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Abstract

Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis (PCM), the most prevalent systemic mycosis
that is geographically confined to Latin America. The pro-inflammatory cytokine IL-1b that is mainly derived from the
activation of the cytoplasmic multiprotein complex inflammasome is an essential host factor against opportunistic fungal
infections; however, its role in infection with a primary fungal pathogen, such as P. brasiliensis, is not well understood. In this
study, we found that murine bone marrow-derived dendritic cells responded to P. brasiliensis yeast cells infection by
releasing IL-1b in a spleen tyrosine kinase (Syk), caspase-1 and NOD-like receptor (NLR) family member NLRP3 dependent
manner. In addition, P. brasiliensis-induced NLRP3 inflammasome activation was dependent on potassium (K+) efflux,
reactive oxygen species production, phagolysosomal acidification and cathepsin B release. Finally, using mice lacking the IL-
1 receptor, we demonstrated that IL-1b signaling has an important role in killing P. brasiliensis by murine macrophages.
Altogether, our results demonstrate that the NLRP3 inflammasome senses and responds to P. brasiliensis yeast cells infection
and plays an important role in host defense against this fungus.
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Introduction

Paracoccidioides brasiliensis is a thermally dimorphic fungus that

causes paracoccidioidomycosis (PCM), a systemic granulomatous

mycosis that is endemic to South America, especially Brazil,

Argentina, Venezuela and Colombia [1,2]. In Brazil, PCM is the

tenth most common fatal chronic infectious disease and the

deadliest deep mycosis that is not associated with AIDS [3]. P.

brasiliensis grows as saprophytic mycelia that produce infective

conidia propagules, which are inhaled into the lungs where the

fungus transitions to the pathogenic yeast form. This step is

essential for the successful establishment of infection [4–6].

Once in the lungs, innate immune cells, such as resident

macrophages and dendritic cells, are the first line of defense that

interact with P. brasiliensis cells [7]. Such activity is based on the

recognition of conserved microbial structures, known as pathogen-

associated molecular patterns (PAMPs), by germline-encoded

pattern recognition receptors (PRRs) [8,9]. In particular, the

Toll-like receptors (TLRs) TLR-2, TLR-4 and TLR-9 as well as

the C-type lectin receptor (CLR) dectin-1 play a role in the

recognition of P. brasiliensis and the modulation of the immune

response [10–15]. The recognition of PAMPs by these PRRs leads

to the secretion of pro-inflammatory cytokines, including TNF-a,

IL-6 and IL-1b, which is mainly dependent on NFkB-promoted

transcription [7,16]. Remarkably, IL-1b is essential to the

inflammatory response to infections and is not released via the

classical endoplasmic reticulum-Golgi secretory pathway. IL-1b is

retained in the cytoplasm as an inactive form, known as pro-IL-1b,

which is proteolytically processed into the 17-kDa biological form

by the cysteine protease caspase-1 and then secreted by a poorly

characterized, unconventional protein secretion pathway [17].

Like other caspases, caspase-1 itself is produced as a pro-enzyme,

and its activation has been associated with nucleotide binding and

oligomerization domain (NOD)-like receptors (NLRs), an exten-

sive family of cytosolic PRR. Pro-caspase-1-processing NLRs form

a cytoplasmic multiprotein complex called the inflammasome,

which includes the adaptor protein ASC (apoptosis-associated

speck-like protein containing a C-terminal caspase recruitment

domain, CARD) [18,19]. Among the caspase-1-activating inflam-

masomes described [18], the most comprehensively studied is the

NOD-like receptor family, pyrin domain containing 3 (NLRP3)

inflammasome, which is activated by diverse stimuli, including

microbial products (e.g., muramyl dipeptides) and endogenous

danger signals [18,19]. Upon activation, NLRP3 recruits ASC,

which in turn recruits pro-caspase-1 to assemble the NLRP3

inflammasome, which leads to caspase-1 activation [18,19,20]. In

this manner, two separate signals control IL-1b release. The first

priming signal relies on PAMP recognition by PRRs, which directs
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pro-IL-1b transcription and translation via NFkB. In contrast, the

second activation signal, which is usually derived from danger

signals, involves pro-IL-1b cleavage by inflammasome-dependent

caspase-1 into a mature cytokine. Endogenous danger signals

include extracellular ATP, phagolysosomal damage, reactive

oxygen species (ROS) production and the induction of transmem-

brane ion fluxes [19,20].

The NLRP3 inflammasome senses several pathogens, including

bacteria, viruses and parasites [18]. Regarding fungi, the

opportunistic pathogens Candida albicans, Aspergillus fumigatus,

Cryptococcus neoformans and Trichophyton schoenleinii induce IL-1b
release via the NLRP3 inflammasome [21–26]. Notably, IL-1b
signaling via its receptor IL-1R1 (interleukin 1 receptor, type I)

and NLRP3 inflammasome components are essential for host

defense against C. albicans and C. neoformans [21,23,25]. Consider-

ing the role of the NLRP3 inflammasome in fungal infections and

that IL-1b release has been detected in phagocytes and mice

infected with P. brasiliensis [27–30], we aimed to evaluate whether

this primary fungal pathogen induces IL-1b production via

inflammasome-dependent caspase-1 activation in murine macro-

phages and dendritic cells. In this study, we demonstrated that IL-

1b production induced by the yeast cells of P. brasiliensis is

dependent on NLRP3 and caspase-1 activity in dendritic cells. In

addition, potassium (K+) efflux, ROS production, lysosomal

acidification and cathepsin B release are required for the

activation step of the inflammasome. Finally, we demonstrated

the importance of IL-1b signaling in controlling P. brasiliensis

intracellular growth in macrophage cells.

Methods

Ethics statement
All work was conducted with the approval of the Committee on

the Ethics of Animal Experiments of the University of Brasilia

(CEUA/UnB permit number: 54412/2011) according to the

National Council on Animal Experiments and Control (CON-

CEA-MCT-Brazil) guidelines.

Mice
C57BL/6 isogenic mice (8–10 weeks old) deficient in NLRP3

(NLRP32/2) or IL-1R1 (IL-1R12/2) and strain-matched wild

type (WT) controls were used in this investigation. Gene-deleted

mice were kindly provided by Prof. Dario S. Zamboni from

University of São Paulo, Ribeirão Preto, São Paulo, Brazil. Mice

were housed with food and water ad libitum.

Fungus
The yeast form of the highly virulent P. brasiliensis isolate 18 was

grown on Fava-Netto semisolid medium (0.3% protease peptone,

1% peptone, 0.5% beef extract, 0.5% yeast extract, 4% glucose,

0.5% NaCl and 1.6% agar, pH 7.2) for 7 days at 37uC before the

in vitro infection experiments. Viability was determined using Janus

Green B vital dye (Merck) and was always greater than 80%. To

maintain its virulence, the isolate was used after serial animal

passages.

Generation of bone marrow-derived macrophages
(BMDMs) and dendritic cells (BMDCs)

Bone marrow-derived cells were obtained as previously reported

[31]. Briefly, femurs and tibias were flushed with RPMI-1640 to

release the bone marrow cells. After erythrocyte lysis, the bone

marrow cells (26105 cells/ml) were seeded and cultured for 8 days

at 37uC in 9-cm non-tissue culture-treated Petri dishes in 10 ml/

dish of RPMI-1640 medium that contained 50 mM 2-mercapto-

ethanol. The medium was supplemented with 20 ng/ml murine

granulocyte-macrophage colony-stimulating factor (GM-CSF,

Peprotech) or 30% conditioned medium from macrophage

colony-stimulating factor-secreting L929 fibroblasts (M-CSF) to

obtain BMDCs and BMDMs, respectively. On day 3, another

10 ml of fresh complete medium that contained differentiation-

inducing cytokines was added to the culture. On day 6, only for

the BMDC cultures, half of the medium was changed. On day 8,

non- and loosely adherent BMDCs or firmly adherent BMDMs

were harvested and plated in complete RPMI medium for

experimental use. Flow cytometry evaluation indicated that those

cells cultured in GM-CSF were 81% positive for CD11c and

MHC class II, whereas the M-CSF cells were 91% positive for

CD11b and 84% positive for F4/80 (data not shown).

Infection of murine cell cultures with P. brasiliensis and
treatments

BMDM and BMDC monolayers derived from WT or knockout

mice were infected with 16106 P. brasiliensis yeast cells in 24-well

culture plates, which represented a yeast-to-cell ratio of 1:1

(multiplicity of infection, MOI: 1) as previously reported [14].

MOIs that are higher than 1 lead to murine cell death (data not

shown). Incubation with the fungus was conducted at 37uC in a

humidified 5% CO2 atmosphere for 24 h for both cytokine

quantification and fungicidal assays. Additionally, we tested a 6 h

incubation time, but IL-1b production peaked at the 24 h time

point. Using an MOI of 1, an average of 60% of the BMDCs and

50% of the BMDMs were engaged in phagocytosis of at least one

yeast cell by 6 h of incubation, which did not change significantly

at 24 h (data not shown) [14]. In some experiments, the

phagocytic cells were pre-treated (for 1 h) with either the NF-kB

inhibitors Bay11-7082 (5 mM) and celastrol (5 mM) (both from

InvivoGen), the cathepsin B inhibitor CA-074Me (50 mM) (Sigma-

Aldrich), the endosomal acidification inhibitor bafilomycin

(250 nM) (InvivoGen), the ATP-sensitive K+ channel inhibitor

glibenclamide (150 mM) (InvivoGen), KCL (100 mM) (Sigma-

Aldrich), ROS scavengers/inhibitors NAC (N-acetyl-L-cysteine)

(20 mM) or APDC (2R,4R)-4 aminopyrrolidine-2,4-dicarboxylic

acid) (100 mM) (both from Sigma-Aldrich), the caspase-1 inhibitor

AC-Y-VAD-CHO (50 mM) (Santa Cruz Biotechnology), the

caspase-8 inhibitor Z-IETD-FMK (50 mM) (R&D Systems), the

Author Summary

Paracoccidioidomycosis is a systemic disease that has an
important mortality and morbidity impact in Latin Amer-
ica. It mainly affects rural workers of Argentina, Colombia,
Venezuela and Brazil. Upon host infection, one of the most
important aspects that contribute to the disease outcome
is the initial interaction of the Paracoccidioides brasiliensis
fungus with the phagocytic cells and the induction of the
inflammatory process. Among several inflammatory medi-
ators, the cytokine interleukin-1b is of pivotal importance
in this complex process. Here, we demonstrate that P.
brasiliensis is sensed by the NLRP3 inflammasome, a
cytoplasmatic multiprotein complex that lead to the
processing and secretion of IL-1b. In addition, we
described the intracellular perturbations that may be
associated with NLRP3 activation such as potassium efflux,
production of reactive oxygen species, and lysosomal
damage. Finally, our work provides evidence for the
protective role of IL-1b during fungal infection of murine
macrophages.
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Syk inhibitor piceatannol (3,49,39,5-trans-trihydroxystilbene)

(25 mM) (InvivoGen) or the Myd88 inhibitory peptide Pepinh-

MYD (50 mM) (InvivoGen). Inhibitors that required reconstitution

were dissolved in distilled water, PBS or dimethyl sulfoxide

(DMSO). Regarding DMSO, an equivalent quantity of this vehicle

was added to the appropriate controls. In addition, the trypan blue

exclusion test was used to evaluate cell toxicity in the inhibitor

assays; however, no significant cell damage was observed (data not

shown). In some experiments, the cells were treated with LPS

(Escherichia coli serotype O111:B4) (100 ng/ml) (Sigma-Aldrich)

and/or ATP (5 mM) (InvivoGen). The treatment with LPS and

ATP was used as a positive control for NLRP3-mediated

inflammasome activation. Following 1 h of ATP treatment, the

medium supernatant was collected to measure the cytokine protein

levels by ELISA.

Cytokine measurements by enzyme-linked
immunosorbent assay (ELISA)

The cell-free supernatants of the BMDM and BMDC cultures

were harvested and stored at 220uC until the determination of

the IL-1b, TNF-a (DuoSet kit, R&D Systems) and IL-6 (Ready-

Set-Go! Kit, eBioscience) concentrations using ELISA. The

determination of intracellular pro-IL-1b was performed after

discarding the supernatant and lysing the cell monolayer by 2–3

freeze-thaw cycles. The cytokine quantification was performed

according to the manufacturer’s instructions. The data were

expressed as pg/ml 6 the standard deviation (SD) of two to

three independent experiments, which were conducted in

triplicate.

Fungicidal assay
BMDMs from WT, NLRP32/2 and IL1R12/2 C57BL/6

mice were infected with P. brasiliensis and treated, or not, with

ATP as described above. In addition, WT macrophages were

also treated with IFN-c (100 U/ml), as a control of the

fungicidal activation. The number of viable fungi in the cell

cultures was determined using colony-forming unit (CFU)

evaluation. Briefly, after the culture supernatants were removed

for nitric oxide determination, extracellular and weakly

adherent fungi were removed by washing with pre-warmed

RPMI. Macrophages were then lysed with distilled water. One

hundred microliters of the cellular suspensions and serial

dilutions were plated on brain-heart infusion agar (BHI, Difco),

which was supplemented with 4% horse serum and 5% P.

brasiliensis isolate 192 culture filtrate. The latter constitutes a

source of growth-promoting factor. The plates were incubated

at 37uC, and the colonies were counted after 5 days. The data

were expressed as CFU/ml 6 the SD of one experiment that

was representative of three experiments, which were performed

in triplicate.

Nitric oxide production by BMDMs
Nitric oxide (NO) production was measured by the accumula-

tion of nitrite in the supernatants of macrophages cultures using

Griess assay. Briefly, 100 ml of the supernatants collected were

mixed with an equal volume of Griess reagent (1% sulfanilamide,

0,1% naphthylene diamine dihydrochloride, 2,5% H3PO4) and

10 min later absorbance at 550 nm was determined. The nitrite

concentration was determined in reference to a standard curve of

NaNO2 diluted in RPMI medium. All determinations were

performed in triplicates and expressed as micromolar NO2. As a

control, macrophages infected with P. brasiliensis were treated or

not with 100 U/ml of IFN-c.

Statistical analyses
GraphPad Prism 5.0 (GraphPad Software) was used for the

statistical analyses. A paired two-tailed Student’s t-test was used,

and a p value #0.05 was considered statistically significant. In

addition, multiple group comparisons were conducted using one-

way ANOVA, followed by Bonferroni tests as appropriate.

Results

P. brasiliensis yeast cells induce inflammasome activation
in BMDCs but not in BMDMs

To investigate whether P. brasiliensis could induce IL-1b
secretion, murine BMDMs and BMDCs were infected with P.

brasiliensis yeast cells for 24 h, and mature IL-1b production was

measured in the culture supernatants using ELISA. The fungus

alone did not trigger IL-1b release in the BMDMs. In addition,

priming with LPS (100 ng/ml for 2 h) before the fungal infection

only poorly induced IL-1b production (Figure 1A). IL-1b release

requires pro-IL-1b synthesis, followed by its processing; therefore,

the lack of secretion of this cytokine may have resulted from the

incapacity of P. brasiliensis to induce pro-IL-1b or cytokine

maturation. To discriminate between these possibilities, we

verified pro-IL-1b production. Pro-IL-1b was detected in the cell

lysate using ELISA and was clearly produced in response to the

fungal infection alone (Figure 1B). In addition, a robust

production of mature IL-1b was observed in infected BMDMs

only after treatment with ATP, which is a specific NLRP3

inflammasome activator (Figure 1A) [18]. These results

indicate that P. brasiliensis can induce the priming but not

activation of the inflammasome in BMDMs. As a well-

characterized control [32], the cells that were primed with

LPS and treated with ATP exhibited high levels of IL-1b
production, whereas either LPS or ATP alone did not induce

IL-1b secretion (Figure 1A). Conversely, in BMDCs that were

infected with P. brasiliensis alone, as indicated by the substantial

amounts of mature IL-1b, the inflammasome machinery was

activated (Figure 2A). Notably, no increments in the IL-1b
levels were detected when ATP was added to the infected

culture, and LPS alone elicited IL-1b production in BMDCs

(Figure 2A). These results suggest that BMDCs differ from

BMDMs according to inflammasome activation requirements,

which have been recently revealed [33]. As expected, due to

significant IL-1b production, high levels of pro-IL-1b were

detected in the cell lysate of the BMDCs that were infected

with P. brasiliensis (Figure 2B). In fact, BMDCs produced nearly

two-fold higher pro-IL-1b levels compared with BMDMs

(compare Figure 2B with 1B). Additionally, the production of

the proinflammatory inflammasome-independent cytokines

TNF-a and IL-6 was analyzed. Exposure to the fungus and/

or LPS, regardless of the presence of ATP, induced the

secretion of these cytokines both in BMDMs and BMDCs

(Figure 1C, 1D and 2C, 2D).

Differential requirement for Myd88- and Syk-dependent
signaling in inflammasome priming in BMDMs and
BMDCs infected with P. brasiliensis

To clarify the nature of the PRRs that are used by BMDMs and

BMDCs to recognize P. brasiliensis PAMPs that can induce

inflammasome priming (pro-IL-1b production), we pretreated

the murine cells with the spleen tyrosine kinase (Syk) inhibitor

piceatannol and Pepinh-MYD, a Myd88 signaling inhibitor

peptide. After 1 h, the cell cultures were infected with P. brasiliensis

for an additional 24 h, and pro-IL-1b and TNF-a quantification

Inflammasome Activation by P. brasiliensis
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in the cell lysate and supernatant, respectively, was performed

using ELISA (Figure 3). Syk and Myd88 are protein adaptors that

are critically important to CLR and TLR signaling pathways,

which lead to NF-kB activation and proinflammatory cytokine

expression, including pro-IL-1b and TNF-a [8]. Treatment with

piceatannol and the Myd88 inhibitor peptide significantly reduced

the production of pro-IL-1b and TNF-a in BMDMs. These results

indicate the collaboration of these PRRs in the generation of the

first signal for inflammasome activation in BMDMs (Figure 3A

and 3B). In contrast, only Syk-dependent CLR signaling was

required for the production of pro-IL-1b and TNF-a in BMDCs

(Figure 3C and 3D). Moreover, we demonstrated that the

expression of pro-IL-1b and TNF-a in both cell types depended

on NF-kB activity because significantly diminished levels were

detected when the cells were pretreated with Bay11-7082, an

irreversible inhibitor of IkB-a phosphorylation, which resulted in

the inactivation of NF-kB and the NF-kB inhibitor celastrol

(Figures 3A, 3B, 3C and 3D). Our results suggest that BMDCs and

BMDMs differ according to PRR usage for the production of the

proinflammatory cytokines pro-IL-1b and TNF-a and that this

process is dependent on NF-kB activation in both cell types as

expected.

NLRP3 inflammasome-dependent activation of caspase-1
is indispensable for IL-1b production by BMDCs infected
with P. brasiliensis

Because pro-IL-1b cleavage into mature IL-1b requires active

cysteine-aspartic proteases, mainly caspase-1, we selectively

inhibited this protease using the aldehyde derivative AC-Y-

VAD-CHO in BMDCs that were infected with yeast cells. In

addition, the caspase-8 inhibitor Z-IETD-FMK was also used

because caspase 8 has recently been associated with the non-

canonical processing of IL-1b in DCs infected with C. albicans and

A. fumigatus [34]. IL-1b secretion was abrogated by the caspase-1

inhibitor without affecting inflammasome-independent TNF-a
production, whereas caspase-8 activity was not necessary for IL-1b
processing in this study (Figure 4A and 4B). IL-1b production in

response to diverse fungal pathogens is dependent on the NLRP3

inflammasome; therefore, we evaluated whether P. brasiliensis-

dependent IL-1b secretion in BMDCs occurred via NLPR3

activation using mice deficient in this protein. As shown in

Figure 4C, IL-1b production was almost completely abolished in

BMDCs from NLPR3 knockout mice. Thus, IL-1b production by

BMDCs infected with P. brasiliensis requires NLRP3 inflamma-

Figure 1. P. brasiliensis does not activate the inflammasome but induces the production of pro-IL-1b in BMDMs. BMDMs were
stimulated for 24 h with medium, P. brasiliensis (Pb) (MOI 1), ATP, LPS, LPS and Pb (100 ng/ml for 2 h before fungal infection), Pb and ATP (the latter
added 1 h before co-culture incubation time completion). As a control, BMDMs were primed with LPS, followed by ATP, as previously described. The
supernatants from the cultures were harvested for (A) IL-1b, (C) TNF-a and (D) IL-6 assays using ELISA. (B) Pro-IL-1b was assayed in the cell lysate of
BMDCs that were infected or not with P. brasiliensis for 24 h. The data are expressed as the mean 6 the SD of two to three independent experiments
conducted in triplicates. *denotes p#0.05 compared with not infected cells.
doi:10.1371/journal.pntd.0002595.g001

Inflammasome Activation by P. brasiliensis
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some-dependent activation of caspase-1. As a control, TNF-a
production was not affected in mice lacking NLRP3 (Figure 4D).

K+ efflux, ROS production, lysosomal acidification and
cathepsin B release are implicated in P. brasiliensis NLRP3
inflammasome activation in BMDCs

Diverse processes that are associated with intracellular pertur-

bations have been implicated in NLRP3 inflammasome activation,

including K+ cation efflux, ROS generation, lysosomal acidifica-

tion and the release of cathepsin B into the cytosol [19]. To study

the role of these processes in P. brasiliensis-induced inflammasome

activation in BMDCs, we initially pretreated the cells with

glibenclamide, an ATP-sensitive K+ channel inhibitor that

precludes the maturation of caspase-1 and IL-1b by inhibiting

K+ efflux [35]. As shown in Figure 5A, IL-1b processing was

significantly reduced by glibenclamide. As an alternative method

of blocking K+ efflux, we increased the extracellular K+

concentration in the culture supernatant, and the secretion of

IL-1b was again diminished in BMDCs that were infected with P.

brasiliensis (Figure 5A). In contrast, the TNF-a secretion levels were

unaffected (Figure 5B), which suggests that IL-1b inhibition was

not due to any toxic effect on the cells. In addition to K+ efflux, the

production of ROS, lysosomal acidification and lysosomal damage

with the release and activation of cathepsin B into the cytosol have

been associated with NLRP3 activation. Therefore, we inhibited

ROS using NAC (N-acetyl-L-cysteine) or APDC aminopyrroli-

dine-2,4-dicarboxylic acid) and also inhibited lysosomal acidifica-

tion and cathepsin B activity using bafilomycin and CA-074Me,

respectively. All the treatments resulted in a significant reduction

in IL-1b release from infected BMDCs (Figure 5C and 5E). In

contrast, TNF-a secretion was not affected, with the exception of

the NAC treatment (Figure 5D and 5F). Indeed, unlike APDC,

NAC precludes NF-kB activation [21,36]. The results indicate that

NLRP3 activation in murine DCs that were infected with P.

brasiliensis requires the efflux of K+ coupled with the generation of

ROS and lysosomal acidification and damage.

IL-1b-mediated signaling is required to control the
intracellular growth of P. brasiliensis in BMDMs

Activated macrophages play a critical role in the restriction of P.

brasiliensis proliferation in vitro and in vivo, and IL-1b production has

been associated with fungal resistance [7,21–23]. Therefore, we

Figure 2. P. brasiliensis induces the production of pro-IL-1b and activates the inflammasome in BMDCs. BMDCs were stimulated for 24 h
with medium, P. brasiliensis (Pb) (MOI 1), ATP, LPS, LPS and Pb (100 ng/ml for 2 h before fungal infection), Pb and ATP (added 1 h before co-culture
incubation time completion). As a control, BMDMs were primed with LPS, followed by ATP, as previously described. The supernatants from the
cultures were harvested for (A) IL-1b, (C) TNF-a and (D) IL-6 assays using ELISA. (B) Pro-IL-1b was assayed in the cell lysate of BMDCs that were infected
or not with P. brasiliensis for 24 h. The data are expressed as the mean 6 the SD of two to three independent experiments conducted in triplicates.
*denotes p#0.05 compared with not infected cells.
doi:10.1371/journal.pntd.0002595.g002

Inflammasome Activation by P. brasiliensis
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evaluated whether IL-1b-induced signaling is required for the

fungicidal mechanism in BMDMs from WT or IL-1R1-deficient

mice when infected with P. brasiliensis for 24 h. Infected cells were

left untreated or were treated with ATP for the induction of IL-1b
production via NLRP3 inflammasome activation, as shown in

Figure 1. Infected WT BMDMs treated with ATP clearly

demonstrated more efficient fungicidal activity, as indicated by

the significant reduction in the fungal burden compared with

untreated WT macrophages (Figure 6A). As expected, the fungal

infection alone did not induce significant IL-1b production, unless

ATP treatment was performed (Figure 6B). BMDMs derived from

mice lacking IL-1R1 were also unable to restrain fungal growth,

despite the significant production of IL-1b induced by ATP

treatment (Figure 6A and 6B). Further, NLRP3-deficient BMDMs

treated with ATP did not release IL-1b, as expected, and failed to

kill internalized fungi (Figure 6A and 6B). Importantly, no

different phagocytic ability (data not shown) or TNF-a secretion

levels (Figure 6C) was observed in macrophages derived from the

different experimental groups. Altogether, these results suggest

that IL-1R1 signaling is required for the anti-fungicidal activity of

BMDMs against P. brasiliensis. To understand the mechanism that

was involved in the fungal killing, we measured nitrite as an

indicator of NO production in the supernatants of cultures using

the Griess reagent. Despite being one of the major products of

activated macrophages that are used to kill ingested P. brasiliensis

[37–39], nitrite levels were similar among experimental groups

(Figure 6D). Control BMDMs infected with P. brasiliensis plus IFN-

c treatment produced significant nitrite levels and fungicidal

activity, as previously reported [37,38] Therefore, other mecha-

nisms must have been activated for the fungicidal activity that was

observed.

Discussion

P. brasiliensis induces the transcription and production of pro-

inflammatory cytokines via the stimulation of several PRRs. In

contrast, inflammasome activation during P. brasiliensis infection

has never been studied; however, previous works have demon-

strated that human monocytes, murine dendritic cells and mice

that are infected with this fungus secrete IL-1b, which strongly

suggests that an inflammasome must be triggered [27–30]. In this

study, we found that the NLRP3 inflammasome and caspase-1 are

required for the processing and secretion of IL-1b in P. brasiliensis-

infected BMDCs. Mature IL-1b release depends on the priming

Figure 3. Differential Myd88 and Syk signaling is induced for inflammasome priming in BMDMs and BMDCs infected with P.
brasiliensis. (A, B) BMDMs and (C, D) BMDCs were pretreated for 1 h with the indicated concentrations (Methods section) of the Syk inhibitor
piceatannol, Myd88 inhibitor, and the NFkB inhibitors Bay11-7082 and celastrol. Then, the cells were infected with P. brasiliensis (Pb) at an MOI of 1 for
24 h and supernatants and cell lysates were harvested and assayed for TNF-a (supernatants) or pro–IL-1b (lysates) using ELISA. The data are expressed
as the mean 6 the SD of two to three independent experiments conducted in triplicates. *denotes p#0.05 compared with untreated infected cells.
doi:10.1371/journal.pntd.0002595.g003
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and activation of an inflammasome. Using BMDMs and BMDCs,

our data suggest that cell-type specificity is involved in the

activation of the NLRP3 inflammasome upon fungal exposure.

For instance, P. brasiliensis can trigger pro-IL-1b production in

both bone marrow-derived cell types, but infection resulted in IL-

1b maturation and release only in BMDCs. Our results indicate a

poor IL-1b response to P. brasiliensis in BMDMs, which is in

agreement with previous studies that were performed with C.

albicans. Hise et al. [22] and Joly et al. [23] demonstrated that

BMDM IL-1b release required an independent priming step

before infection with C. albicans to achieve NLRP3 inflammasome

activation and a robust IL-1b release. In contrast, BMDCs that

were infected with C. albicans, C. neoformans and T. schoenleinii alone

release mature IL-1b [21,24,25]. This differential regulation of the

NLRP3 inflammasome between BMDMs and BMDCs has been

attributed to increased NLRP3 protein expression under steady-

state conditions in BMDCs [33,40]. Therefore, after stimulation,

the elevated levels of the NLRP3 protein in BMDCs would be

sufficient to reach an activation threshold for the NLRP3

inflammasome. In vivo, splenic DCs have higher NLRP3 promoter

activity when compared with macrophages [41]. In addition, after

priming with PRR ligands, NLRP3 and pro-IL-1b protein

expression is increased in BMDCs [33]. Similarly, we found that

pro-IL-1b production was significantly more evident in BMDCs

that were infected with P. brasiliensis when compared with BMDMs

in this study. The differential regulation of the NLRP3 inflamma-

some between divergent cell types has been demonstrated in

human monocytes and macrophages and in M1- and M2-

polarized murine macrophages [42,43]. Specifically, human

monocytes have constitutively active caspase-1, which leads to

the release of mature IL-1b after exposure to a single stimuli (e.g.,

LPS), whereas macrophages utilize the classical two-signal model.

As previously mentioned, several PRRs play a role in the

recognition of P. brasiliensis, including TLRs (TLR2, TLR4 and

TLR9) and the CLR (dectin-1) [10–15], which can potentially

activate the NF-kB pathway, thereby leading to the production of

pro-IL-1b, TNF-a and other pro-inflammatory cytokines. To

identify the type of PRR that is associated with this process, before

infection with P. brasiliensis, we treated BMDMs and BMDCs with

inhibitors of the key protein adaptors Myd88 and Syk, which are

essential for the majority of TLR and CLR signaling, respectively.

BMDMs required both Myd88- and Syk-dependent signaling for

the induction of pro-IL-lb and TNF-a, whereas only the Syk-

dependent pathway was necessary in BMDCs. Moreover,

regardless of the type of PRR usage, both BMDMs and BMDCs

required NF-kB activity, as indicated by the inhibitor assays, to

Figure 4. inflammasome activation by P. brasiliensis is caspase-1- and NLRP3-dependent. (A, B) BMDCs were pretreated for 1 h with the
indicated concentrations (Methods section) of caspase-1 (AC-Y-VAD-CHO) and caspase-8 (Z-IETD-FMK) inhibitors and infected with P. brasiliensis at an
MOI of 1 for 24 h. (C, D) BMDCs from WT and NLRP3-deficient mice were infected with P. brasiliensis (Pb) as above. The supernatants from the cultures
were harvested for IL-1b and TNF-a assays using ELISA. The data are expressed as the mean 6 the SD of two to three independent experiments
conducted in triplicates.*p#0.05.
doi:10.1371/journal.pntd.0002595.g004
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produce IL-1b and TNF-a. These results are consistent with

recent findings that TLR ligands and the dectin-1 ligand b-glucan

participate in the activation of the NLRP3 inflammasome through

a priming effect that is mediated via NF-kB activation [44,45].

The discrepancy between macrophages and dendritic cells

regarding PRR usage is consistent with studies that demonstrated

dectin-1 Syk-dependent signaling alone is not sufficient to induce

TNF-a production in BMDMs in contrast to BMDCs because

synergizing with the Myd88 pathway is required for the

production of this cytokine [46]. This unresponsiveness in

macrophages, when compared with dendritic cells, is associated

with the differential use of the caspase recruitment domain

(CARD)-containing adaptor protein CARD9 by dectin-1 receptor

[47]. Similar to the results in the present study, pro-IL-1b and

TNF-a production that was induced by C. albicans in BMDCs [21]

was Syk-dependent and Myd88-independent in contrast to

macrophages [22]. In addition, the human acute monocytic

leukemia cell line (THP-1) required signaling through Syk and

Myd88 for inflammasome priming when infected with A. fumigatus

[26]. In this context, we recently found that the transcript levels of

genes that encode TLRs and adaptor proteins (e.g., Myd88) were

not increased in P. brasiliensis-infected BMDCs, suggesting a minor

role for the TLR pathway in the induction of cytokines, at least in

dendritic cells [14]. In contrast, dectin-1 transcripts were highly

abundant, which suggests that this receptor plays an important

role in the recognition of P. brasiliensis PAMPs (i.e., b-glucan) by

dendritic cells. It remains to be investigated whether a deficiency

in specific TLRs (e.g., TLR2/4/9) or CLRs (e.g., dectin-1)

prevents inflammasome activation by P. brasiliensis.

The maturation of IL-1b requires proteolytic activity of

inflammatory caspases. In addition to the canonical caspase-1-

dependent inflammasome, caspase-8 has been recently associated

with the non-canonical processing of IL-1b in BMDCs that were

infected with C. albicans and A. fumigatus [34]. Therefore, we

performed inhibitor assays using either AC-Y-VAD or Z-IETD-

FMK, which are specific inhibitors of caspase-1 and caspase-8,

respectively. Caspase-1 activity was necessary for P. brasiliensis-

induced IL-1b release in BMDCs. In contrast, caspase-8 was not

required, which was also demonstrated in BMDCs that were

infected with C. neoformans [25]. This finding indicates that a

specific signaling pathway may direct IL-1b induction by different

fungi. Notably, caspase-8 has diverse activities that suppress innate

immunity, including the antagonistic function of restricting

NLRP3 inflammasome activation [48]. Caspase-1 activation is

mainly dependent on the assembly of inflammasomes. Regarding

fungal infections, the NLRP3 inflammasome is essential for

casapase-1 activity and subsequent IL-1b release in murine and

human phagocytes that are infected with C. albicans, A. fumigatus, T.

schoenleinii and C. neoformans [21–26]. A similar finding was

obtained for P. brasiliensis-infected BMDCs because there was an

obvious abrogation of IL-1b release from NLRP3 knockout cells,

which did not affect TNF-a production. We did not evaluate ASC

function in this study; however, our results strongly suggest that

caspase-1-dependent NLRP3 inflammasome is essential for the

release of IL-1b by BMDCs that are infected with P. brasiliensis.

No direct mechanistic studies have been published; however,

several intracellular perturbations and danger signals have been

demonstrated to lead to the activation of the NLRP3 inflamma-

some, including K+ efflux, ROS generation, lysosomal acidifica-

tion and cathepsin B release to the cytosol [19]. K+ efflux is

required for NLRP3 inflammasome activation in BMDCs that are

infected with C. albicans, T. schoenleinii and C. neoformans [21,24,25].

Figure 5. NLRP3 inflammasome activation by P. brasiliensis requires K+ efflux, ROS production, lysosomal acidification and
cathepsin B release. BMDCs were pretreated for 1 h with the indicated concentrations (Methods section) of (A, B) glibenclamide and KCL, (C, D)
NAC and APDC, or (E, F) bafilomycin and CA-074. Then, the cells were infected with P. brasiliensis (Pb) at an MOI of 1 for 24 h. The supernatants from
the cultures were harvested for IL-1b and TNF-a assays using ELISA. The data are expressed as the mean 6 the SD of two to three independent
experiments conducted in triplicates. *p#0.05.
doi:10.1371/journal.pntd.0002595.g005
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To test whether K+ efflux plays a role in inflammasome activation

in BMDCs that are infected with P. brasiliensis, the cells were

pretreated with glibenclamide, or the extracellular K+ concentra-

tion in the culture supernatant was increased. Both treatment

approaches impaired IL-1b release without interfering with TNF-

a secretion, which indicates that reduced IL-1b production was

not due to treatment-induced cell death. Comparable results were

obtained when we used APDC, an inhibitor of the NADPH

oxidase-dependent ROS system, suggesting a role of ROS in P.

brasiliensis-induced NLRP3 inflammasome activation. In this

context, P. brasiliensis infection leads to ROS production via

NADPH oxidase in phagocytes [49–51]. Regarding the antioxi-

dant or free radical scavenger NAC, a concomitant reduction in

both IL-1b and TNF-a secretion was observed, which is in line

with the finding that NAC, unlike APDC, inhibit NF-kB activation

[21,36]. The prevention of lysosomal acidification acts as a

NLRP3 inflammasome inhibitor, which suggests that acid-

dependent lysosomal thiol proteases have a role in NLRP3

activation [52,53]. Therefore, BMDCs were treated before fungal

infection with bafilomycin, which inhibits the vacuolar H+ ATPase

or CA-074, which inhibits cathepsin B activity. Both lysosomal

acidification and cathepsin activity play a role in P. brasiliensis-

induced IL-1b release with no interference in TNF-a production.

Similar to the activation of the inflammasome by particulate

matters, bacteria and fungi [54–56,23–25], this result suggests that

P. brasiliensis-induced NLRP3 inflammasome assembly may be

linked to lysosomal damage. Altogether, we demonstrate that the

NLRP3 inflammasome activation induced by P. brasiliensis

infection required common intracellular perturbations, which are

triggered by numerous stimuli, including fungi.

P. brasiliensis acts as a facultative intracellular pathogen in non-

activated human and murine macrophages and can survive and

replicate within these cells [7]. In this context, for PCM and other

systemic mycoses, such as cryptococcosis and histoplasmosis,

fungal intracellular parasitism has been proposed to be a major

event for disease establishment and progression in susceptible

hosts, which enables fungal latency and dissemination from the

primary infected organ to other organs [9,57]. To assess whether

IL-1b-mediated signaling plays a part in the activation of

macrophage fungicidal activity, BMDM cultures from WT or

IL-1R12/2 mice were infected with P. brasiliensis, and a CFU

analysis was performed. We demonstrated that BMDMs do not

produce IL-1b in response to P. brasiliensis infection; therefore, we

treated the infected cells with ATP for the robust release of this

cytokine via NLRP3 inflammasome activation. Interestingly, WT

BMDMs that were treated with ATP, which produce and respond

to IL-1b, had a significant reduction in the fungal burden

compared with WT BMDMs that were not treated with ATP. In

addition, despite IL-1b production in IL-1R12/2 BMDMs that

were treated with ATP, fungal proliferation was not constrained in

these cells. These results suggest that IL-1b signaling is an

important activator of the microbicidal activity of BMDMs against

P. brasiliensis. This mechanism is not associated with the induction

of nitric oxide production, a potent P. brasiliensis fungicidal

molecule [37–39] because no differences in the NO2 supernatant

levels were observed. Therefore, other microbicidal mechanisms

Figure 6. IL-1R1 signaling is required for the anti-fungicidal activity of BMDMs against P. brasiliensis. (A) BMDMs were obtained from WT,
IL-1R12/2 or NLRP32/2 C57BL/6 mice and were infected with P. brasiliensis (Pb) for 24 h at an MOI of 1. As indicated, 1 h before the completion of
incubation, 5 mM ATP was added to the culture. After the supernatants were removed, the macrophages were lysed and assayed for the presence of
viable yeast cells by CFU assay. (B) IL-1b and (C) TNF-a were detected in the supernatant of infected BMDMs using ELISA. (D) NO2 was measured in the
supernatant of cell cultures as an indicative of NO production using the Griess assay. The data are expressed as the mean 6 the SD of one experiment
that was representative of two experiments, which were performed in triplicates. *p#0.05.
doi:10.1371/journal.pntd.0002595.g006
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may be activated. In fact, IL-1R1 signaling is required for the

enhancement of phagolysosomal maturation (i.e., phagosome-

lysosome fusion and acidification) and microbicidal activity of

macrophages infected with Mycobacterium tuberculosis [58–60]. In

fungi, efficient killing of C. albicans and Histoplasma capsulatum

requires phagolysosomal maturation, independent of nitric oxide

function [61–63].

IL-1b-mediated signaling has been implicated in controlling

several intracellular bacteria [60,64,65]. Regarding fungi, IL-

1R1-deficient mice were severely impaired in both innate and

adaptative responses in a disseminated model of candidal

infection, including a lack of antifungal killing activity in

neutrophils against fungal yeast [66]. Consistent with these

results, mice deficient in NLRP3 that were intravenously

infected with C. albicans had reduced serum IL-1b levels,

decreased survival and a higher fungal burden in several organs

[21]. In addition, IL-1R1, NLRP3 and the inflammasome

components ASC and caspase-1 were necessary to block local

mucosal colonization and the systemic dissemination of C.

albicans in a murine oral model [22]. Regarding C. neoformans,

mice that lacked NLRP3 or ASC and were infected through

intraperitoneal or intranasal routes had significantly reduced

survival [25]. Therefore, future studies must be conducted to

address whether IL-1R1 and NLRP3 inflammasome compo-

nents play a protective role against P. brasiliensis infection in vivo

and to determine how IL-1b activates macrophages for

enhanced killing activity in vitro.

In summary, the infection of murine dendritic cells with the

primary fungal pathogen P. brasiliensis primes, via Syk signaling,

and activates the caspase-1-dependent NLRP3 inflammasome.

The activation process involves K+ cation efflux, ROS production,

lysosomal acidification and active cathepsin B for IL-1b processing

and release. Moreover, macrophages require IL-1b for antifungal

killing activity. These results suggest that manipulating NLRP3

inflammasome activation may provide a new approach for the

control of PCM.
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