation tasks. In
a typical study, clinicians are asked to delineate (i.e., draw a
boundary) around any tumorous tissue on a given slice or series
of slices. The area on which two clinicians agree (i.e., they
draw around the same tissue) is commonly referred to as the
intersection area. A concordance rate (note: researchers refer
to this value differently but it reflects the same calculation)
ranging from 0% (complete disagreement) to 100% (complete
agreement) can be calculated by dividing the intersection area
by the sum of the area contoured by both clinicians (Murakami
et al., 2012) to index inter-observer agreement. Leunens et al.
(1993) reported that the concordance rate of 12 radiation
oncologists delineating 5 patients’ brain tumors on lateral
orthogonal radiographs ranged from 25 to 73%. Low inter-
observer agreement was also observed amongst nine physicians
delineating five patients’ supratentorial inoperable brain tumors

on CT scans (range 38–59%) and on CT combined with
MRI scans (range 38–71%; Weltens et al., 2001). Murakami
et al. (2012) revealed an average concordance rate of 82% for
one radiation oncologist and one neuroradiologist delineating
glioblastomas using diagnostic MR images whilst Mazzara
et al. (2004) reported an average concordance rate of 28% for
three radiation oncologists outlining gliomas on MR images.
Researchers have also revealed high intra-observer variability
with Mazzara et al. (2004) reporting only a 20% concordance
rate for three radiation oncologists delineating tumors at three
1-month intervals.

Inter-observer variability has also been documented in
measures used to monitor tumor growth or shrinkage.
Bidimensional product (BP) measurements (i.e., two
perpendicular measurements in the largest area of the
contrast-enhancing tumor) are used to assess the response
of brain tumors to (and thus effectiveness of) radiation therapy.
Complete agreement on the stability of a tumor for eight
radiologists measuring brain tumor diameters in MRI scans
was only observed in 45% of cases thus resulting in different
judgements regarding the stability (growth or shrinkage) of a
tumor (Provenzale et al., 2009). Provenzale and Mancini (2012)
reported that in 76% of cases the same clinician changed their
BP measurements by more than 25% (the criterion that indicates
a change in tumor progression) between two examinations
at 6–12 week intervals, which was deemed sufficient to
prevent recall from the first measurement. This change in BP
measurement resulted in a change in tumor stability judgements
for 40% of cases (Provenzale and Mancini, 2012) and clearly
demonstrates high intra-observer variability. Such research
reveals high inter- and intra-observer variability and thus further
research examining what underlies such disparities is clearly
needed.

Only a few studies have investigated differences in tumor
delineation across different expertise levels. Deeley et al. (2011)
compared junior and senior physicians segmenting organs at
risk in the brain and reported that junior physicians tended to
segment volumetrically larger areas than their senior physician
counterparts. Deeley et al. (2011) proposed that this reflected
junior physicians’ tendency to avoid the risk of anatomically
missing a portion of an organ and senior physicians’ confidence
in delineating a tighter border. To our knowledge, no research has
compared experts and novices in the delineation of brain tumors
using MRI scans. Novice-expert paradigms have frequently been
used to assess differences in the eye-gaze behavior of observers
aiming to detect abnormalities in medical images to identify
the perceptual and cognitive expertise required for successful
performance in such tasks. Experts have been shown to have more
efficient visual search strategies (Krupinski et al., 2006), fixate
quicker on abnormalities (Kundel et al., 2007), and have superior
global-processing advantages (rapidly extracting gross deviations
from the norm; Evans et al., 2013). This paradigm can be applied
here to identify differences in delineation and thereby identify
techniques or strategies that facilitate precise and reproducible
segmentation. By examining novices we have a comparison with
which to establish the baseline level of performance in tumor
segmentation from a relatively pure, perception-only perspective
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(i.e., with little or no background knowledge in tumor growth,
localization, or geometry).

This study investigated the effect of expertise on the
delineation of brain tumors using MRI images to identify the
strategies or patterns of behavior that characterized expertise.
Novices and experts freely inspected brain MRI images and were
instructed to delineate tumorous from healthy brain matter.
Using whole brains allowed us to capture a situation that is
most similar to viewing in the real-world clinical situation where
clinicians will scroll through a whole brain in order to detect
a tumor. In addition to the whole brain series, we included a
set of single slices from 16 different patients’ brains, to allow us
to compare between whole brain volume delineation and single
slice delineation. In line with Deeley et al. (2011), we anticipated
that experts would delineate volumetrically smaller areas and
delineate fewer slices than novices. Research indicating that
experts delineate fewer slices may suggest greater disagreement
at the peripheral locations of the tumor. We will therefore
explore differences in inter-agreement at central and peripheral
locations within the tumor. It is important to consider the order
in which novices and experts examine and delineate tumors,
especially when considering best practice to ensure optimum
tumor removal and the problems associate with satisfaction
of search. We therefore recorded the sequence of interactions
participants made with each set of MRI scans and hypothesized
that experts would engage in similar inspection techniques. We
expected higher inter-observer agreement between experts given
the specialized and similar training experts have undertaken and
so their ability to apply both perceptual and clinical skill to
the task. The effect of expertise on saliency-driven delineations
and tumor-related differences in inter-observer agreement and
inspection technique were also explored.

MATERIALS AND METHODS

Participants
Twenty participants were divided into two groups based on
their level of expertise in reading brain MRI scans. Novices
consisted of undergraduate students at the University of Bristol,
seven studying a non-medical subject and five studying a
medical discipline (i.e., medicine, dentistry, veterinary science).
Experts were eight radiologists at an NHS hospital (range of
2–15 years of experience). Ethical approval was gained from
the Faculty of Science Human Research Ethics Committee
at the University of Bristol. All participants gave written
informed consent in accordance with the Declaration of
Helsinki.

Materials and Stimuli
Participants viewed images within a window of a Toshiba
Z10t Tablet PC with a diagonal screen size of 11.6 inch
(1,920 pixels × 1,080 pixels resolution) and drew boundaries
using a stylus (see Figure 1). Custom written software was used to
display images and capture data using Matlab (The MathWorks,
Inc., 2013). Set 1 consisted of images of 16 different brain tumors,
each from a different patient. Eight of these were taken from a
location in the center of the tumor and eight were taken from
a peripheral location. Table 1 shows the details of the MRI
sets, because the sets were from actual clinical cases there are
difference in their composition. Images were registered using
SPM5 (Penny et al., 2001). Figure 2 shows an example slice
from each Set. Because the brains images were an opportunistic
sample, we included an analysis by tumor type (or image set) as
an exploratory analysis.

FIGURE 1 | The viewing window on the tablet that participants used to complete the task.
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TABLE 1 | Details of the stimuli in each image set.

Set Slices Anatomical plane Imaging modality Tumor description

1 16 Axial T1 and T2 Various

2 31 Axial T1 Left deep temporal posterior insular intrinsic tumor. This demonstrates ring enhancement
following gadolinium. Histological diagnosis glioblastoma multiforme (grade 4)

3 31 Axial T1 and T2 A right medial temporal lobe intrinsic tumor. This demonstrates ring enhancement following
gadolinium. Histological diagnosis following resection was glioblastoma multiforme (grade 4)

4 31 Axial T1 and T2 Intrinsic tumor within the left superior frontal gyms with signal heterogeneity. No
enhancement demonstrated following gadolinium. Histological diagnosis following surgical
resection was anaplastic oligoastrocytoma (grade 3)

FIGURE 2 | Examples of the stimuli presented to participants. (A) Is a slice from Set 1 (T2). (B) Is a slice from Set 2 (T1). (C) (T1) and (D) (T2) are slices from Set 3.
(E) (T1) and (F) (T2) are slices from Set 4.

Design and Procedure
A mixed design with expertise level (novice; expert) as the
between-subject factor and brain set (set 2; set 3; set 4) as the
within-subject factor was used. To fully investigate inter-observer
agreement, we also included location within a tumor (i.e., central
vs. peripheral) as a within-subject factor. A mixed design was
used to investigate the effect of expertise and location within a
tumor on set 1 (i.e., independent slices). For the measure of Gross
tumor area (GTA) location within a tumor was not included.
Testing took place in various locations, but generally in a quite
well-lit room. On arrival, participants were given instructions,
and brief background details were recorded. Participants were
then shown how the experimental software worked. Participants
were given time to practice drawing around the border of some
black and white high contrast familiar images (e.g., a car) using
the tablet and stylus. Participants were then allowed to freely
view each set of images and were instructed to draw around
all tissue that they identified as tumorous on every slice. All
participants moved sequentially through Set 1 to Set 4. Sets 2,

3, and 4 were whole brain scans so participants could navigate
sequentially forward and backward from the superior to the
inferior of the brain, respectively. Sets 3 and 4 consisted of both
T1 and T2 images and so participants could switch between
the same brain slice in these two modalities on which the same
boundary was overlaid. Inspection and drawing time was not
limited. Participants could view and delete any boundaries they
had already drawn before moving onto the next set of images.
The study took approximately 40 min to complete.

Measures
Gross Tumor Volume
Gross tumor volume (GTV), defined as the sum of pixels
delineated within an entire brain, was calculated for sets 2, 3,
and 4. GTA was calculated for set 1 because all slices were
from different patients’ MRI scans and so were independent of
each other. This was calculated by dividing the sum of pixels
delineated on all slices by the number of slices a participant drew
a boundary on.
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Number of Slices Delineated
The total number of slices on which a boundary was drawn when
the participant submitted their response. Set 1 was not included
in this analysis because every slice was from a different patient
and all contained a tumor.

Inter-Observer Agreement
The intersection area, namely the total number of pixels that
two participants delineated on a given slice was calculated. This
area was then divided by the sum of the GTA contoured by the
two participants to calculate a concordance rate ranging from
0% (complete disagreement) to 100% (complete agreement) used
to index inter-observer agreement. This process was conducted
between all participants within the same expertise group for
each slice. Central locations within a tumor were the five
slices on which most participants drew a boundary and so the
highest agreement of detection of tumorous tissue was observed.
Peripheral locations within a tumor were all other slices. For the
whole brain sets concordance rates were then averaged across
slices to provide each participants’ inter-observer agreement for
a set.

ScanMatch Similarity Score
ScanMatch (Cristino et al., 2010) similarity scores were generated
to statistically assess similarity in the sequence of experts and
novices. If a participant engaged in two sequential interactions
with a single slice then this slice was only included once
in the sequence. The sequences of interactions were used to
generate letter-string sequences which were then compared
using ScanMatch which contains an implementation of the
Needleman–Wunsch algorithm (frequently used, for example, to
compare DNA sequences). A similarity score of 1 indicates that
the sequences are identical whilst a score of 0 indicates that there
is no similarity. Set 1 was not included in this analysis because all
slices are independent of each other (i.e., from different patients)
and so analysis of participants’ interactions was not relevant.

Saliency Driven Delineation
Saliency maps were generated using a graph based visual saliency
Matlab implementation (Harel et al., 2006) for Set 1 (we manually
removed the skull and eyes where they were visible, as these
typically were highlighted as highly salient, and no observer ever
drew around them). Figure 3 shows an example of the saliency
maps generated. The most, intermediate and least salient areas
are shown in red, yellow, and blue, respectively. Each image is
512 pixels× 512 pixels with a value ranging from 0 (low salience)
to 1 (high salience) representing the salience and so determining
the color of a given pixel. We then multiplied the saliency map
for each slice by the contour map (which has a 1 for any pixel
the participant drew on the boundary and a 0 otherwise) for the
corresponding slice and took the sum of the resulting matrix to
give a summed contour-saliency score for each participant for
each slice to index the extent to which delineation was saliency-
based. Sets 2–4 were not included in this analysis because in these
whole brain scans each slice is not independent and so delineation
will be biased toward certain locations based on surrounding
slices.

FIGURE 3 | Left panels show the original images from Set 1 and the right
panels show the same images cropped with saliency-based heat-map
overlaid.

RESULTS

Linear mixed effects models (LMEs; Baayen et al., 2008; Barr
et al., 2013) were used to analyze the data using the lme4
package (Bates et al., 2013) for the R computing environment (R
Development Core Team, 2014). All models include a random
effect of participant. Additional random effects and interactions
were only added when the more complex model fit the data
significantly better according to a likelihood ratio test, in addition
where a more complex model is used, we calculated the weighted
Akaike’s information criteria (wAIC; see Wagenmakers and
Farrell, 2004; we used the second order AIC, AICc, which is
more suitable for smaller sample sizes). For all cases wAICc was
approximately 1 for the more complex model and approximately
0 for the simpler model, demonstrating extreme evidence in favor
of the more complex model. For each analysis, we report the
t statistic from the full model (even if the model contained non-
significant main effects and interactions) alongside p-values that
were calculated using a model comparison procedure, for fixed
effects and interactions of specific interest. For GTA, GTV and
number of slices delineated we used a poisson distribution, since
the data are count, using the glmer function in lme4 and report
z-value from the full model alongside p-values calculated using a
model comparison procedure. Study participants did not consent
to data sharing so supporting data cannot be made available.

Main Analysis
Gross Tumor Volume
For the single brains, the more complex model including a
random Group by Slice interaction was chosen over a model
including a random effect of Subject and a random effect of
Slice. For the full brain analysis, the model including a Brain by
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Subject random interaction was better than the model including
only a random effect of Subject. There was no evidence for a
difference in the GTA delineated by novices and experts for Set
1, z = 0.65, p = 0.517. There was also no effect of expertise on
GTV delineation for Sets 2 – 4, z = 0.49, p= 0.629 (see Table 2).

Number of Slices Delineated
Table 3 shows that novices tended to delineate more slices than
experts (there was never a case where an expert drew a boundary
on a slice but a novice did not, whereas there were 31 cases where
at least one novice drew on a slice that an expert did not) but this
did not reach statistical significance, z = 0.28, p= 0.784.

Inter-Observer Agreement
For single brains, a more complex model including a random
effect of Subject and a Group by Slice interaction was better than
a model including a random effect of Subject and random effect
of Slice. There was no evidence for a significant main effect of
expertise level on inter-observer agreement for Set 1, t = 0.65,
p = 0.517. There was evidence for a main effect of location
on inter-observer agreement, t = 2.12, p = 0.046, with higher
agreement observed at central locations that peripheral locations
(see Table 4). There was no evidence for an interaction, t = 0.09,
p= 0.926.

Figure 4 shows that agreement was low for both expertise
levels. There was no evidence for a significant main effect of
expertise level, t = 1.36, p = 0.176, or brain set, t = 0.67,
p = 0.156, on inter-observer agreement. However, the location
within a tumor did reliably influence inter-observer agreement,
t = 0.86, p < 0.001 with agreement higher at central locations
than peripheral locations. There was an interaction between
expertise level and location with experts displaying higher
agreement at peripheral locations than novices, t = 0.94,
p < 0.001 (see Figure 5). There was also a significant interaction
between brain set and group, t = 2.05, p < 0.001. Experts
showed higher overall agreement for Set 3 but novices showed
higher overall agreement for Set 4 (see Figure 6). A significant

TABLE 2 | Descriptive statistics for gross tumor area (GTA) and gross tumor
volume (GTV).

Mean (pixels) SD (pixels)

Expert Novice Expert Novice

Set 1 6,364 6,261 1,862 2,700

Set 2 38,477 44,427 13,969 3,311

Set 3 35,320 50,761 11,920 47,698

Set 4 8,486 17,402 9,406 11,203

TABLE 3 | Descriptive statistics for number of slices delineated.

Mean SD

Expert Novice Expert Novice

Set 2 7.63 9.08 1.60 1.24

Set 3 9.00 9.42 2.14 4.03

Set 4 4.43 7.50 2.15 5.23

TABLE 4 | Descriptive statistics for inter-observer agreement.

Mean (%) SD (%)

Expert Novice Expert Novice

Set 1 Central 28.70 27.24 13.22 13.31

Peripheral 15.89 10.86 12.20 10.62

Set 2 Central 33.63 38.68 5.69 3.85

Peripheral 15.51 14.54 6.01 2.14

Set 3 Central 38.60 29.77 4.14 10.29

Peripheral 11.29 6.89 3.33 2.39

Set 4 Central 10.64 26.31 5.47 12.60

Peripheral 1.34 0.65 1.75 0.46

interaction between brain and location (t = 1.24, p < 0.001), was
observed. There is a significant three-way interaction between
group, brain and location, t= 1.58, p < 0.001. Novices agree more
in the central locations within a tumor except for Set 3 where
experts display higher agreement.

ScanMatch Similarity
Table 5 shows that there was no evidence for a difference in
ScanMatch similarity scores for novices compared to experts,
t = 0.15, p = 0.882. There was, however, an effect of brain set on
ScanMatch similarity, t = 2.14, p = 0.035, with set 4 showing the
least similar patterns for both experts and novices. There was no
significant interaction between brain set and expertise, t = 0.39,
p= 0.700.

Saliency Driven Delineation
The model including a random effect of Subject and random
effect of Slice was 1.30 times better than a more complex model
with a random effect of Subject and random Group by Slice
interaction. There was no evidence for a difference in saliency
driven delineation between experts (M = 90.54, SD = 52.86)
and novices (M = 95.60, SD = 55.61), t = 0.04, p = 0.968.
There was, however, evidence for an effect of location on saliency-
driven delineation, t = 3.90, p < 0.001. As expected, delineation
at central locations (M = 101.64, SD = 53.06) overlapped more
with salient areas than those at peripheral locations (M = 84.69,
SD = 53.06). There was no significant interaction between
expertise and location, t = 0.32, p= 0.746.

DISCUSSION

This was the first study to examine the effect of expertise on brain
tumor delineation using MRI images. There was no evidence for
a difference in the number of slices delineated between novices
and experts. It is important to note, however, that there was not
a single incident where an expert drew a boundary on a slice and
a novice did not. This could reflect experts’ attempt to avoid the
removal of healthy tissue and their superior ability to distinguish
between different types of visual abnormality such as tumor or
edema on peripheral locations within a tumor. In contrast to our
hypothesis, and findings from Deeley et al. (2011), we did not find
a reliable effect of expertise on either GTA or GTV. Although this
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FIGURE 4 | Boundaries drawn on peripheral locations within a tumor by Novices (blue contours) and experts (green contours), for four different brains (A–D).

FIGURE 5 | Boundaries drawn by Novices (blue contours) and experts (green
contours) for a peripheral location within the tumor for Set 3 (left) and Set 4
(right). The top row shows the images with participant boundaries. The
bottom row shows an expanded view of the boundaries.

is surprising, these measures are too simplistic to index successful
performance on the task. We think in our task GTA and GTV
capture information about the detection of a tumor but do not
capture any information about the location of that tumor. It
is possible, therefore, that a novice and an expert could draw
entirely different regions of the brain on a given slice but still
record the same score for GTA or GTV. Therefore, this finding
does not necessarily indicate that the two expertise groups were
performing in the same way which would be concerning given
the extensive training that medical experts undertake.

We also investigated inter-observer agreement which captures
information about the location of boundaries drawn by
participants. In line with the existing literature (Leunens et al.,
1993; Weltens et al., 2001; Mazzara et al., 2004), inter-observer
agreement was low for both novices and experts. In contrast
to our expectations, there was no main effect of expertise on
inter-observer agreement. We propose that this is the result
of high variability in the performance of both expertise levels
and, more specifically, higher within-group than between-group

FIGURE 6 | Boundaries drawn by Novices (blue contours) and experts (green
contours) for a slice from Sets 3 (left) and Set 4 (right).

variability. The low inter-observer agreement highlights the
need for tools or practices that can facilitate a reduction in
such variability. Eye-tracking research has revealed that viewing
another person’s eye movements on a lung nodule detection task
can improve detection performance (Litchfield et al., 2008, 2010).
It is possible that a training practice where one views another
person’s inspection technique through the slices and boundaries
may improve overall performance. Double reading has been
applied in mammography screening whereby two independent
radiologists provide a reading with such practices leading to an
increase in cancer detection rates from 5 to 17% (Helvie, 2007).
The effect of double reading on success on brain tumor detection
and delineation has not been studied and so research is needed to
investigate the potential benefits of such practices.

Inter-observer agreement was higher for both expertise levels
at the central compared to peripheral locations within a tumor.
In line with the finding that delineation was driven more by
saliency at central locations, we propose that saliency cues
contributed to the higher agreement in delineation at central
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tumor locations. It is important to note that performance at
central locations was far from perfect (or what may reasonably
be considered as experts’ asymptotic level of performance) with
the highest level of agreement for novices and experts being
38.68 and 38.60%, respectively. This demonstrates that there are
high levels of disagreement as to where the tumor boundaries
are, even when the tumor itself is relatively easy to detect.
Experts displayed higher inter-observer agreement than novices
in peripheral slices for the whole brain sets. We propose that, at
peripheral locations, experts detect that there is tumorous tissue
more often than novices and are better able to ‘see’ a boundary.
It is also possible that experts learn to gain critical information
from surrounding slices to inform their delineation of a tumor
volume indicating that context may play an important role in
this task. The role of context in other visual search tasks, such
as finger print examination, has previously been documented
(Busey et al., 2011). Taken together these findings reinforce the
need to examine differences between static and dynamic medical
image viewing.

Our results also revealed an interaction between brain
image set and both group and location within a tumor. These
results demonstrate that the characteristics of a brain tumor
influence inter-observer agreement. Whilst we cannot make
any strong conclusions from our data about which brain
tumor characteristics specifically result in low inter-observer
agreement, this finding highlights an important avenue for future
research to identify types and locations of brain tumors that
result in low agreement and so require additional training. For
example, infiltrative tumors have hard to distinguish boundaries,
which will make delineation more difficult. Wu et al. (2013)
reported a difference in the accuracy of their semi-automatic
segmentation methods for different brain tumors, suggesting
that the characteristics of a brain tumor influence detection
and delineation performance for humans as well as computer-
based automated detection and delineation algorithms. The
use of computer-based tools for diagnosis and delineation
has grown rapidly over the last few years (Menze et al.,
2015) but is still very much in development. Importantly,
computer-based modeling can combine and use multimodal
data, including substructure from diffusion tensor imaging,
that are not so readily interpretable to a human observer,
to finesse the tumor location (Alderson, 2016). Computer-
based modeling can replicate the best practice and spread that
knowledge to consistently identify the tumor and delineate the
tumor boundaries to a higher standard across health services.
One of the main impediments to their uptake is clinician and

TABLE 5 | Descriptive statistics for ScanMatch similarity score (higher is more
similar).

Mean SD

Expert Novice Expert Novice

Set 2 0.56 0.53 0.11 0.07

Set 3 0.54 0.42 0.11 0.11

Set 4 0.39 0.34 0.12 0.11

patient acceptance. Research should focus on demonstrating
the potential improvement of human–computer cooperative
delineation over just human-based delineation. What our data
clearly show is that even experts sometimes disagree as to the
precise location of a tumor boundary. This conclusion underpins
the relatively poor prognosis for patients with brain tumors, and
the need to research better delineation tools.

Using tumor delineation tasks, similar to the one used here,
during training, combined with computer-based modeling, to
identify cases that yield low inter-observer agreement could
potentially reveal patterns in the type of and location of tumors
that are particularly difficult. Training interventions have been
reported to be effective in reducing variability in brain tumor
delineation with Vinod et al. (2016) reporting a reduction
in inter-observer variation following a teaching intervention
in eight out of nine studies (although only four reached
statistical significance). Breunig et al. (2012) also documented
improvements in the segmentation of 10 out of 11 organs
following education. Insight from studies similar to ours could
further inform such interventions regarding the education
provided to trainee radiologists. Moreover, identifying difficult
cases could have implications for current practices, for example,
making double reading or specialized training compulsory for
certain tumor types. A potential limitation of our study is that
we were unable to obtain both T1 and T2 imaging modalities for
Set 2 and so, for this image, all participants had less information
to drive their delineation. Interestingly, inter-observer agreement
for Set 2 did not differ from the other Sets suggesting that this
did not directly reduce inter-observer agreement. Investigating
the effect of image modality on the delineation is an interesting
avenue for future research.

We demonstrated a novel and effective application of
ScanMatch to non-eye-tracking data which enabled investigation
into the inspection technique adopted by participants. In contrast
to our hypothesis that experts would engage in more similar
inspection techniques as a result of following the standard
practice for inspecting brain MR images learnt during their
training (The Royal College of Radiologists, 2015), there was no
evidence for a difference in inspection technique. A limitation
of this measure, and potential explanation for why no significant
difference was found, is that we did not record the time at which
participants with a given slice to allow temporal binning of the
data. This would have enabled the identification of slices with
which a participant spent a long period of time interacting with
and so provide more detail on disparities between the expertise
levels. Inspection technique varied depending on the set of images
inspected, which further demonstrates the need to examine the
characteristic of tumors which lead to clinicians deviating from
their typical inspection technique.

A limitation of the present study is the small sample size which
leads to low power and increases the chance of obtaining false
negatives (Button et al., 2013). We propose this may explain
why statistical significance was not obtained in this experiment
given the numerical tendency in the expected direction. This is,
however, a common difficulty with such specialized research. Our
expertise sample of eight radiologists is similar to the sample
sizes used in existing research such as Copley et al. (2010) and
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Nakashima et al. (2016) who examined seven and ten radiologists,
respectively. It is also important to recognize the high variation
in boundaries which will potentially mask any subtle effects of
expertise. Such large variation in the expertise group could be due
to the range of expertise within our expert group (four radiology
students; one certified radiologist; two consultant radiologists;
one consultant neurologist). Statistical analysis could not be
used to reliably investigate this difference in expertise due to
a small sample size. Small samples are a common problem in
medical image perception research, for example Copley et al.
(2010) studied 4 certified radiologists and 6 radiology trainees.
Nonetheless, given the importance of such research, detailed
data sets such as ours are needed to start understanding the key
factor involved before running later confirmatory studies. We
also recognize that our novice sample, which includes students
studying medically related and medically unrelated subjects at
university, is quite varied which is a limitation of this research.
Nevertheless, we believe it is difficult to find a truly ‘novice’
sample for this task (i.e., one without any prior exposure to MRI
images) given the prevalence of MRI images in the media, but also
the widespread use in various courses at university and we are
confident that participants in the novice group had much lower
levels of exposure than those in the expert group.

This study was the first to examine expertise-related
differences in the delineation of brain tumors using MRI images.
We also demonstrate the application of novel techniques, namely
ScanMatch and saliency mapping, which will allow future studies
to better characterize performance in these tasks. In line with
existing research inter-observer agreement was relatively low thus
further highlighting the need for improvements in consistency in
brain tumor delineation across clinicians. Experts’ inter-observer

agreement was higher than novices in the peripheral locations
within a tumor. The effect of location within a tumor on inter-
observer agreement suggests an important role for context in
these tasks and demonstrates the need to better understand
difference in delineation using static 2D compared to dynamic 3D
images. Taken together our results have important implications
for both training procedures and practices that may contribute to
improved inter-observer agreement in clinical settings.
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