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Objectives The majority of drug dosing studies are based
on adult populations, with modification of the dosing for
children based on size and weight. This rudimentary
approach for drug dosing children is limited, as biologically
a child can differ from an adult in far more aspects than just
size and weight. Specifically, understanding the ontogeny of
childhood liver development is critical in dosing drugs that
are metabolized through the liver, as the rate of metabolism
determines the duration and intensity of a drug’s
pharmacologic action. Therefore, we set out to determine
pharmacogenes that change over childhood development,
followed by a secondary agnostic analysis, assessing
changes transcriptome wide.

Materials and methods A total of 47 human liver tissue
samples, with between 10 and 13 samples in four age
groups spanning childhood development, underwent
pair-end sequencing. Kruskal–Wallis and Spearman’s rank
correlation tests were used to determine the association of
gene expression levels with age. Gene set analysis based
on the pathways in KEGG utilized the gamma method.
Correction for multiple testing was completed using
q-values.

Results We found evidence for increased expression of
‘very important pharmacogenes’, for example, coagulation
factor V (F5) (P= 6.7× 10− 7), angiotensin I converting
enzyme (ACE) (P= 6.4× 10− 3), and solute carrier family
22 member 1 (SLC22A1) (P= 7.0× 10− 5) over childhood
development. In contrast, we observed a significant
decrease in expression of two alternative CYP3A7
transcripts (P= 1.5× 10− 5 and 3.0× 10− 5) over
development. The analysis of genome-wide changes
detected transcripts in the following genes with significant

changes in mRNA expression (P< 1×10− 9 with false
discovery rate< 5×0−5): ADCY1, PTPRD, CNDP1,
DCAF12L1 and HIP1. Gene set analysis determined
ontogeny-related transcriptomic changes in the
renin–angiotensin pathway (P< 0.002), with lower
expression of the pathway, in general, observed in liver
samples from younger participants.

Conclusion Considering that the renin–angiotensin
pathway plays a central role in blood pressure and plasma
sodium concentration, and our observation that ACE and
PTPRD expression increased over the spectrum of
childhood development, this finding could potentially impact
the dosing of an entire class of drugs known as ACE-
inhibitors in pediatric patients. Pharmacogenetics and
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Introduction
Personalized medicine’s goal of improving the efficacy of

treatments for diseases has been a recent focus in clinical

and translational research. Today, the feasibility of large-

scale assays of biological markers, most importantly next-

generation sequencing, enables researchers and clinicians

to not only identify the genomic basis of disease etiology,

but also predict how a patient will respond to different

types of treatment. Individualized treatment decisions

based on such information has the potential to improve

efficacy and reduce life-threatening toxicities. However,

a major challenge in implementing personalized medi-

cine in pediatrics is identifying the appropriate drug

dosages for children. The majority of drug dose-response

studies are based on adult populations, with children

dosing guidelines modified based on size/weight of the

patient. This rudimentary approach for drug dosing in
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children is limited, as biologically a child can differ from

an adult in far more aspects than just size and weight.

That is, understanding the ontogeny of childhood liver

development is critical in dosing drugs that are meta-

bolized through the liver, as the rate of metabolism

determines the duration and intensity of a drug’s phar-

macologic action.

Initial pharmacogenomic studies in children on warfarin

[1] and cholesterol-lowering statin medications [2] sug-

gest that data derived from adults are not generally sui-

table to extrapolate to children. Equally concerning are

that adverse events, rarely occurring or nonobservable in

adults because of developmental changes in biological

pathways, can be common in younger age groups [3–6].

This is especially concerning considering that adminis-

tering off-label drugs is widespread for children and that

there is evidence suggesting potentially higher risk of

adverse events for off-label prescriptions [7]. Even if an

adverse event is well understood to occur frequently in

certain adult subpopulations, the ability and parameters

necessary to predict its occurrence in children may differ.

The fact that children younger than 2 years of age face

severely increased risk of fatal valproate toxicity serves as

a dramatic example [8]. A recent investigation of

valproate-induced changes in acid profiles does indeed

imply that age-related changes in the ‘mitochondrial

phenotype’ may be a key predisposing factor for the fatal

response [9].

In order to help address these concerns, our study aimed

to identify genes and pathways that undergo develop-

mental changes in transcriptomic activity from infancy to

adulthood and that are potentially involved in drug

metabolism. The transcriptome of liver cells from chil-

dren in four different age groups that span childhood

development where evaluated using RNA sequencing. A

specific emphasis in our analyses was put on the set of

‘very important pharmacogenes’ (VIPs) as defined by the

PharmGKB database [10]. This subset of genes is known

to play an important role in individual drug metabolisms

in adults, and, as such, any of its genes that undergo

developmental changes in activity should be relevant

when assessing the pediatric setting. As these genes are,

again, mostly based on studies on adult populations, two

additional genes, CYP3A7 and FMO1, were added to the

set of VIPs, as expression of both is known to steadily

decrease after birth and as both are involved in drug

metabolism [11]. In addition to looking at the candidate

genes, we also looked genome wide to determine novel

genes that show differences in expression across child-

hood development, as these genes might be potential

biomarkers that could aid in the drug dosing of children.

Materials and methods
Liver samples
A total of 47 human liver tissue samples were obtained

through the Brain and Tissue Bank for Developmental

Disorders at the University of Maryland (Baltimore,

Maryland, USA), the Liver Tissue Cell Distribution

System (University of Pittsburgh and University of

Minnesota), and XenoTech LLC (Lenexa, Kansas,

USA). The use of these tissues was classified as nonhu-

man participant research by the Children’s Mercy

Hospital Pediatric Institutional Review Board. Three

main criteria were employed for selection of samples and

individuals: absence of diseases or medications affecting

the liver; an even spread across different age groups; and

an RNA Quality Index greater than 8. Between 10 and 13

individuals were present in each of the four target age

groups, which were defined as follows: less than 1 year of

age (age group 1), 1 to less than 6 years (age group 2), 6 to

less than 12 years (age group 3), and 12–18 years of age

(age group 4). Characteristics of the study group are

presented in Table 1.

RNA-seq and bioinformatics processing
Extraction of RNA from the liver tissue samples was

performed utilizing either the Qiagen (Germantown,

Maryland, USA) AllPrep DNA/RNA Mini Kit or the

Qiagen AllPrep DNA/RNA/miRNA Universal Kit. The

RNA sequencing library of human liver transcriptomes

was prepared using the Illumina TruSeq Stranded Total

RNA Sample Prep Kit and the TruSeq Paired-End

Cluster Kit. Paired-end sequencing was performed

using the HiSeq. 1500 instrument, with each sample

having an average mRNA depth of 104-fold (based on 2%

mRNA), with more than 80% of bases above Q30.

Mapping of RNA-seq reads to human reference genome

(Genome Reference Consortium GRCh37, release date:

February 2009) was completed using Bowtie [12], fol-

lowed by abundance estimation of transcript level

expression in transcripts per million (TPM) completed

using RSEM [13]. After processing of the raw reads, the

effective library sizes for each sample (as measured by

sum of the estimated abundances for all transcripts)

ranged between 999 997 and 1 000 002; therefore, no

additional normalization for differences in library size was

completed.

Statistical analyses
To assess potential batch effects related to tissue source

site, principal component analysis was completed, in

which, for each participant, the first two principal com-

ponents were plotted in a scatterplot, with different

plotting symbols and colors used to represent the age

groups and the tissue source sites. Two statistical tests

were employed to discover potential candidates of genes

that had different gene expression levels among the

four age groups. A nonparametric ANOVA test [i.e.

Kruskal–Wallis (KW) test] was used to determine

whether there were any differences in gene expression

levels among the four groups, where age group was

treated as a four-level categorical variable (i.e. 3 d.f. test).
Transcripts for which expression levels followed a linear
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trend with respect to age group were identified using

Spearman correlation with age group treated as an ordinal

variable (e.g. 1, 2, 3, 4 for the four age groups). Fifty-six

genes classified as VIPs were extracted from the genes’

data set (obtained 5 May 2015) from the PharmGKB

download web page, with the addition of CYP3A7 and

FMO1. Analysis of both the 56 VIP candidate genes and

all genes (genome wide) used the same statistical meth-

ods. To adjust for multiple testing, false discovery rate

q-values were computed for the genome-wide results

[14]. To assess the robustness of the results because of

potential confounding of the less than 1 year age group

with tissue source, analyses were also completed using

only the three older age groups.

Gene set (GS) analysis was completed using the gamma

method (GM) for summarizing gene-level results up to

the 291 pathways in KEGG [15]. The GM statistic is

based on summing P values transformed using an inverse

gamma (ω, 1) transformation [16,17] Application of dif-

ferent P-value transformations is achieved by changing

the ω parameter, which varies the emphasis given to

particular P values and which can be reexpressed as a soft

truncation threshold (STT). When ω is 1, GM is

equivalent to the commonly used Fisher’s method with

an STT= 1/e. For our pathway analyses, we set the STT

value to 0.15. Because of dependency between expres-

sion of different genes in a GS or pathway, empirical GS

P values where determined using permutation testing.

Results
Confounding
Twelve of 13 patient samples in the youngest age group

(< 1 year of age) originated from the same tissue site.

This was especially concerning given the fact that gene

expression of UMB samples diverge from the samples

from the other sites, as seen from the results of the

principal component analysis of the 10 000 most variable

genes (Fig. 1). Because of this confounding of tissue site

with age group, observed differences in expression could

be caused by a true age effect, a tissue site effect or a

combination of both. Therefore, to determine robustness

of results, all analyses were executed twice: utilizing all

participants from all age groups (primary analysis) and

excluding participants from the youngest age group (age

group 1) (secondary analysis). We will refer to the former

as ‘four group analysis’ and to the latter as ‘three group

analysis’.

VIP genes
The four group analysis of the 56 VIP genes (409 tran-

scripts) led to a total of 28 significant VIP transcripts with

a P-value of less than 0.01 (Table 2). However, in the

sensitivity analysis (i.e. the three group analysis) only

coagulation factor V gene, F5, had a transcript

(ENST00000546081) with a P value of less than 0.01.

This transcript was observed to have increased expres-

sion in the older age groups [mean TPM of 1.65, 3.15,

Table 1 Characteristics of four groups of pediatric patients

Age group 1 Age group 2 Age group 3 Age group 4
Variables Levels <1 year age 1–5.99 years 6–11.99 years 12–18 years

Number of samples 13 13 11 10
Sex Male 11 6 9 10

Female 2 7 2 0
Race White 8 4 3 2

African American 5 1 0 2
Unknown 0 8 8 6

Source of tissue Minnesota 0 8 8 6
UMB 12 2 1 1

XenoTech 1 3 0 1
Pittsburg 0 0 2 2

Fig. 1

Principal component analysis of the 10 000 most variable transcripts
across all participants. Age group one exhibits confounding with the
UMB site of sample origin. UMB samples separate from other samples
in PCA plot. PCA, principal component analysis.
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5.99 and 6.27 for age group 1 (youngest), 2, 3 and 4

(oldest), respectively]. Four additional transcripts in

genes angiotensin I converting enzyme (ACE), SLC22A1
and CYP3A7 (two transcripts) were borderline significant

(P< 0.05). ACE and SLC22A1 transcripts exhibited higher

expression levels in the older age groups, whereas

CYP3A7 expression decreased with age. Figure 2a pre-

sents the TPM expression data for these five transcripts

for the four age groups. Results for all VIP gene tran-

scripts are presented in Supplementary Table 1

(Supplemental digital content 1, http://links.lww.com/FPC/
B308).

Genome-wide results
In the four age group analysis, a total of 19 transcripts

exhibited a KW q value less than 0.05, whereas 1140

transcripts exhibited a trend (Spearman correlation)

q value less than 0.05. However, no transcript exhibited

a KW q value less than 0.05 and only one transcript

(ENST00000522096 of gene CTC-455F18.3) exhibited a

trend q value less than 0.05 in the three age group ana-

lysis. With respect to the KW test, six of the 19 significant

candidates from the four age group analysis exhibited

P values less than 0.001 in the three age group analysis

(Table 3). These six transcripts involved genes ADCY1,
PTPRD, CNDP1, DCAF12L1 and HIP1, with all tran-

scripts showing an increase in mean TPM expression

levels in the older age groups, with the exception of

DCAF12L1 (ENST00000371126). The data for these six

transcripts are presented in Fig. 2b.

A heatmap of the transcripts with a P value less than 0.0001

(either trend test or KW test based on the four age group

analysis) revealed that samples separated into two main

clusters (Fig. 3a). The first cluster group contained all 13

participants from the youngest age group, along with four

participants from age group 2 and one participant from each

of the older age groups. Additionally, this cluster contains

all but three participants from the tissue location UMB site.

The second cluster, in contrast, contained no participants

from the youngest age group and no participants from the

UMB tissue site. To assess robustness of the genome-wide

transcriptome analysis findings to possible confounding

between tissue site and age, a heatmap constructed using

only the genes with P value less than 0.05 in the three age

group analysis is displayed in Fig. 3b (i.e. sensitivity ana-

lysis). As the figures illustrate, the separation between the

age groups is less pronounced in Fig. 3b, as compared with

Fig. 3a. However, the key thing to note is that the age

effects do not seem to be confounded with tissue site and

that age group 2 separates from age groups 3 and 4 in this

set of genes.

Pathway analysis results
GS analysis based on the results from the four age group

analysis found seventeen KEGG pathways with P value

less than 0.002. Of these pathways, the renin–angiotensin

Table 2 Very important pharmacogenes with P value up to 0.01 for trend or categorical tests

Mean TPM Four age group analysis Three age group analysis

Transcript ID Gene symbol AG 1 AG 2 AG 3 AG 4 ρ Trend P KWP ρ Trend P KWP

ENST00000265724 ABCB1 3.19 6.80 7.56 9.18 0.59 1.4E−05 4.6E−04 0.23 2.0E−01 3.9E−01
ENST00000543898 ABCB1 0.88 1.75 2.20 2.09 0.42 3.1E−03 1.8E−02 0.17 3.5E−01 5.3E−01
ENST00000428043 ACE 0.06 0.08 0.26 0.27 0.39 6.4E–03 4.9E–02 0.34 4.7E− 02 1.0E− 01
ENST00000510055 ADH1C 1.77 9.25 6.43 10.22 0.45 1.4E−03 8.2E−03 0.12 5.0E−01 6.3E−01
ENST00000515683 ADH1C 15.30 99.93 83.74 115.74 0.50 3.6E−04 1.7E−03 0.10 5.6E−01 6.0E−01
ENST00000374391 ALOX5 0.95 1.28 1.39 1.81 0.41 3.8E−03 4.6E−02 0.30 8.0E−02 2.0E−01
ENST00000351666 BRCA1 0.02 0.49 0.85 0.97 0.48 6.8E−04 1.3E−03 0.10 5.9E−01 5.2E−01
ENST00000464755 CYP2C19 3.09 5.55 7.63 7.75 0.51 2.6E−04 4.6E−03 0.27 1.2E−01 2.4E−01
ENST00000463364 CYP3A5 6.72 13.10 14.75 16.82 0.39 7.0E−03 4.7E−02 0.17 3.3E−01 6.2E−01
ENST00000466061 CYP3A5 1.32 3.71 8.54 5.65 0.52 1.8E−04 2.5E−03 0.25 1.6E−01 1.9E−01
ENST00000481825 CYP3A5 3.94 10.39 13.40 15.67 0.42 3.3E−03 2.6E−02 0.19 2.7E−01 5.3E−01
ENST00000336374 CYP3A7 341.44 108.69 15.79 19.94 − 0.59 1.5E− 05 7.0E− 04 − 0.38 2.6E− 02 4.8E− 02
ENST00000467776 CYP3A7 124.65 30.03 5.29 4.92 − 0.57 3.0E− 05 1.6E−03 − 0.36 3.8E− 02 1.2E− 01
ENST00000477357 CYP3A7 46.98 15.85 5.42 3.58 −0.47 9.7E−04 1.7E−02 −0.25 1.5E−01 3.4E−01
ENST00000498080 CYP3A7 30.29 5.56 0.67 0.91 −0.61 5.6E−06 3.3E−04 −0.33 5.9E−02 1.2E−01
ENST00000592710 CYP4F2 3.32 2.56 1.61 1.63 −0.37 9.9E−03 6.1E−02 −0.16 3.6E−01 4.6E−01
ENST00000459688 EGFR 2.28 1.53 0.54 1.24 −0.30 4.1E−02 7.0E−03 0.10 5.8E−01 8.3E−02
ENST00000546081 F5 1.65 3.15 5.99 6.27 0.65 6.7E− 07 1.1E− 04 0.47 5.2E–03 1.2E− 02
ENST00000463574 HLA-B 9.96 3.35 3.46 2.48 −0.48 6.6E−04 5.8E−03 −0.17 3.4E−01 5.6E−01
ENST00000474381 HLA-B 5.21 1.10 1.27 1.24 −0.42 3.7E−03 1.8E−04 0.25 1.6E−01 3.2E−01
ENST00000498007 HLA-B 2.26 0.63 0.56 0.45 −0.46 1.0E−03 3.5E−03 −0.03 8.8E−01 9.9E−01
ENST00000286479 NAT2 4.77 10.09 9.11 15.27 0.50 3.9E−04 6.7E−03 0.29 9.3E−02 1.5E−01
ENST00000379046 NQO1 0.00 0.35 0.34 0.22 0.40 4.9E−03 1.9E−02 0.04 8.2E−01 7.8E−01
ENST00000449557 SCN5A 0.01 0.00 0.00 0.00 −0.40 5.9E−03 1.1E−02 −0.04 8.3E−01 5.7E−01
ENST00000457470 SLC22A1 0.48 0.70 4.44 1.52 0.55 7.0E− 05 9.6E− 04 0.39 2.2E− 02 1.2E− 02
ENST00000309983 TPMT 6.69 10.70 11.18 12.57 0.50 3.5E−04 4.4E−03 0.18 3.0E−01 5.5E−01
ENST00000535672 VDR 0.03 0.00 0.01 0.02 −0.29 4.6E−02 1.2E−03 0.33 5.4E−02 1.5E−01
ENST00000547065 VDR 0.03 0.00 0.01 0.02 −0.29 4.6E−02 1.2E−03 0.33 5.4E−02 1.5E−01

The genes bolded simultaneously had a P-value less than 0.01 in the four age group analysis and a P-value less than 0.05 in the three age group analysis.
ACE, angiotensin I converting enzyme; AG, age group; KW, Kruskal–Wallis test; TPM, transcripts per million.
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system pathway also achieved a P value of less than 0.05

in the three age group analysis (Table 4). No other

pathway achieved a P value smaller than 0.05 using the

results from the three age group analyses. The

renin–angiotensin system pathway contains 189 genes, of

which 77 genes were included in the GS analysis. Further

Fig. 2

(a) Plot of TPM values for transcripts in VIP genes CYP3A7 (ENST00000336374 and ENST00000467776), F5 (ENST00000546081),
ACE (ENST00000428043) and SLC22A1 (ENST00000457470) by age group. (b) Plot of TPM values for transcripts in genes ADCY1
(ENST00000297323), PTPRD (ENST00000358503), CNDP1 (ENST00000358821 and ENST00000584004), DCAF12L1
(ENST00000371126) and HIP1 (ENST00000420909). ACE, angiotensin I converting enzyme; TPM, transcripts per million.
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Table 3 Results from four group analysis based on Kruskal–Wallis false discovery rate q value of less than 0.05

Mean TPM Four age group analysis Three age group analysis

Transcript ID Gene symbol AG 1 AG 2 AG 3 AG 4 ρ Trend P Trend Q KWP ρ Trend P KWP

ENST00000297323 ADCY1 0.32 1.11 2.33 3.82 0.83 3.6E–13 2.3E–08 5.2E–07 0.69 5.4E–06 3.6E–04
ENST00000335393 FAM129C 0.05 0.00 0.00 0.00 −0.67 3.0E–07 9.7E–04 5.4E–07 – – –

ENST00000358503 PTPRD 0.12 0.74 1.48 1.84 0.85 3.7E–14 4.9E–09 2.1E–07 0.68 7.9E–06 3.5E–04
ENST00000290341 IGF2BP1 1.96 0.05 0.01 0.01 −0.78 9.1E–11 3.1E–06 8.8E–07 −0.50 2.9E–03 6.8E–03
ENST00000216446 PLEK2 0.33 2.56 4.90 5.93 0.76 4.9E–10 9.1E–06 2.7E–06 0.46 5.6E–03 2.3E–02
ENST00000358821 CNDP1 0.12 0.90 3.12 3.60 0.77 3.4E–10 7.5E–06 2.5E–06 0.55 7.4E–04 2.4E–03
ENST00000416167 IGF2 17.67 0.35 0.08 0.02 −0.73 4.2E–09 5.1E–05 2.5E–06 −0.34 4.8E–02 1.3E–01
ENST00000584004 CNDP1 0.05 0.50 1.41 2.02 0.78 9.5E–11 3.1E–06 2.8E–06 0.59 2.7E–04 3.2E–03
ENST00000258729 IGF2BP3 0.90 0.07 0.00 0.01 −0.70 5.4E–08 3.5E–04 5.8E–06 −0.36 3.4E–02 3.1E–02
ENST00000259455 GABBR2 0.47 0.02 0.03 0.01 −0.53 1.5E–04 3.1E–02 6.6E–06 0.14 4.3E–01 5.8E–02
ENST00000264773 KCNN2 0.05 0.53 0.66 1.24 0.75 1.7E–09 2.4E–05 4.0E–06 0.41 1.7E–02 6.1E–02
ENST00000368171 CD1D 0.54 1.87 3.26 2.60 0.70 5.9E–08 3.5E–04 6.4E–06 0.29 1.0E–01 8.2E–02
ENST00000371126 DCAF12L1 0.36 0.06 0.01 0.00 − 0.76 7.5E–10 1.2E–05 4.2E–06 − 0.57 4.3E–04 2.4E–03
ENST00000381389 IGF2 0.91 0.01 0.01 0.00 −0.64 1.3E–06 2.6E–03 5.8E–06 −0.13 4.8E–01 6.5E–01
ENST00000411754 H19 115.49 8.36 3.45 1.08 −0.71 2.0E–08 1.7E–04 6.2E–06 −0.32 6.5E–02 1.1E–01
ENST00000412788 H19 133.00 10.43 4.67 5.15 −0.68 1.6E–07 6.6E–04 5.5E–06 −0.19 2.7E–01 2.7E–01
ENST00000420909 HIP1 0.24 0.72 1.65 2.25 0.77 2.3E–10 6.0E–06 4.7E–06 0.67 1.7E–05 6.7E–04
ENST00000569275 LINC00890 0.12 6.97 5.36 1.67 0.41 4.1E–03 1.3E–01 4.7E–06 −0.37 3.1E–02 3.3E–02
ENST00000442037 H19 678.55 45.14 21.75 20.12 −0.69 6.6E–08 3.7E–04 8.2E–06 −0.26 1.4E–01 2.6E–01

Bolded genes where trend P-value based on three group analysis had P value of less than 0.001 and results consistent with results from four group analysis.
AG, age group; KW, Kruskal–Wallis test; TPM, transcripts per million.

Fig. 3

(a) Heatmap of transcripts from genome-wide analysis with a P value less than 0.0001 from four age group analysis; (b) Heatmap of transcripts from
genome-wide analysis with a P value less than 0.0001 from three age group analysis (c) Heatmap of transcripts from the renin–angiotensin system
pathway with a P value less than 0.05 from four age group analysis and/or three group analysis.

Pediatric liver pharmacogenomics Meier et al. 91



assessment of the renin–angiotensin system found that

the set of transcripts in this pathway partially separated

the participants into two groups. Heatmaps of transcripts

from the renin–angiotensin system pathway with P value

less than 0.05 exhibited partial separation of participants

according to age (Fig. 3c), with higher TPM expression

levels for genes in the GS observed in the oldest age

groups (age group 3 and 4). The cluster of eight partici-

pants from age group one (first cluster on the left of the

heatmap) cleanly separated from the other participants;

however, this also consists of samples from a single tissue

site. To assess robustness of the finding of the

renin–angiotensin pathway, we have added a notation to

the left side of the heatmap that denotes whether a

gene transcript had a P value less than 0.05 in both the

three and four age group analyses (yellow) or whether the

transcript only had a P-value less than 0.05 in the four

age group analysis (black). Of the 23 pathway transcripts

with P value less than 0.05 from the four age group

analysis, nine transcripts showed a similar relationship in

the analysis of only three age groups (P< 0.05). Genes

with significant transcripts (P< 0.05) in both analyses

include MME, KLK2, ANPEP, angiotensin II receptor

type 1 (AGTR1) and PREP (Fig. 3c).

Discussion
Little research has been completed to look at the age-

related changes in the liver transcriptome over the

developmental period newborn to adolescence.

Therefore, we set out to determine pharmacogenes (i.e.

VIPs) that change over childhood development, followed

by a secondary agnostic analysis assessing changes tran-

scriptome wide. With respect to the analysis of the VIPs,

we found some evidence for transcripts in genes F5,
ACE, SLC22A1 showing increased expression over the

development period (Table 2 and Fig. 2a). F5, or coa-
gulation factor V, is a critical gene involved in blood

coagulation. This gene has been extensively studied,

with over 400 validated genetic variants, of which 22

result in amino acid change, including the 1691G>A

substitution (i.e. factor V Leiden), which prevents deac-

tivation of coagulation factor V by activated protein C

[18]. Currently there are seven FDA drug warning labels

related to F5 deficiency, including the drug eltrombopag

used in the treatment of low platelet counts, as patients

may experience thromboembolic events. ACE or ACE1 is

an enzyme involved in the conversion of angiotensin I to

angiotensin II, where angiotensin II is involved in blood

pressure control. ACE is also a key component in the

renin–angiotensin–aldosterone system. In addition, GS

analysis determines ontogeny-related transcriptomic

changes in the renin–angiotensin pathway (Table 4), with

lower expression of the pathway, in general, observed in

liver samples from younger participants (Fig. 3c). The

renin–angiotensin pathway is a complex pathway con-

sisting of over 150 genes, of which many genes beyond

ACE were found to change in the liver over childhood

development, including genes MME (P= 1.9× 10− 7 four

age group, P= 0.0025 three age group) and AGTR1
(P= 0.002 four age group, P=0.007 three age group),

both of which showed increased expression over devel-

opment (Fig. 3c). MME is a type II transmembrane gly-

coprotein that encodes for the protein CD10, for which a

previous study found that protein CD10 expression was

absent in livers from infants and children less than

24 months of age [19]. AGTR1, associated with essential

hypertension and renal dysplasia, has previously been

reported to have higher expression in adult mice and rats

compared with fetal and neonate animals [20,21].

Considering that this pathway plays a central role in

blood pressure and plasma sodium concentration [22] and

our observation that ACE,MME and AGTR1 expression is

increasing over the spectrum of childhood development,

this finding could potentially impact the dosing of an

entire class of drugs known as ACE-inhibitors in pediatric

patients. Currently, there are no drug labeling notes

related to variation in the expression of or mutation in

these three genes.

Our findings for increased mRNA expression of SLC22A1
over childhood development were also reported in other

studies. Burgess et al. [23] observed increase in SLC22A1
(solute carrier family 22 member 1) mRNA expression in

liver samples from fetal and pediatric participants.

However, they did not observe any difference in

SLC22A1 expression between pediatric and adult livers.

In addition, Hahn et al. [24] found a significant, steady

increase in SLC22A1 protein expression during the

development of children from neonates to 12 years of

age, whereas Prasad et al. [25] observed age-related

Table 4 Gene sets with empirical P value of less than 0.002 based
on four age group analysis

Gene set name
Gene
set size

Pathway
coverage (%)

Gene set P
from three age
group analysis

Renin–angiotensin system 189 41 0.03
Ovarian steroidogenesis 440 43–46 0.21
Arginine and proline
metabolism

409 53–56 0.21

Malaria 362 43–45 0.22
Hematopoietic cell lineage 764 43–46 0.24
Protein digestion and
absorption

712 36–38 0.30

Dilated cardiomyopathy 922 37–39 0.37
Antigen processing and
presentation

536 56–58 0.41

Proteoglycans in cancer 2035 52–55 0.41
Prostate cancer 946 51–53 0.49
GABAergic synapse 727 38–40 0.53
Melanoma 619 46–48 0.54
Insulin secretion 768 39–40 0.65
Bile secretion 572 53–56 0.77
Glycosphingolipid biosynthesis
– lacto and neolacto series

235 38–40 0.85

Vitamin B6 metabolism 45 82 0.87
Nitrogen metabolism 115 49–53 0.88

One gene set found to have P<0.05 in analysis of three age groups (bolded)
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changes of hepatic drug transporters in livers between

neonates and older age groups.

The last gene we observed with borderline significant age-

related expression changes was CYP3A7. No only did two

transcripts in this gene meet this criterion, but the overall

group means of all CYP3A7 transcripts showed a decreasing

trend with age (Supplementary Table 1, Supplemental digital

content 1, http://links.lww.com/FPC/B308). Decreased expres-

sion of CYP3A7 between human fetal and postnatal liver, as

well as, with increasing postnatal age is well recognized within

the drug metabolism community. The fact that this trend was

also observed in the limited number of samples investigated

in this pilot study is consistent with previous investigations,

and it suggests that genes showing association in both the

three and four group analyses show promise to correspond to

real associations that could potentially be relevant in pediatric

pharmacodynamics [11]. FMO1 neither met the criterion nor

showed a consistent trend between transcripts, even though a

similar profile than for the former gene would be expected. It

is unclear whether this is a direct result of the confounding or

attributable to a different cause.

The analysis of genome-wide changes detected the fol-

lowing transcripts (genes) with significant changes in

mRNA expression (KW q< 0.05 based on four age group

analysis) that were also observed in the sensitivity analysis

(Table 3): ENST00000297323 (ADCY1), ENST00000358503

(PTPRD), ENST00000358821 (CNDP1), ENST00000371126

(DCAF12L1), and ENST00000420909 (HIP1). All but the

transcript in DCAF12L1 showed positive age-related

changes in expression levels. Recently, a genome-wide

association study found genetic variants in and near

PTPRD to be associated with the efficacy of hypertension

drugs trandolapril and verapamil [26]. Because of the

exploratory nature of the transcriptome-wide analyses,

future work is needed to replicate these results in a larger

set of pediatric liver samples.

The strengths of this study include the comprehensive

assessment of mRNA changes using RNA sequencing

technology and the use of tissue samples from four age

groups spanning less than 1–18 years of age. However, a

significant limitation of the study was the fact that sam-

ples from the youngest age group were primarily from

one tissue source site, and therefore raise the possibility

of confounding of differential expression results by tissue

site. In addition, we chose to combine neonates and

infants less than 1 year of age into one group because of

sample size limitations. Thus, our ability to detect

changes in transporter expression was limited compared

with when analysis is restricted to the first few months of

life [27]. Although the CYP3A7 expression results dis-

cussed above are consistent with true age-related differ-

ences in expression, to assess the potential confounding

effect of tissue source on the observed data, sensitivity

analyses were completed, in which the association ana-

lyses were completed with the youngest age group

removed from the analysis, with the goal of looking for

consistency of association (e.g. similar association find-

ings) observed across the two analyses. The fact that

overall analyses based on the full data set lead to more

significant candidates than the reduced analyses can be

explained by the fact that larger sample size increases

statistical power, but also by the fact that samples from

the UMB site seem to differ the most from other samples

and confound age group one.

Conclusion
Despite complications caused by confounding with site,

this research provides preliminary evidence for age-

related changes in transcriptional liver profiles for

important pharmacogenes in human liver. Changes

appeared to be more profound the younger a patient was,

specifically noticeable in children younger than 6 years of

age. Within the set of genes classified as VIPs, a handful

of candidates of notable interest were identified

(Table 2), of which the four genes (F5, ACE, SLC22A1,
CYP3A7) showed the most promise as developmentally

regulated genes. Pathway analysis suggested that tran-

scription in the renin–angiotensin pathway could be

significantly affected by age. Additional research is nee-

ded to validate these findings.
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