
MicroRNA and cancer – focus on apoptosis

Yu Wang a, Caroline G. L. Lee a, b, c, *

a Department of Biochemistry, National University of Singapore, Singapore
b Division of Medical Sciences, National Cancer Center, Singapore

c DUKE-NUS Graduate Medical School, Singapore

Received: July 30, 2008; Accepted: September 11, 2008

Abstract

MicroRNAs (miRs) are small non-coding RNAs regulating gene expression at the post-transcriptional and/or translational levels. miRs
play important roles in diverse biological processes, including development, cell differentiation, proliferation and apoptosis. Recent evi-
dence has shown that miR loci frequently map to cancer-associated genomic regions and deregulated miR expression profiles are asso-
ciated with many cancer types, implicating miRs in crucial processes that lead to tumourigenesis. Here, we review the current findings
about miRs and tumourigenesis, focusing on their involvement in the apoptosis pathway. A significant observation is that greater than
one-quarter of all known human miRs were reported to be deregulated in at least one cancer type. The expression of a subset of miRs
(e.g. miR-21 and miR-155) was found to be consistently up-regulated, whereas another subset of miRs (e.g. miR-143 and miR-145)
was consistently down-regulated across different cancer types suggesting their involvement in regulating common cellular processes
whose deregulation may lead to tumourigenesis. Several miRs were implicated to play roles in cell proliferation and apoptosis. Some
miRs, such as miR-29b and miR-15-16, influence only the apoptotic pathway, whereas others including let-7/miR-98 and miR-17-92
may play roles in both the apoptotic and cell-proliferation pathways. In conclusion, although our current understanding of the functions
of miRs is still fragmentary, taken together, this review highlights the complex and intricate roles that miRs play in the regulation of 
cellular processes. Perturbation of the expression of miRs may thus lead to tumourigenesis.
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Introduction

microRNAs (miRs) are a class of small non-coding RNAs whose
mature products are ~22 nucleotides long. They negatively regu-
late gene expression at the post-transcriptional and/or transla-
tional level. They were first discovered by Ambros and colleagues
in 1993 [1] in C.elegans and were shown to be abundantly
expressed in viruses [2], plants [3] and animals [4]. To date, there
are a total of 6396 miRs (miRBase Release 11. http://microrna.
sanger.ac.uk/sequences/), of which, 678 miRs are found in human

beings [5–7]. Many miRs show sequence and function conserva-
tion between distantly related organisms, suggesting that this
class of small RNAs is an integral part of essential cellular
processes [8]. For example, Lethal-7 (Let-7) was initially discov-
ered to be responsible for the developmental transition of L4 lavae
to the adult cell fates [9] in C.elegans. It was later found to be 
evolutionarily conserved, regulating development in Drosophila,
zebrafish, annelids, mollusks [8] and mouse [10] and possibly
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human beings, which comprised 12 members of the Let-7 family.
Their strong evolutionary conservation suggests that they are
likely to have an ancient origin [11] although they were identified
only recently. Their discovery has opened up a new dimension in
our understanding of gene regulation.

miR biogenesis

microRNAs are encoded in the genome and transcribed by RNA
polymerase II as primary transcripts that are called pri-miRs. Pri-
miRs are typically 3 to 4 kilobases long single-stranded RNAs with
5�cap, 3� poly(A) tail and complicated secondary structure [12,
13]. The Pri-miRs are processed in the nucleus into one or more
precursor-miRs (pre-miRs) of ~70-nucleotide by microprocessor
complex comprising the nuclear RNase III, Drosha, and the dou-
ble-stranded RNA binding protein, Pasha/DGCR8 [13–15]. Pre-
miRs are then actively exported to the cytoplasm through
exportin-5 in association with RAN-GTPase [16, 17]. In the cyto-
plasm, another RNase III, known as Dicer, further processes the
pre-miR into ~22-nucleotide mature miR, which is double-
stranded (miR duplex). The miR duplex [18, 19] comprises a
strand (miR strand), which is incorporated into the multi-protein
RNA-induced silencing complex (miRISC) and a complementary
strand (miR* strand), which is degraded. Thermodynamic stability
of the strand probably determines the choice of strand to be incor-
porated into miRISC complex [20]. In mammalian system, the
functional miRISC carrying the mature miR can bind to the
3�untranslated region (3�UTR) of its target gene mRNA to result in
either mRNA degradation (for nearly perfect complementary base-
paring) or protein translation inhibition (for imperfect complemen-
tary base-paring). The mechanism of inhibition will depend on the
miR sequence, the target mRNA sequence and the exact compo-
sition of the miRISC protein complex [21, 22].

miR and cancer

The importance of microRNAs in cancer is highlighted by the
observation that ~50% of miRNA genes are located in cancer-
associated genomic regions or fragile sites [23, 24], which are fre-
quently amplified or deleted in tumourigenesis. Global repression
of microRNA processing machinery (Drosha, Pasha/DGCR8 and
Dicer1) promotes cellular transformation and miRNA processing-
impaired cells formed tumours with accelerated kinetics in mouse
model, implicating the role of mature miRs in cancer-related
processes [25]. Large-scale microRNA expression profiling of
human cancers have revealed that miRNA deregulation is fre-
quently associated with many cancer types including those origi-
nating from the blood [26–31], brain [32–34], thyroid [35–37],
breast [38], lung [39–41], tongue [42], nose and pharynx [43],
liver [44–47], the gastro-intestinal system (esophageal [48], 

gastric [49], pancreatic [50, 51] and colorectal cancers [52, 53])
as well as the genitourinary system (cervical [54], ovarian [55, 56]
and prostate [57, 58] cancers).

Table 1 summarizes our current knowledge on the profile of
miR expression in various human cancers. In these studies, miR
expression in tumours is compared against paired non-
tumourous tissues from cancer patients and significantly up- and
down-regulated miRs are indicated with red-box/up-arrow and
green-box/down-arrow, respectively. More than one-quarter of
known human miRs (175 out of 678 miRs) have been reported to
be significantly deregulated in at least one cancer type. However,
this may be a gross underestimation of the actual numbers of
deregulated miRs as the majority of the known miRs were only
identified in the previous 2 years and were not included in earlier
miR expression profiling studies. Nonetheless, this observation
suggests that microRNAs may represent one of the largest
classes of gene regulators implicated in cancer-related processes
although very little are known about them. Table 1 also highlights
some interesting patterns of miR expression profiles in cancers.
Of the cancer-implicated miRs, miR-21 is the most commonly
up-regulated miR in both solid and haematological tumours, con-
sistent with the report of Volinia et al. [58]. Besides miR-21, other
miRs including miR-155, miR-181b, miR-221 and miR-222 are
also frequently up-regulated in cancers of the blood, brain, thy-
roid and the gastro-intestinal (GI) systems, and to a lesser extent
in liver cancer, lung cancer and breast cancer. In contrast, the let-
7/miR-98 cluster is commonly down-regulated in tumours of the
thyroid, breast, lung, upper GI and the genitourinary system.
Similarly, miR-143 and miR-145 are frequently down-regulated in
the haematological tumours and solid tumours of the breast,
lung, prostate and the lower GI system. Such common deregula-
tion of miR expressions across various tumour types suggests
that these miRs may be involved in crucial cellular pathways that
are commonly deregulated in cancer development. Indeed, func-
tional studies have demonstrated that let-7/miR-98 negatively
regulate RAS [59] and v-myc myelocytomatosis viral oncogene
homologue (MYC) [60] whilst miR-21 negatively regulate phos-
phatase and tensin homologue (PTEN) [44] and programmed cell
death 4 (PDCD4) [61], which are proto-oncogenes or tumour
suppressors that regulate important cellular processes, including
cell growth, proliferation and apoptosis whose deregulation leads
to tumourigenesis. In addition to miRs that are commonly dereg-
ulated across different cancers, there are also miRs that seem to
be deregulated in only specific tumour types (Table 1). For exam-
ple, the miR-17-92 cluster and miR-93 are frequently reported to
be up-regulated mainly in cancers of the GI system. Interestingly,
a very large proportion of miRs (~81%) were found to be up-reg-
ulated in thyroid tumours, whereas a high percentage of miRs
(~70%) were reported to be down-regulated in prostate cancers.
These observations suggest that some tumour-specific mecha-
nisms may be in place to favour particular miR profiles depend-
ing on the tumour micro-environment. It is also worth noting that
miR-105, miR-144, miR-193 and miR-199b are seldom reported
to be deregulated in cancer, despite their relatively early discov-
ery, suggesting that these miRs probably play a role in cellular
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Let-7 / miR-98 RAS[59], MYC[60], HMGA2[64]
miR-1 HCN2[65], HCN4[65],
miR-7 EGFR[33]
miR-9 ONECUT2[63]
miR-10a
miR-10b
miR-15a-16-1 BCL2[66,67]
miR-15b BCL2[67]
miR-17-92 E2F1[68], TSP1/THBS1[70], CTGF[70], PTEN[62],

BIM/BCL2L11[62,69], RB2/RBL2[69], p21/CDKN1A[71]

miR-20a
miR-21 PTEN[44], TPM1[72], PDCD4[61,73], MASPIN/SERPINB5[73]
miR-22
miR-23a
miR-23b
miR-24 p16INK4a/ CDKN2A[74], ALK4 /ACVR1B[75]
miR-25
miR-26a EZH2[76], SMAD1[77]
miR-26b
miR-27a
miR-27b
miR-29a
miR-29b MCL1[78]
miR-29c COL[43], FUSIP1[43],LAMININ/LAMC1[43],SPARC[43],TDG[43]
miR-30a
miR-30b
miR-30c
miR-30d
miR-31
miR-32
miR-33
miR-34a
miR-34b
miR-34c
miR-93
miR-95
miR-96
miR-99a
miR-99b
miR-100
miR-101
miR-103
miR-105
miR-106a
miR-106b p21/CDKN1A[79]
miR-107 BACE1[80]
miR-122a CCNG1[47]
miR-124a FOXA2[81]
miR-124b
miR-125a
miR-125b
miR-126 VCAM1[82], HOXA9[83]
miR-127 BCL6[84]
miR-128a
miR-128b
miR-129
miR-130a GAX/MEOX2[85], HOXA5[85]
miR-130b
miR-132
miR-133a
miR-133b
miR-134 NANOG[86], LRH1/NR5A2[86]
miR-135a
miR-136
miR-137 MITF[87]
miR-138
miR-139
miR-140
miR-141 TGFB2[88]
miR-142
miR-143
miR-144
miR-145
miR-146a
miR-146b
miR-147
miR-148
miR-149
miR-150 MYB[89]
miR-151
miR-152
miR-153a
miR-154
miR-155 hAT1R/AGTR1[90], TP53INP1[91]
miR-181a
miR-181b
miR-181c
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Table 1: miRs that are significantly differentially expressed in human cancers and their validated in vivo targets.

Continued



J. Cell. Mol. Med. Vol 13, No 1, 2009

15© 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

S
to

m
ac

h

C
ol

on
 &

 R
ec

tu
m

C
er

vi
x

O
va

ry

 A
cu

te
 M

ye
lo

id
 L

eu
ka

em
ia

 [
26

]

 B
-c

el
l C

hr
on

ic
 L

ym
ph

o
cy

ti
c 

L
eu

ke
m

ia
 [

27
,2

8,
30

]

 D
if

fu
se

 L
ar

ge
 B

-c
el

l L
ym

ph
om

a 
[2

9,
30

]

 H
od

gk
in

 L
ym

ph
om

a 
[3

1]

 G
li

ob
as

to
m

a 
[3

2,
33

]

 P
it

ui
ta

ry
 A

de
no

m
a 

[3
4]

 P
ap

il
la

ry
 C

ar
ci

no
m

a 
[3

5-
37

]

 C
on

ve
nt

io
na

l F
ol

li
cu

la
r 

C
ar

ci
no

m
a 

[3
7]

 O
nc

oc
yt

ic
 F

ol
li

cu
la

r 
C

ar
ci

no
m

a 
[3

7]

 P
oo

rl
y 

D
if

fe
re

nt
ia

te
d 

C
ar

ci
no

m
a 

[3
7]

 A
n

ap
la

st
ic

 C
ar

ci
no

m
a 

[3
7]

 C
on

ve
nt

io
na

l F
ol

li
cu

la
r A

d
en

om
a 

[3
7]

 O
nc

oc
yt

ic
 F

ol
li

cu
la

r A
d

en
om

a 
[3

7]

 M
ed

ul
la

ry
 C

ar
ci

no
m

a 
[3

7]

 B
re

as
t C

ar
ci

no
m

a 
[3

8]

 L
un

g 
A

d
en

oc
ar

ci
no

m
a 

[3
9-

41
]

 S
qu

am
ou

s 
C

el
l C

ar
ci

no
m

a 
[4

2]

 N
as

op
ha

ry
ng

ea
l C

ar
ci

no
m

a 
[4

3]

 H
ep

at
oc

el
lu

la
r 

C
ar

ci
no

m
a 

[4
4-

47
]

 E
so

ph
ag

ea
l A

d
en

oc
ar

ci
no

m
a 

[4
8]

 E
so

ph
ag

ea
l S

qu
am

ou
s 

ce
ll

 C
ar

ci
no

m
a 

[4
8]

 G
as

tr
ic

 A
d

en
oc

ar
ci

no
m

a 
[4

9]

 P
an

cr
ea

ti
c 

A
d

en
oc

ar
ci

no
m

a 
[5

0]

 P
an

cr
ea

ti
c 

D
uc

ta
l A

d
en

oc
ar

ci
no

m
a 

[5
1]

 C
ol

or
ec

ta
l A

d
en

oc
ar

ci
no

m
a 

[5
2,

53
]

 C
er

vi
ca

l C
ar

ci
no

m
a 

[5
4]

 O
va

ri
an

 C
ar

ci
no

m
a 

[5
5,

56
]

 P
ro

st
at

e 
C

ar
ci

no
m

a 
[5

7,
58

]

 H
or

m
on

e-
re

fr
ac

to
ry

 C
ar

ci
no

m
a 

[5
7,

58
]

miR-182
miR-183
miR-184
miR-185
miR-186
miR-187
miR-188
miR-190
miR-191
miR-192 SIP1/ZEB2[92]
miR-193
miR-194
miR-195
miR-196 HOXB8[93]
miR-197
miR-198
miR-199a
miR-199b
miR-200a ZEB1[95], SIP1/ZEB2[95]
miR-200b ZFHX1B/ZEB2[96]
miR-200c ZEB1[88]
miR-202
miR-203 TP63[97]
miR-204
miR-205 ZEB1[95], SIP1/ZEB2[95]
miR-206
miR-208
miR-210 EPHRIN-A3/EFNA3[101]
miR-211
miR-212
miR-214 PTEN[55], DISP2[102]
miR-215
miR-216
miR-217
miR-218
miR-219
miR-220
miR-221 p27Kip1/CDKN1B[103,104], p57/CDKN1C[104]
miR-222 p27Kip1/CDKN1B[103]
miR-223 STMN1[105]
miR-224 API5 [45]
miR-296
miR-297
miR-298
miR-299
miR-300
miR-301
miR-302a
miR-302b
miR-302c
miR-302d
miR-320
miR-323
miR-324
miR-325
miR-326
miR-328
miR-329
miR-330
miR-331
miR-335
miR-338 CD44[106]
miR-339
miR-340
miR-342
miR-345
miR-346
miR-363
miR-365
miR-367
miR-369
miR-370
miR-371
miR-372 LATS2[107]
miR-373 LATS2[107]
miR-374
miR-375 PDK1[108]
miR-376a
miR-424 NFIA[109]
miR-491
miR-493
miR-494
miR-497
miR-498
miR-503
miR-513
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Upward pointing arrows in red boxes indicate that the miR is up-regulated in the cancer-type while downward pointing arrows in green
boxes indicate down-regulated miRs. Yellow boxes with both Upward- &downward-pointing arrows indicate that miR was reported to
be up-regulated in one study but down-regulated in another study.

Table 1: Continued
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house-keeping processes and are less likely to be involved in
oncogenesis.

Although much is known about the aberrant miR expression
pattern associated with various cancers, much less is known
about the functional relevance of such miR deregulation or the 
in vivo miR targets. Table 1 also summarizes a total of 65 non-
overlapping experimentally validated direct cellular targets of miRs
that are reported to date [33, 43–45, 47, 55, 59–109]. Table S1
annotates these validated targets based on Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
These 65 validated miR target genes show a significant enrich-
ment in the classical cancer-associated pathways such as tran-
scription, cell–cell adhesion and signalling, cell-cycle regulation,
cell proliferation and apoptosis, strongly suggesting that the
deregulation of these miR target genes may play significant roles
in carcinogenesis. However, as predicted by miR target prediction
algorithms (miRanda [6], PicTar [110] and TargetScan [111]),
each individual miR can potentially regulate hundreds of cellular
gene targets. But reports of the identification and characterization
of these in vivo miR targets remain few, which prevent our com-
prehensive understanding of the miR-regulated networks that
significantly impact cell differentiation, cell proliferation and apop-
tosis [112]. Current knowledge on a limited number of miRs or
miR clusters has revealed the complexity of miR-regulatory net-
works, and in this review, we will discuss the role of a few well-
studied miRs in tumourigenesis with a focus on its impact on the
apoptotic pathway.

miR and apoptosis

Apoptosis is the intrinsic cellular mechanism to eliminate cells
that are damaged or transformed. Deregulation of apoptosis is an
important step in cancer as it allows the genetically unstable cells
to survive and accumulate further mutations that eventually lead
to tumourigenesis. As cancer cells are mostly characterized by
increased cell proliferation and decreased cell death, cancer-
implicated genes have conventionally been classified into two
groups. One group, the oncogenes, up-regulates proliferation and
down-regulates apoptosis, whereas the other group, the tumour
suppressor genes, performs just the opposite function. Indeed,
pro-apoptotic genes such as p53 are frequently inactivated whilst
anti-apoptotic genes such as B-cell CLL/lymphoma 2 (BCL2) are
frequently over-activated in cancer progression. However, recent
evidence has shown that up-regulation of MYC and E2F onco-
genes can increase both cell proliferation and apoptosis [113,
114], suggesting the classification of cancer-related genes into
oncogenes or tumour suppressors may be an over-simplification.
Figure 1 summarizes our current knowledge of miRs implicated
in cell-proliferation and apoptosis, revealing that the miR-regula-
tory network is just as complicated as its protein-coding counter-
parts. Some miRs, such as miR-29b and miR-15-16, were found
to affect only the apoptotic pathway, whereas others including 

let-7/miR-98 and miR-17-92 play roles in both the apoptotic 
and cell-proliferation pathways (see review [114, 115]). In the fol-
lowing discussion, we will discuss some pro-apoptotic miRs,
anti-apoptotic miRs and miRs that regulate both proliferation 
and apoptosis.

The pro-apoptotic miRs targeting the BCL2 family
of genes

The miR-15-16 cluster induces apoptosis by targeting the
important anti-apoptotic factor BCL2 at the post-transcriptional
level [66]. It was proposed to function as a tumour suppressor
by keeping cell growth in check under normal physiological con-
ditions. Like many tumour suppressors, this miR cluster is
found to be frequently deleted in B-cell chronic lymphocytic
leukaemia (CLL), resulting in its down-regulation in more than
68% of the CLL cases [28]. The miR-15-16 cluter is also
reported to be down-regulated in pituitary adenoma [34] and
prostate carcinoma [57]. Hence in these cancers, miR-15-16
expression is preferentially down-regulated to favour cancer
development by inhibiting apoptosis (Fig.1). In a recent study,
which utilized expression microarray to investigate the effects of
miR-15a and miR-16-1 on the transcriptome and proteome of
MEG-01 leukaemic cells, genes (e.g. MCL1, ETS1 and JUN) that
directly or indirectly play a role in apoptosis and cell-cycle were
found to be significantly differentially expressed in these cells.
Another miR, miR-29b, which is down-regulated in lung and
prostate cancers (Table 1), was reported to also target myeloid
cell leukaemia sequence 1 (MCL1) [78], a member of the BCL2
family, implying that the function of miR-29b may be similar to
that of miR-15-16. Curiously, in some cancers, the expression of
these miRs (miR-15-16 and miR-29b) was reported to be up-
regulated instead. One possible explanation to these seemingly
contradictory observations may perhaps be that these miRs may
deregulate other cellular processes in addition to apoptosis in
these specific cancers.

The anti-apoptotic miR-21 targets PTEN 
and PDCD4

miR-21 is the most consistently up-regulated miR across many
cancer types (Table 1). miR-21 was first implicated as an anti-
apoptotic factor by the observation that knock-down of miR-21
increased apoptotic cell death in human glioblastoma cells [116]
and in the mouse model [117]. miR-21 directly targets PTEN
whose down-regulation will release its inhibition on protein
kinase B (PKB) resulting in significantly reduced apoptosis in
cancer cells (Fig.1). miR-21 also targets PDCD4 [61], a pro-apop-
totic gene frequently down-regulated in hepatocellular carci-
noma(HCC) [118]. Interestingly, miR-21 was also reported to be
up-regulated in HCC (Table 1). This suggests that miR-21 can
inhibit apoptosis through both PTEN and PDCD4. Recently, miR-21
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was reported to target important tumour suppressor genes
including tropomyosin 1 (TPM1) [72] and serpin peptidase
inhibitor, clade B (ovalbumin), member 5 (SERPINB5) [73] sug-
gesting that miR-21 may also play a role in tumour invasion and
metastasis. Hence, the oncogenic potential of miR-21 lies in its
ability to regulate multiple cancer-associated pathways probably
via multiple cellular targets, which may partially explain its fre-
quent up-regulation in cancer.

miR-210 decreases proapoptotic signalling in a
hypoxic environment

Hypoxia-regulated microRNAs such as miR-210 is induced in
response to low oxygen and play a role in cell survival by decreas-
ing caspase activation, the central components of apoptotic sig-
nalling [119]. As hypoxia is an important feature of tumour
microenvironment, it is of interest to note that miR-210 is also

Fig. 1 Diagrammatic representation of the roles of miRs in the regulation of cell proliferation and apoptosis. Red colour indicates a general up-regula-
tion of miRs in cancers and green colour indicates a general down-regulation of miRs in cancer.
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over-expressed in many major tumour types (Table 1), suggesting
that hypoxia may represent a contributing factor for microRNA
deregulation in certain cancers. A recent study by Camps et al. has
demonstrated that miR-210 is a good prognostic marker for
breast cancer [120].

Let-7/ miR-98 family and possible co-operation
with miR-21

Our understanding of the role of let-7/miR-98 family in cancer
development was facilitated by the identification of two proto-
oncogenes regulating cell proliferation and apoptosis, RAS [59]
and MYC [60], as direct targets of let-7/miR-98. Under normal
physiological conditions, Let-7 regulates cellular proliferation
by inhibiting RAS and MYC expression. However, in tumours,
let-7/miR-98 are frequently down-regulated resulting in
increased expression of cellular RAS and MYC and subsequent
elevation of cell proliferation as well as MYC-induced apoptosis
[114] (Fig.1). Increased apoptosis and proliferation seem to
contradict the conventional wisdom that apoptosis is reduced
during carcinogenesis. However, oncogenic changes that pro-
mote apoptosis are thought to provide the selective pressure for
the cells to override apoptosis during the multistage process of
carcinogenesis [121], resulting in the final cell population that
retain high proliferative but reduced apoptotic potential. It is
important to note that expression of miR-21 is frequently up-
regulated in let-7/miR-98 down-regulated tumours of the thyroid,
breast, lung, liver, esophagus and prostate (Table 1). This sug-
gests that miR-21 or other cellular factors may counter-balance
MYC-induced apoptosis in tumours in which let-7/miR-98
expression is down-regulated, whereas still maintaining a high
rate of cell proliferation.

miR-17-92 cluster highlights the complexity 
of miR regulatory networks

The miR-17-92 cluster, which modulates E2F1 expression, is
positively regulated by MYC [122]. Under normal physiological
conditions, miR-17-92 facilitates the tight regulation of MYC-
mediated cellular proliferation by inhibiting the MYC-induced
E2F1 expression. However, when miR-17-92 is over-expressed as
in the case of GI cancers, it can potentially become a very potent
oncogene targeting multiple cellular pathways to favour tumouri-
genesis by enhancing cell proliferation and inhibiting apoptosis.
As illustrated in Fig.1, miR-17-92 can increase MYC-enhanced
proliferation by targeting p21 [71] and consequently activating
the CyclinD1/CDK4 complex to release retinoblastoma (RB)’s
inhibition on E2F. In addition, miR-17-92 is also capable of down-
regulating RB [69] directly to drive cell proliferation. On the other
hand, miR-17-92 is also capable of minimizing MYC-induced
apoptosis by targeting BCL2-like 11 (BIM) and PTEN [62] to
increase the level of anti-apoptotic BCL2. Hence, miR-17-92 is

truly worthy of its reputation as the first non-coding oncogene,
oncomiR-1 [123]. This miR demonstrates the complexity of miR
regulatory network.

miR-224, the double-edged sword

miR-224 is up-regulated in HCC, pancreatic ductal adenoma and
various types of thyroid cancers (Table 1). We have demonstrated
that over-expression of miR-224 sensitizes cells to apoptosis
through API-5, an apoptosis inhibitor, and increase cell prolifera-
tion through yet an unknown mechanism [45]. Sassen et al. has
previously proposed that a single miR can potentially regulate
opposing cellular activities such as cell proliferation and apopto-
sis [124] and miR-224 represents the first such miR identified.
Similar to the MYC oncogene, which regulates both cell-prolifer-
ation and apoptosis, the dual role of miR-224 to influence both
cell proliferation and apoptosis can potentially hasten the selec-
tive process favouring cells that accumulate sufficient heritable
genetic mutations to override apoptosis during the multistage of
carcinogenesis.

Other miRs implicated in apoptosis

There are a number of other miRs that may potentially play roles
in regulating apoptosis in cancer. For example, miR-155 is fre-
quently over-expressed in many cancers and targets the tumour
protein p53 inducible nuclear protein 1 (TP53INP1) [91]. TP53INP1
was reported to be a positive regulator of p53-dependent apopto-
sis by enhancing Ser46 phosphorylation of p53 which in turn
induced p53-regulated apoptosis-inducing protein 1(p53AIP1)
expression and subsequent apoptotic cell death [125]. Hence,
over-expression of miR-155 in cancers will inhibit TP53INP1
expression and attenuate apoptotic cell death induced by
TP53INP1. In contrast, miR-127 was reported to target B-cell
CLL/lymphoma 6 (BCL6) [84] to potentially increase TP53-
dependent apoptosis by disrupting the negative regulatory feed-
back loop between BCL6 and TP53 [126, 127]. However, our
understanding of the rationale behind this deregulation in cancer
remains unclear.

Conclusion

One of the hallmarks of cancer is defects in the regulatory circuits
that control normal cell proliferation and homeostasis. Previously,
great efforts were focused on understanding the roles of protein-
coding genes in cancer. As discussed above, emerging research
are implicating miRNAs as a novel class of non-coding tumour
suppressors and oncogenes that play important roles in tumouri-
genesis. As we review the roles of miRNAs in apoptosis and 
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cancer, we begin to appreciate that miR’s role in tumourigenesis is
not merely either pro- or anti-apoptosis. Rather, it is likely that
coordination and perhaps synergism between several deregulated
miRs and their protein-coding counterparts facilitate a favourable
environment for cancer formation. Although current knowledge 
of miR function and targets is incomplete, it underscores the 
complexity of the roles of RNA in the regulation of cellular path-
ways. Continued effort in the detailed characterization of miR 
target and function is necessary to improve our understanding of

the role of miRs in tumourigenesis and facilitates the design of
appropriate therapies targeting this novel group of molecules.
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