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Normal aging causes profound changes of structural degeneration and glucose
hypometabolism in the human brain, even in the absence of disease. In recent years,
with the extensive exploration of the topological characteristics of the human brain,
related studies in rats have begun to investigate. However, age-related alterations of
topological properties in individual brain metabolic network of rats remain unknown. In
this study, a total of 48 healthy female Sprague–Dawley (SD) rats were used, including
24 young rats and 24 aged rats. We used Jensen-Shannon Divergence Similarity
Estimation (JSSE) method for constructing individual metabolic networks to explore age-
related topological properties and rich-club organization changes. Compared with the
young rats, the aged rats showed significantly decreased clustering coefficient (Cp) and
local efficiency (Eloc) across the whole-brain metabolic network. In terms of changes in
local network measures, degree (D) and nodal efficiency (Enod) of left posterior dorsal
hippocampus, and Enod of left olfactory tubercle were higher in the aged rats than in
the young rats. About the rich-club analysis, the existence of rich-club organization in
individual brain metabolic networks of rats was demonstrated. In addition, our findings
further confirmed that rich-club connections were susceptible to aging. Relative to the
young rats, the overall strength of rich-club connections was significantly reduced in the
aged rats, while the overall strength of feeder and local connections was significantly
increased. These findings demonstrated the age-related reorganization principle of the
brain structure and improved our understanding of brain alternations during aging.

Keywords: aging, PET, graph theory, metabolic networks, rich-club organization

INTRODUCTION

The brain is a dynamic system that can be modeled as a complex network of structurally
interconnected elements (Bullmore and Sporns, 2009). Most studies have shown that brain
function depends on the topologic organization of the entire brain network, rather than individual
regions or connections (Sporns et al., 2005; Moon et al., 2015, 2017). There are normal
physiologic and psychologic changes that occur as people age, such as gait and mobility problems
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(Cruz-Jimenez, 2017) and decline in executive functions and
memory (Kirova et al., 2015). Characterizing changes of the
brain network is invaluable to increasing our understanding of
age-related decline, even in the absence of disease.

Using graph theoretical tools, the brain can be modeled as
a series of interactive networks composed of nodes and edges.
Brain regions are nodes of the network, and the structural or
functional connections between nodes are edges of the network
(Kaplan et al., 2019). Global structure parameters can reveal
the organization of the entire network, while regional structure
parameters can capture the contributions of brain regions
(Sporns et al., 2007). It is worth noting that there is a robust hub
structure in the brain network, which plays a central role in the
whole network to promote information integration and global
communication (van den Heuvel and Sporns, 2011, 2013). They
are considered as “brain hubs” and together form a higher-level
of organization called “rich-club” (Colizza et al., 2006; Zamora-
López et al., 2010). More importantly, the brain regions in the
rich-club structure are more likely to be interconnected.

In recent years, with the extensive exploration of the
topological characteristics of human brain, rodent studies have
begun to shed light on the function of such complex network
organization. Some studies have confirmed that there is an
obvious rich-club structure in the functional brain networks of
rats, just as in the human brain (Liang et al., 2018). However,
studies on topological properties and rich-club architecture of
metabolic brain networks in rodents are still very scarce and need
to be further investigated.

(18F) Fluorodeoxyglucose with positron emission
tomography (18F-FDG PET) is a valuable tool for detecting
brain structural changes. Currently, most studies on constructing
metabolic networks are based on group-level data. In the
current study, we collected 18F-FDG PET data in the young
and aged rats and constructed individual metabolic networks.
Using systematically graph theory methods to assess age-related
topological properties and rich-club organization changes
occurring in the rat individual brain metabolic networks.
Exploring the age-related reorganization mechanism of the
brain network is of great clinical significance for understanding
and identifying the functional decline and disease progression
caused by aging.

MATERIALS AND METHODS

Animals
In this study, a total of 48 healthy female Sprague–Dawley
(SD) rats were used, including 24 young rats and 24 aged rats.
The young rats were 8 weeks old and weighed 180–200 g,
and the old rats were 18 months old and weighed 350–380 g.
All rats were provided adequate water and food, and fed in
temperature-controlled laboratory with a 12-h light/12-h dark
cycle for 1 week. All rats were obtained from the Shanghai
Slack Laboratory Animal Limited Liability Company (Shanghai,
China). Prior to the formal study, this protocol was approved
by the Animal Ethical Committee of Shanghai University of
Traditional Chinese Medicine.

18F-Fluorodeoxyglucose With Positron
Emission Tomography /CT Acquisition
Positron emission tomography imaging was carried out on
a dedicated small animal PET/CTR4 bed (Siemens Inc.,
United States). Following an overnight fast, each rat was injected
through the tail vein with 0.5 mCi 18F-FDG 40 min before
scanning, and anesthetized with 5% halothane gas inhalation at
induction, followed by a 1.5% halothane gas maintenance dose
during scanning. The attenuation correction for the 18F-FDG
datasets was automatically performed to obtain a 128 × 128
matrix at the end of the acquisition period. The parameters of
PET/CT acquisition were as follows: current = 500 µA, spherical
tube voltage = 80 kV, and time = 492 s.

Data Preprocessing
The ImageJ software (Image Processing and Analysis in Java,
National Institutes of Health, Bethesda, MD, United States)
was used for data format conversion. The Statistical Parametric
Mapping 8 toolbox (SPM 81) was used for data preprocessing
(Ceccarini et al., 2013). First, converting PET/CT images from
the DICOM-format to the NIFTI-format. Second, we hand-
painted masks to obtain the skull-stripped brain images. Third,
according to a standard rat brain template (Schwarz et al.,
2006), the orientation of these images was modified by adjusting
parameters, and the origin correction was completed. Fourth,
the image voxels were magnified 10 times to meet the algorithm
requirements in SPM8 (Choi et al., 2015). Fifth, each brain PET
image was normalized to the standard brain space (Schwarz et al.,
2006). Finally, the 18F-FDG value of each voxel was divided
by the mean value of the entire brain to obtain the globally
normalized PET image maps (Hou et al., 2020; Wang et al., 2020).

Individual Metabolic Network
Construction
Jensen-Shannon Divergence Similarity Estimation (JSSE)
method was used for constructing individual metabolic networks
(Li et al., 2021, 2022). Briefly, this approach defined the similarity
between the probability distribution of the standard uptake
values of a group of voxels in a region of interest (ROI) with that
in another ROI as the metabolic connectivity between any pair of
brain regions in an individual brain metabolic network (Li et al.,
2022). In the present study, we defined the nodes of the brain
network by parcellating the brain into different ROIs according
to the standard rat brain template (Schwarz et al., 2006). Then,
the voxel intensity of each brain region was extracted from
the globally normalized FDG uptake maps, and the probability
density function of the corresponding region was estimated by
kernel density estimation (Duong, 2007). Next, we calculated the
Kullback–Leibler divergence (KLD) (relative entropy) of each
pair of brain regions, according to the mathematical equation
(Wang et al., 2020):

DKL(P | |Q) =

∫
x

(
P (x) log

P (x)
Q (x)

+ Q (x) log
Q (x)
P (x)

)
dx

1http://www.fil.ion.ucl.ac.uk/spm/
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where P and Q represent the probability density functions of
voxel intensities in two brain regions, the “| | ” operator indicates
“divergence.” The higher similarity of the probability density
functions between two ROIs, the nearer consistent functional
activity levels in two brain regions (Lin et al., 2021). However,
the KLD is not symmetric. Thus, referring to relevant literature
(Li et al., 2021), we defined the edges of the brain network as the
metabolic connections by JSSE, according to the mathematical
equation:

DJS(P| |Q) =
1
2
[DKL(P| |M)+ DKL(Q| |M)]

where M = 0.5 × (P + Q) and DKL( | ) are the KLD.
Accordingly, we applied the JS divergence (JSD) to construct the
adjacency matrix, where the corresponding element represented
the metabolic connection strength. Finally, the 96× 96 metabolic
correlation adjacency matrix was referred as the individual brain
metabolic network.

Network Topology Metrics
The GRETNA toolbox2 was used to perform the graph theory
analysis. Each absolute matrix was restricted at a range of
densities (0.1–0.4, interval of 0.01) to generate a set of binary
undirected networks. And the topological metrics of metabolic
brain networks were calculated at each density.

To describe the global topologic properties of the individual
metabolic network, the following parameters were calculated:
path length (Lp), clustering coefficient (Cp), global efficiency
(Eglob), local efficiency (Eloc), and small-worldness. In a network,
the Lp is the average shortest Lp overall pair of nodes in
this network. First, converting the metabolic connection matrix
was transformed to the connection length matrix. The Dijkstra
algorithm was then used to calculate the shortest distance
between pairs combinations of brain regions from the connection
length matrix (Watts and Strogatz, 1998). The Cp of each node
can be defined as the ratio of the number of edges that exist
between any two neighbors of the node to the number of all
possible edges between such neighbors. The Cp value of the
network can be obtained by averaging the Cp values of all nodes
in the network (Watts and Strogatz, 1998). The Eglob is defined
as the estimation of the efficacy of information transfer between
two nodes that are far apart in the network (Latora and Marchiori,
2001). The Eloc plays a similar evaluation role to Cp, which refers
to the average efficiency of local subgraphs (Latora and Marchiori,
2001). Small-worldness index (σ) is defined as the value of
normalized Cp (γ) divided by normalized Lp (λ) (Humphries and
Gurney, 2008; Li and Huang, 2020). By comparing the Cp and Lp
to the mean Cprand and Lprand of 5,000 random networks, the γ

and λ were calculated.
For the regional topologic prosperities, the following

parameters were calculated at each node of each graph:
betweenness centrality (BC), degree (D), and nodal efficiency
(Enod). The BC is the number of shortest-paths through the
network that pass through the node (Stam and Reijneveld, 2007).
A node’s D is defined as the number of edges connected to the

2http://www.nitrc.org/projects/gretna/

node, reflecting the importance of the node in the network
(Rubinov and Sporns, 2010). The Enod represents the efficiency
of information transfer between the neighbors of a particular
node (Qba et al., 2021).

Rich-Club Organization
Rich-club organization for each rat at a range of densities (0.1–
0.4, interval of 0.01) was estimated using the GRETNA toolbox.
The rich-club phenomenon is defined as the tendency of high
connectivity between high-degree nodes, such as hub regions
(Colizza et al., 2006). The calculation formula is:

8norm
(
k
)
=

8
(
k
)

8rand
(
k
)

where the rich-club coefficient 8(k) is calculated by the following
three steps: First, a rich-club subnetwork was obtained by
extracting the nodes with degree greater than predefined k
and the edges among them. Next the total number of edges
(E) and nodes (n) within rich-club subnetwork was counted.
Third, the 8(k) is calculated as the ratio of E to number of
all possible connections among this set of nodes [n × (n−1)]
(McAuley et al., 2007; van den Heuvel and Sporns, 2011).
In this study, we normalized 8(k) relative to 1,000 random
networks with the same size and similar connectivity distribution
as the real network. The overall random rich-club coefficient
[8rand(k)] was computed as the average 8(k) over the 1,000
random networks. The brain network would be treated as a
rich-club organization when the normalized rich-club coefficient
[8norm(k)] is greater than 1.

Definition of Hub Regions and Three
Connection Types
Nodes with high degree (k) were classified as network hubs. In
this study, considering the aging-related brain alterations in aged
rats, hub regions were defined only by nodes with high degree of
young rats (Shu et al., 2017). We selected the top 10 (10%) nodes
with the highest k as hub regions based on the average individual
metabolic network of young rats (Wang et al., 2021). After
dividing hub brain regions and non-hub brain regions, edges
of the metabolic network were classified into three connection
types: (1) rich-club connections, which link hubs and hubs; (2)
feeder connections, which link hubs and non-hubs; and (3) local

TABLE 1 | Intergroup differences of global network properties.

Global network properties Young group
(n = 24)

Aged group
(n = 23)

p-values

Path length 0.623 ± 0.019 0.621 ± 0.023 0.659

Clustering coefficient 0.212 ± 0.003 0.209 ± 0.004 0.004

Global efficiency 0.151 ± 0.003 0.152 ± 0.004 0.587

Local efficiency 0.248 ± 0.003 0.246 ± 0.005 0.041

σ 0.497 ± 0.045 0.505 ± 0.057 0.575

γ 0.598 ± 0.051 0.601 ± 0.063 0.878

λ 0.359 ± 0.007 0.354 ± 0.008 0.056

Data are expressed as the mean ± SD.
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FIGURE 1 | The results of global properties between the young rats and aged rats. And p < 0.05 indicates significant differences.

connections, which link non-hubs and non-hubs. Then, the sum
of the edge weights for each connection type was calculated as the
connectivity strength (Yan et al., 2018).

Statistical Analysis
To further simplify the statistical analysis, the area under the
curve (AUC) over the density range of each topological metric
was calculated and then employed as a scalar value. Statistical
analyses were performed employing two-sample t-tests for group
comparison. For the global network analysis and the connectivity
strength analysis, the 0.05 level (p < 0.05) was accepted for
statistical significance. And the significance threshold for regional
network analysis was set at p < 0.05 and adjusted for multiple
comparisons using Bonferroni correction.

RESULTS

Animals
All rats were in a normal and stable active state before scanning.
We finally used the data of 23 aged rats and 24 young rats for
statistical analysis, because one of the 24 aged rats was excluded
for poor image quality.

Network Topological Properties
Compared with the young rats, Cp and Eloc were significantly
lower in the aged rats (p < 0.05) (Table 1 and Figure 1). Out of
the 96 regions in the aged rats, left posterior dorsal hippocampus
showed significantly higherD and Enod, and left olfactory tubercle
had significantly higher Enod than those of the young rats.
However, no node was found to be significantly different in terms
of BC (Table 2 and Figure 2).

Rich-Club Organization
The rich-club organization of individual metabolic network
[8norm(k) > 1] was found for both young rats and aged rats under
the specific range of density (Figure 3).

Rich-Club Regions
Ten hub regions were identified, including bilateral caudate
putamen (CPu), dorsal midline thalamus (dMT), ventromedial
thalamus (VMT), zona incerta (ZI), as well as right nucleus
accumbens core (Acbc) and olfactory tubercle (ON) (Figure 4).

Group Differences in Metabolic
Connectivity
Relative to the young rats, the aged rats exhibited significantly
increased overall strength in feeder and local connections
(feeder: p < 0.001; local: p < 0.001), whereas rich-club
connections strength decreased significantly in the aged rats
(p = 0.001) (Figure 5).

DISCUSSION

Interest in characterizing functional, structural, and metabolic
brain alterations during normal aging is growing. Understanding
the underlying mechanisms across the whole-brain networks
may help us better understand age-related changes. In this
study, a graph-theoretical approach was applied to study the
topological organization of individual brain metabolic network
in the young rats and aged rats. There were three main results:
(1) compared with the young rats, Cp (p = 0.004) and Eloc
(p = 0.041) significantly decreased in the aged rats; (2) for regional
network properties, the aged rats showed significantly higher

TABLE 2 | Intergroup differences of regional network properties.

Brain regions p-Values

Betweenness
centrality

Degree Nodal efficiency

Aged rats > Young rats

Posterior dorsal hippocampus_L – <0.001 <0.001

Olfactory tubercle_L – – <0.001
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FIGURE 2 | The nodes showed significant changes in regional properties between the young rats and the aged rats. (A) Red spheres indicate nodes with increased
nodal properties in the aged rats. (B) The bar plots display the mean (standard error) of degree and nodal efficiency values of pdHIP.L and OT.L for each group.
pdHIP.L, left posterior dorsal hippocampus; OT.L, left olfactory tubercle.

FIGURE 3 | The characteristic rich-club organization of individual metabolic networks in young rats and aged rats.
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FIGURE 4 | The rich-club regions and three types of connections. (A) Ten rich-club members (red nodes) across the young group; (B) the red nodes and the yellow
nodes represent hub and non-hub regions respectively. The dark red lines represent rich-club connections; the light red lines represent feeder connections and the
yellow lines represent local connections. Cpu, caudate putamen; dMT, dorsal midline thalamus; VMT, ventromedial thalamus; ZI, zona incerta; Acbc, nucleus
accumbens core; ON, olfactory tubercle.

FIGURE 5 | Between-group differences of overall strength in rich-club, feeder, and local connections.

D and Enod in left posterior dorsal hippocampus (p < 0.001),
and Enod in left olfactory tubercle (p < 0.001); and (3) relative
to the young rats, the overall strength of rich-club connections

was significantly reduced (p = 0.001) in the aged rats, while the
overall strength of feeder and local connections was significantly
increased (p < 0.001).
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Abnormalities in functional segregation (Cp and Eloc) are key
features of brain network disorganization (Jiang et al., 2020).
The Cp reflects the degree of clustering trend of nodes. The Eloc
represents the efficiency of information exchange in the local
network, which is similar but not equivalent to its Cp (Latora
and Marchiori, 2001; Rubinov and Sporns, 2010). In this study,
relative to the young rats, the aged rats showed significantly
decreased Cp and Eloc across the whole-brain metabolic network.
These results were in line with previous studies reporting
lower local information transfer in aged subjects. Goh (2011)
demonstrated that biological aging was consistently associated
with the network dedifferentiation, which was manifested as
decreased intra-network connectivity, as well as increased inter-
network connectivity. That is, these communities themselves
in brain network are increasingly dispersed with increasing
age (Bethlehem et al., 2020). This might be the main reason
for the decrease of Cp and Eloc of the whole-brain metabolic
network. Our findings confirmed that decreased functional
segregation was also a feature of the rats’ brain metabolic network
disorganization in normal aging, and further supported that the
brain network tended to develop into a random network with low
Cp during normal aging (Bullmore and Sporns, 2009).

In terms of changes in local network measures, D and
Enod are two indicators of the importance of a node (Chen
et al., 2019). The D is the number of neighbors of the node
(Bullmore and Bassett, 2011), and the Enod quantifies information
communication of each node within the network. Our results
showed that compared with the young rats, D and Enod of
left posterior dorsal hippocampus were higher in the aged
rats, indicating that the number of neighbors of left posterior
dorsal hippocampus increased significantly, and its information
transmission efficiency in the entire network was increased.
The dorsal parts of the hippocampus receive signals from the
visual, somatosensory and auditory cortices (Moser and Moser,
1998). Trompoukis et al. (2021) investigated the properties
changes of synaptic transmission and neuronal excitability in the
dorsal and ventral hippocampus of aged and young rats. Their
research demonstrated that the dorsal hippocampus appeared
able to promote transmission of low-frequency stimulus and
inhibit transmission of high-frequency stimulus in young rats,
while the dorsal hippocampus of old rats could not select
the corresponding information transmission mode according to
different frequencies. In this study, compared with the young rats,
the dorsal hippocampus of the aged rats also showed significantly
changes in information transmission. In addition, Enod of left
olfactory tubercle in the individual brain metabolic networks of
the aged rats was higher, while its D did not change significantly.
Left posterior dorsal hippocampus and left olfactory tubercle in
the aged rats, as non-hubs, showed significantly increased Enod,
which was consistent with the result of feeder connections.

Most human researches have demonstrated that the rich-
club structure is a basic and common feature of large-scale
brain networks that exist throughout lifespan (Colizza et al.,
2006; McAuley et al., 2007). Unfortunately, abnormal rich-club
organization and reduced rich-club connective strength have
been observed in the human brain with normal aging (Baggio
et al., 2015; Escrichs et al., 2021). Our results gave evidence to

the existence of the rich-club organization in rodents’ metabolic
brain networks. Depending on the hub regions, we evaluated
communication efficiency in the rat metabolic networks by
calculating the strength of three types of connections. The results
showed that relative to the young rats, the strength of the rich-
club connections decreased significantly in the aged rats, while
both the strength of the feeder and local connections increased
significantly. These results suggested impaired connectivity in the
rich-club organization, which was consistent with the human-
related studies. This may be due to the brain’s tendency to
strengthen connections with non-clubs over those with rich-
hubs during normal aging (Zhao et al., 2015). Given that these
changes reflect increased integration and importance of non-hub
regions, we speculate that our results are related to the emergence
of compensatory mechanisms. In addition, these results were
supported by previously reported researches suggesting that rich-
club connections were more impressionable to aging (Zhao et al.,
2015) and were consistent with our regional efficiency.

In addition, it is a key question to consider whether the
results of animal research can be helpful for clinical intervention.
At present, pharmacological therapies and rehabilitation are
commonly used for the treatment of degenerative changes
and diseases in the elderly. However, these approaches effect
only a modest improvement (Li et al., 2020). Therefore, new
non-pharmacological strategies are needed to slow age-related
decline and reduce disease-related functional impairment
in older adults (Sanches et al., 2021). Effective therapeutic
approaches in neurodegeneration should be able to operate
on the degenerative process itself or on brain plasticity
(Gutchess, 2014). Non-invasive brain stimulation (NIBS)
approaches have been shown to induce corrective plastic
changes by targeted stimulation of different brain regions
for prolonged periods (Merzenich et al., 2014). Furthermore,
some studies using NIBS have shown promise improving
cognitive processes related to memory and language in
normal aging (Reinhart and Nguyen, 2019). Based on our
findings, targeting modulation of the maladaptive brain
plasticity changes, such as strengthening connectivity and
network integrity in the rich-club organization and adjusting
the activity intensity of brain regions involving information
transmission, might be useful to promote degenerative
improvement in aged adults. We hope that the findings
from our preliminary study will provide foundational results
to inform the target of plasticity-based neuromodulation for
functional improvement in aged adults.

CONCLUSION

Applying 18F-FDG PET data to explore individual brain
metabolic network changes, this work provided new insights
into age-related brain changes in healthy and diseased rodents.
Our findings suggested abnormalities in topological properties
of individual brain metabolic networks in the aged rats as well
as impaired metabolic connectivity in the rich-club organization.
Further research will certainly improve our understanding of
brain alternations during aging.
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