8717 measured reflections

 $R_{\rm int} = 0.034$

2182 independent reflections

1299 reflections with $I > 2\sigma(I)$

mixture of

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(3,4-Dimethylanilino)acetohydrazide

Muhammad Salim,^a Zaid Mahmood,^a M. Nawaz Tahir,^b* Saeed Ahmad^c and Muhammad Yaseen^a

^aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^cDepartment of Chemistry, Gomal University, Dera Ismail Khan, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 21 September 2009; accepted 25 September 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.053; wR factor = 0.157; data-to-parameter ratio = 12.1.

The title compound, C₁₀H₁₅N₃O, crystallizes in an infinite twodimensional polymeric network due to intermolecular N- $H \cdots O$ hydrogen bonding. Intramolecular $N - H \cdots N$ and intermolecular $C-H \cdots N$ interactions are also present. The 3,4-dimethylphenyl unit is disordered over two sites with an occupancy ratio of 0.677 (5):0.323 (5). The dihedral angle between the benzene rings of the disordered components is 2.6 (6)°.

Related literature

For the structure of phenylglycine hydrazide, see: Gudasi et al. (2007). For the biological and medicinal activity of hydrazide compounds, see: Hall et al. (1993); Waisser et al. (1990).

Experimental

Crystal data

 $C_{10}H_{15}N_{3}O$ $M_r = 193.25$ Triclinic, P1 a = 5.1956 (6) Å b = 6.0869 (7) Å c = 16.3477 (19) Å $\alpha = 80.657 \ (6)^{\circ}$ $\beta = 86.733 (5)^{\circ}$

 $\gamma = 84.040 \ (6)^{\circ}$ $V = 506.96 (10) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K $0.25\,\times\,0.12\,\times\,0.10$ mm Data collection

```
Bruker Kappa APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\min} = 0.989, T_{\max} = 0.991
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of
$wR(F^2) = 0.157$	independent and constrained
S = 1.03	refinement
2182 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
180 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO1^{i}$	0.8600	2.5200	3.223 (2)	140.00
$N2 - H2 \cdot \cdot \cdot N1$	0.8600	2.2500	2.672 (3)	110.00
$N2-H2\cdots N3^{ii}$	0.8600	2.4700	3.139 (3)	136.00
$N3-H3A\cdots O1$	0.91 (3)	2.39 (2)	2.779 (3)	105.6 (17)
$N3-H3A\cdotsO1^{iii}$	0.91 (3)	2.42 (2)	3.223 (2)	147 (2)
$N3-H3B\cdotsO1^{iv}$	0.93 (3)	2.32 (3)	3.156 (3)	149 (2)
$C9 - H9B \cdot \cdot \cdot N3^{v}$	0.9700	2.5800	3.484 (3)	155.00

Symmetry codes: (i) x, y - 1, z; (ii) -x + 2, -y + 1, -z; (iii) -x + 1, -y + 2, -z; (iv) x + 1, y, z; (v) - x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

MS gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042-121068-PS2-109).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2205).

References

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Gudasi, K. B., Patil, M. S., Vadavi, R. S., Shenoy, R. V., Patil, S. A. & Nethaji, M. (2007). Spectrochim. Acta Part A, 67, 172-177.

Hall, L. H., Mohney, B. K. & Kier, L. B. (1993). Quant. Struct. Act. Relat. 12, 44 - 48

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Waisser, K., Houngbedji, N., Odlerova, Z., Thiel, W. & Mayer, R. (1990). Pharmazie, 45, 141-142.

Acta Cryst. (2009). E65, o2595 [doi:10.1107/S1600536809038963]

2-(3,4-Dimethylanilino)acetohydrazide

M. Salim, Z. Mahmood, M. N. Tahir, S. Ahmad and M. Yaseen

Comment

The hydrazides and their analogues are known to have different biological activities such as tuberculostatic activity, antifungal and monoamine oxidase inhibitory activity (Waisser *et al.*, 1990; Hall *et al.*, 1993). The title compound (I, Fig. 1) has been prepared as an intermediate for further derivatization with various substituted pyridine aldehydes.

The crystal structure of (II) Phenylglycine hydrazide (Gudasi *et al.*, 2007) and the title compound (I) differ due to substitution of the methyl moieties. In the title compound, the 3,4-dimethylphenyl group is disordered over two possible sites with an occupancy ratio 0.677 (5):0.323 (5). The dihedral angle between the benzene rings A (C1A—C6A) and B (C1B—C6B) of the disordered moiety is 2.6 (6)°. The group C (N1/N2/N3/C10/O1) is almost planar with maximum r.m.s. deviation of 0.0457 Å from its mean square plane, and C9 is at a distance of -0.2594 (26) Å. The dihedral angle between A/C and B/C is 89.46 (10) and 87.80 (23)°, respectively. The title compound is stabilized in the form of an infinite two dimensional polymeric network due to intra as well as inter-molecular N—H···O hydrogen bondings (Table 1, Fig. 2).

Experimental

In a first step ethylchloroacetate (2.3 g, 0.0187 mol), the 3,4-dimethylaniline (2.266 g, 0.0187 mol) and triethylamine (1.89 g, 0.0187 mol) were refluxed in 60 ml of THF. The reaction was monitored by TLC and solvent was removed under reduced pressure. The solid residue obtained was washed with water to get reddish precipitate of ethyl [(3,4-dimethylphenyl)amino]acetate.

In a second step ethyl[(3,4-dimethylphenyl)amino]acetate (3.41 g, 0.0164 mol) and about three folds of hydrazine hydrate (2.46 g, 0.0492 mol) were refluxed in 20 ml of ethyl alcohol. On evaporation of solvent at room temperature yellow needles of the title compound (I) were obtained.

Refinement

The coordinates of H-atoms of NH₂ group were refined. H-atoms were positioned geometrically, with N—H = 0.86 Å for NH group, C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H, respectively and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl and 1.2 for all other H atoms.

The benzene rings of the disordered group were fitted using AFIX 66.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines represent the group of lower occupancy factor.

Fig. 2. The projectional view (*PLATON*; Spek, 2009) along the *a* axis which shows that the molecules are stabilized in form of a two dimensional polymeric network.

2-(3,4-Dimethylanilino)acetohydrazide

C ₁₀ H ₁₅ N ₃ O	Z = 2
$M_r = 193.25$	$F_{000} = 208$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.266 {\rm ~Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 5.1956 (6) Å	Cell parameters from 2187 reflections
b = 6.0869 (7) Å	$\theta = 2.5 - 27.1^{\circ}$
c = 16.3477 (19) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 80.657 \ (6)^{\circ}$	T = 296 K
$\beta = 86.733 \ (5)^{\circ}$	Needle, yellow
$\gamma = 84.040 \ (6)^{\circ}$	$0.25\times0.12\times0.10\ mm$
$V = 506.96 (10) \text{ Å}^3$	

Data collection

Bruker Kappa APEXII CCD diffractometer	2182 independent reflections
Radiation source: fine-focus sealed tube	1299 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
Detector resolution: 7.60 pixels mm ⁻¹	$\theta_{\text{max}} = 27.1^{\circ}$
T = 296 K	$\theta_{\min} = 2.5^{\circ}$
ω scans	$h = -6 \rightarrow 5$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -7 \rightarrow 7$
$T_{\min} = 0.989, T_{\max} = 0.991$	$l = -20 \rightarrow 19$
8717 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.157$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0718P)^{2} + 0.1107P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2182 reflections	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$
180 parameters	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction coefficient: ?
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.3981 (3)	0.8061 (2)	0.09951 (10)	0.0591 (6)	
N1	0.6054 (3)	0.2257 (3)	0.16440 (12)	0.0503 (6)	
N2	0.7511 (3)	0.5889 (3)	0.06510 (10)	0.0427 (6)	
N3	0.8768 (4)	0.7634 (3)	0.01577 (12)	0.0488 (6)	
C1A	0.7662 (6)	0.2289 (5)	0.2378 (2)	0.0393 (10)	0.677 (5)
C2A	0.9473 (5)	0.0477 (4)	0.2606 (2)	0.0438 (13)	0.677 (5)
C3A	1.1022 (5)	0.0453 (4)	0.3274 (2)	0.0490 (17)	0.677 (5)
C4A	1.0758 (5)	0.2241 (5)	0.37135 (17)	0.0477 (14)	0.677 (5)
C5A	0.8947 (5)	0.4053 (5)	0.34854 (18)	0.0533 (14)	0.677 (5)
C6A	0.7398 (6)	0.4077 (5)	0.2818 (2)	0.0467 (12)	0.677 (5)
C7A	1.3044 (7)	-0.1488 (7)	0.3490 (3)	0.0738 (16)	0.677 (5)
C8A	1.2393 (8)	0.2247 (8)	0.4457 (2)	0.0712 (14)	0.677 (5)
C9	0.4124 (4)	0.4092 (3)	0.14708 (14)	0.0462 (7)	
C10	0.5202 (4)	0.6210 (3)	0.10230 (13)	0.0404 (6)	
C1B	0.7655 (13)	0.1771 (12)	0.2182 (4)	0.0393 (10)	0.323 (5)
C2B	0.7810 (13)	0.3188 (12)	0.2760 (4)	0.044 (3)	0.323 (5)
C3B	0.9597 (14)	0.2633 (16)	0.3379 (4)	0.070 (4)	0.323 (5)

C4B	1.1229 (12)	0.0662 (18)	0.3420 (4)	0.070 (6)	0.323 (5)
C5B	1.1073 (11)	-0.0755 (13)	0.2842 (5)	0.082 (4)	0.323 (5)
C6B	0.9286 (13)	-0.0200 (11)	0.2222 (5)	0.061 (3)	0.323 (5)
C7B	0.976 (3)	0.398 (2)	0.4034 (7)	0.128 (7)	0.323 (5)
C8B	1.327 (2)	-0.016 (2)	0.4075 (7)	0.107 (5)	0.323 (5)
H9B	0.28341	0.36754	0.11331	0.0555*	
H71	1.47378	-0.09809	0.33824	0.1105*	0.677 (5)
H72	1.28469	-0.26206	0.31590	0.1105*	0.677 (5)
H73	1.28350	-0.20965	0.40670	0.1105*	0.677 (5)
H81	1.22173	0.09055	0.48469	0.1067*	0.677 (5)
H82	1.18148	0.35253	0.47170	0.1067*	0.677 (5)
H83	1.41764	0.23127	0.42745	0.1067*	0.677 (5)
H1	0.62840	0.12010	0.13484	0.0604*	
H2	0.82856	0.45577	0.07117	0.0512*	
H2A	0.96495	-0.07194	0.23116	0.0527*	0.677 (5)
H3A	0.750 (5)	0.876 (4)	0.0011 (14)	0.0586*	
H3B	0.987 (5)	0.812 (4)	0.0509 (14)	0.0586*	
H5A	0.87706	0.52492	0.37797	0.0638*	0.677 (5)
H6A	0.61862	0.52888	0.26650	0.0560*	0.677 (5)
H9A	0.32655	0.43974	0.19886	0.0555*	
H2B	0.67185	0.45070	0.27324	0.0524*	0.323 (5)
H5B	1.21645	-0.20739	0.28692	0.0981*	0.323 (5)
H6B	0.91819	-0.11483	0.18355	0.0722*	0.323 (5)
H74	0.94121	0.30939	0.45637	0.1919*	0.323 (5)
H75	0.85030	0.52584	0.39513	0.1919*	0.323 (5)
H76	1.14620	0.44622	0.40183	0.1919*	0.323 (5)
H84	1.24727	-0.09990	0.45535	0.1600*	0.323 (5)
H85	1.39623	0.11061	0.42324	0.1600*	0.323 (5)
H86	1.46349	-0.10908	0.38474	0.1600*	0.323 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0463 (8)	0.0453 (9)	0.0813 (12)	0.0028 (7)	0.0029 (8)	-0.0035 (8)
N1	0.0550 (11)	0.0357 (9)	0.0591 (12)	-0.0053 (8)	0.0063 (9)	-0.0063 (8)
N2	0.0367 (9)	0.0339 (9)	0.0541 (11)	-0.0060 (7)	0.0040 (8)	0.0024 (8)
N3	0.0415 (10)	0.0403 (10)	0.0604 (13)	-0.0108 (8)	0.0008 (9)	0.0078 (9)
C1A	0.0391 (12)	0.038 (2)	0.038 (2)	-0.0060 (14)	0.0067 (14)	0.0007 (17)
C2A	0.0480 (19)	0.0329 (18)	0.049 (3)	-0.0067 (15)	0.0062 (18)	-0.0031 (16)
C3A	0.045 (3)	0.035 (3)	0.061 (3)	-0.002 (2)	0.013 (2)	0.004 (2)
C4A	0.048 (2)	0.048 (2)	0.046 (3)	-0.0130 (18)	0.0021 (17)	-0.0001 (19)
C5A	0.056 (2)	0.048 (2)	0.055 (3)	-0.0001 (17)	0.0026 (19)	-0.0103 (19)
C6A	0.048 (2)	0.039 (2)	0.052 (2)	0.0053 (17)	0.0013 (18)	-0.0115 (18)
C7A	0.052 (2)	0.054 (2)	0.104 (4)	0.0030 (18)	-0.003 (2)	0.016 (2)
C8A	0.065 (2)	0.087 (3)	0.058 (2)	-0.013 (2)	-0.0144 (19)	0.007 (2)
С9	0.0370 (10)	0.0506 (12)	0.0503 (13)	-0.0124 (9)	-0.0015 (9)	-0.0006 (10)
C10	0.0338 (9)	0.0408 (11)	0.0461 (12)	-0.0045 (9)	-0.0039 (9)	-0.0042 (9)
C1B	0.0391 (12)	0.038 (2)	0.038 (2)	-0.0060 (14)	0.0067 (14)	0.0007 (17)

C2B	0.046 (4)	0.051 (6)	0.038 (5)	-0.007 (4)	0.013 (4)	-0.022 (4)
C3B	0.055 (6)	0.114 (10)	0.043 (6)	-0.044 (6)	-0.007 (4)	0.008 (6)
C4B	0.042 (7)	0.116 (15)	0.047 (6)	-0.040 (8)	-0.017 (5)	0.026 (8)
C5B	0.048 (5)	0.091 (7)	0.088 (7)	0.019 (5)	0.002 (5)	0.023 (6)
C6B	0.069 (5)	0.060 (5)	0.051 (6)	-0.003 (4)	0.000 (4)	-0.007 (4)
C7B	0.178 (13)	0.165 (13)	0.055 (7)	-0.084 (11)	-0.038 (7)	-0.006 (7)
C8B	0.080 (7)	0.141 (12)	0.091 (8)	-0.030 (7)	-0.027 (6)	0.025 (8)
Geometric paran	neters (Å, °)					
O1—C10		1.230 (2)	C	C5A—C6A		1.390 (4)
N1—C1A		1.505 (4)	C	C5B—C6B		1.391 (10)
N1—C9		1.425 (3)	C	C9—C10		1.519 (3)
N1—C1B		1.225 (7)	C	C2A—H2A		0.9300
N2—N3		1.418 (3)	C	C2B—H2B		0.9300
N2—C10		1.324 (3)	C	C5A—H5A		0.9300
N1—H1		0.8600	0	C5B—H5B		0.9300
N2—H2		0.8600	C	С6А—Н6А		0.9300
N3—H3A		0.91 (3)	C	С6В—Н6В		0.9300
N3—H3B		0.93 (3)	(С7А—Н71		0.9600
CIA—C2A		1.390 (4)	(C/A—H/2		0.9600
CIA—COA		1.390 (4)	(C/A—H/3		0.9600
C1B - C2B		1.390(10) 1.390(10)		С/Б—П/4 С7В H75		0.9600
$C_{1}D = C_{0}D$		1 390 (4)	(С7В—H76		0.9600
C2B—C3B		1.390 (10)	(С8А—Н81		0.9600
C3A—C7A		1.508 (5)	0	С8А—Н82		0.9600
C3A—C4A		1.390 (4)	C	С8А—Н83		0.9600
C3B—C4B		1.390 (13)	C	С8В—Н84		0.9600
С3В—С7В		1.461 (14)	C	С8В—Н86		0.9600
C4A—C8A		1.523 (5)	C	С8В—Н85		0.9600
C4A—C5A		1.390 (4)	C	С9—Н9В		0.9700
C4B—C5B		1.390 (12)	0	С9—Н9А		0.9700
C4B—C8B		1.538 (13)				• • • • • •
$01 \cdots N1^{I}$		3.223 (2)	ŀ	12…N1		2.2500
$O1 \cdots N3^{11}$		3.156 (3)	F	H2…H9B ^{V11}		2.4800
01…N3		2.779 (3)	F	ł2…C1B		2.7300
O1…C6B ⁱⁱⁱ		3.269 (7)	ŀ	H2…H1		2.4400
O1…N3 ^{iv}		3.223 (2)	H	H2…N3 ^{vi}		2.4700
О1…НЗА		2.39 (2)	H	12A…H72		2.3200
O1…H1 ⁱ		2.5200	H	H2A…H1		2.4900
O1…H6B ⁱⁱⁱ		2.8100	H	H2B…C10		2.9400
O1…H3B ⁱⁱ		2.32 (3)	H	H2B…C9		2.5900
O1…H3A ^{iv}		2.42 (2)	H	H2B…H75		2.3700
$N1 \cdots O1^{v}$		3.223 (2)	H	H2B…H9A		2.2400
N1…N2		2.672 (3)	H	H3A…O1 ^{iv}		2.42 (2)
N2…C1B		3.240 (7)	H	H3A…O1		2.39 (2)

N2…N1	2.672 (3)	H3A…H9B ^{ix}	2.5900
N2···C1A	3.280 (4)	H3A…H3B ^{viii}	2.47 (4)
N2…N3 ^{vi}	3.139 (3)	H3B…C10 ^{vii}	3.00 (3)
N3…O1 ^{vii}	3.156 (3)	H3B…O1 ^{vii}	2.32 (3)
N3····O1 ^{iv}	3.223 (2)	H3B…H3A ^{viii}	2.47 (4)
N3…O1	2.779 (3)	H3B···H6B ⁱ	2.2800
N3…N3 ^{viii}	3.226 (3)	H3B…N3 ^{viii}	2.78 (2)
N3…N2 ^{vi}	3.139 (3)	H5A…H82	2.3200
N1…H2	2.2500	H5A…C7A ⁱ	3.1000
N2…H9B ^{ix}	2.9000	H5B…H86	2.2900
N3…H2 ^{vi}	2.4700	Н6А…С9	2.5200
N3···H3B ^{viii}	2.78 (2)	H6A…C10	2.7200
N3…H9B ^{ix}	2.5800	H6A…H72 ⁱⁱⁱ	2.2400
C1A···N2	3.280 (4)	Н6А…Н9А	2.0900
C1B···N2	3.240 (7)	H6A…C7A ⁱⁱⁱ	2.8800
C2B…C10	3.392 (7)	H6B····O1 ^x	2.8100
C5B···C7B ^v	3.579 (15)	H6B…H1	2.0700
C6A…C10	3.230 (4)	$H6B\cdots H3B^{v}$	2.2800
C6B····O1 ^x	3.269 (7)	Н9А…С6А	2.5800
C7B···C5B ⁱ	3.579 (15)	Н9А…С2В	2.7200
C10…C2B	3.392 (7)	H9A···C3B ⁱⁱ	3.0200
C10C6A	3.230 (4)	Н9А…Н6А	2.0900
C1A···H2	2.8600	Н9А…Н2В	2.2400
C1A···H71 ⁱⁱ	2.8700	H9B…N2 ^{ix}	2.9000
C1B···H2	2.7300	H9B…N3 ^{ix}	2.5800
C2A···H71 ⁱⁱ	2.8600	H9B…H2 ⁱⁱ	2.4800
С2В…Н9А	2.7200	H9B…H3A ^{ix}	2.5900
C3B····H9A ^{vii}	3.0200	H71···C1A ^{vii}	2.8700
C5A···H72 ⁱ	2.9800	H71····C2A ^{vii}	2.8600
C5A···H83 ⁱⁱ	2.9400	H71…C8A	2.9700
C6A···H72 ⁱⁱⁱ	3.0300	H72···H6A ^x	2.2400
С6А…Н9А	2.5800	H72···C6A ^x	3.0300
C6A···H83 ⁱⁱ	2.9500	H72…H2A	2.3200
C7A···H5A ^v	3.1000	H72···C5A ^v	2.9800
C7A···H6A ^x	2.8800	H73…C8A	2.8000
C7A…H81	2.8400	H73…H81	2.3800
С7А…Н83	2.9500	H74…C8B	2.8400
С7В…Н85	2.6500	H74…H84 ^{x1}	2.0400
C7B···H84 ^{x1}	2.9600	$H74\cdots C8B^{X1}$	2.9900
C8AH71	2.9700	H/S···H2B H76···C8B	2.3700
C8B···H76	2.8600	H76…H85	2.8000

C8B…H74	2.8400	H81…H73	2.3800
C8B···H74 ^{xi}	2.9900	H81…C7A	2.8400
C9…H2B	2.5900	H82…H5A	2.3200
С9…Н6А	2.5200	H83····C6A ^{vii}	2.9500
C10···H3B ⁱⁱ	3.00 (3)	Н83…С7А	2.9500
С10…Н6А	2.7200	H83····C5A ^{vii}	2.9400
С10…Н2В	2.9400	H84…C7B ^{xi}	2.9600
H1…H6B	2.0700	H84…H74 ^{xi}	2.0400
Н1…Н2	2.4400	H85···C7B	2.6500
H1···H2A	2.4900	H85…H76	2.2900
$H1\cdots O1^{v}$	2.5200	H86…H5B	2.2900
H2···C1A	2.8600		
C1A—N1—C9	115.60 (19)	СЗА—С2А—Н2А	120.00
C1B—N1—C9	132.4 (4)	C3B—C2B—H2B	120.00
N3—N2—C10	123.20 (17)	C1B—C2B—H2B	120.00
C1B—N1—H1	105.00	С6А—С5А—Н5А	120.00
C9—N1—H1	122.00	С4А—С5А—Н5А	120.00
C1A—N1—H1	122.00	C6B—C5B—H5B	120.00
N3—N2—H2	118.00	C4B—C5B—H5B	120.00
C10—N2—H2	118.00	С5А—С6А—Н6А	120.00
N2—N3—H3A	105.9 (16)	С1А—С6А—Н6А	120.00
N2—N3—H3B	105.9 (14)	C5B—C6B—H6B	120.00
H3A—N3—H3B	108 (2)	C1B—C6B—H6B	120.00
C2A—C1A—C6A	120.0 (3)	СЗА—С7А—Н72	110.00
N1—C1A—C2A	118.2 (3)	C3A—C7A—H71	109.00
N1—C1A—C6A	121.8 (3)	H71—C7A—H72	110.00
C2B—C1B—C6B	120.1 (6)	H71—C7A—H73	109.00
N1—C1B—C6B	120.3 (6)	СЗА—С7А—Н73	109.00
N1—C1B—C2B	119.6 (6)	H72—C7A—H73	109.00
C1A—C2A—C3A	120.0 (3)	С3В—С7В—Н74	109.00
C1B—C2B—C3B	120.0 (7)	СЗВ—С7В—Н75	109.00
C2A—C3A—C7A	119.1 (3)	СЗВ—С7В—Н76	110.00
C4A—C3A—C7A	120.9 (3)	H74—C7B—H75	109.00
C2A—C3A—C4A	120.0 (2)	H74—C7B—H76	110.00
C2B—C3B—C4B	120.0 (7)	H75—C7B—H76	110.00
C4B—C3B—C7B	117.1 (8)	C4A—C8A—H82	109.00
C2B—C3B—C7B	122.8 (9)	C4A—C8A—H83	109.00
C5A—C4A—C8A	118.7 (3)	C4A—C8A—H81	109.00
C3A—C4A—C8A	121.2 (3)	H81—C8A—H82	110.00
C3A—C4A—C5A	120.0 (3)	H81—C8A—H83	109.00
C3B—C4B—C5B	120.0 (6)	H82—C8A—H83	110.00
C5B—C4B—C8B	114.7 (8)	C4B—C8B—H84	109.00
C3B—C4B—C8B	125.3 (8)	C4B—C8B—H85	109.00
C4A—C5A—C6A	120.0 (3)	C4B—C8B—H86	109.00
C4B—C5B—C6B	120.0 (7)	H85—C8B—H86	110.00
C1A—C6A—C5A	120.0 (3)	H84—C8B—H85	109.00
C1B—C6B—C5B	119.9 (7)	H84—C8B—H86	110.00

N1—C9—C10	113.32 (17)	N1—C9—H9B	109.00
O1—C10—C9	122.10 (19)	Н9А—С9—Н9В	108.00
N2-C10-C9	114.70 (17)	С10—С9—Н9А	109.00
O1—C10—N2	123.18 (19)	С10—С9—Н9В	109.00
C1A—C2A—H2A	120.00	N1—C9—H9A	109.00
C9—N1—C1A—C2A	176.3 (2)	C1A—C2A—C3A—C4A	0.0 (4)
C9—N1—C1A—C6A	-4.5 (4)	C7A—C3A—C4A—C5A	177.6 (3)
C1A—N1—C9—C10	78.7 (2)	C2A—C3A—C4A—C8A	178.9 (3)
N3—N2—C10—O1	-2.4 (3)	C2A—C3A—C4A—C5A	0.0 (4)
N3—N2—C10—C9	175.88 (18)	C7A—C3A—C4A—C8A	-3.4 (5)
N1—C1A—C2A—C3A	179.2 (2)	C8A—C4A—C5A—C6A	-179.0 (3)
N1—C1A—C6A—C5A	-179.1 (3)	C3A—C4A—C5A—C6A	0.0 (4)
C2A-C1A-C6A-C5A	0.1 (5)	C4A—C5A—C6A—C1A	-0.1 (4)
C6A—C1A—C2A—C3A	0.0 (5)	N1—C9—C10—N2	19.1 (3)
C1A—C2A—C3A—C7A	-177.7 (3)	N1-C9-C10-O1	-162.6 (2)
	(11) 1 (1) (1)		

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*-1, *y*, *z*; (iii) *x*-1, *y*+1, *z*; (iv) -*x*+1, -*y*+2, -*z*; (v) *x*, *y*-1, *z*; (vi) -*x*+2, -*y*+1, -*z*; (vii) *x*+1, *y*, *z*; (viii) -*x*+2, -*y*+2, -*z*; (ix) -*x*+1, -*y*+1, -*z*; (x) *x*+1, *y*-1, *z*; (xi) -*x*+2, -*y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O1 ^v	0.8600	2.5200	3.223 (2)	140.00
N2—H2…N1	0.8600	2.2500	2.672 (3)	110.00
N2—H2…N3 ^{vi}	0.8600	2.4700	3.139 (3)	136.00
N3—H3A…O1	0.91 (3)	2.39 (2)	2.779 (3)	105.6 (17)
N3—H3A···O1 ^{iv}	0.91 (3)	2.42 (2)	3.223 (2)	147 (2)
N3—H3B…O1 ^{vii}	0.93 (3)	2.32 (3)	3.156 (3)	149 (2)
C9—H9B···N3 ^{ix}	0.9700	2.5800	3.484 (3)	155.00
\mathbf{C} = \mathbf{C} = \mathbf{C} = \mathbf{C}	1 (1) 11 12		1 . 1	

Symmetry codes: (v) x, y-1, z; (vi) -x+2, -y+1, -z; (iv) -x+1, -y+2, -z; (vii) x+1, y, z; (ix) -x+1, -y+1, -z.

Fig. 1

