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Abstract

Given the dynamic nature of the brain, there has always been a motivation to move beyond ‘static’ functional connectivity,
which characterizes functional interactions over an extended period of time. Progress in data acquisition and advances in
analytical neuroimaging methods now allow us to assess the whole brain’s dynamic functional connectivity (dFC) and its
network-based analog, dynamic functional network connectivity at the macroscale (mm) using fMRI. This has resulted in
the rapid growth of analytical approaches, some of which are very complex, requiring technical expertise that could daunt
researchers and neuroscientists. Meanwhile, making real progress toward understanding the association between brain
dynamism and brain disorders can only be achieved through research conducted by domain experts, such as neuroscien-
tists and psychiatrists. This article aims to provide a gentle introduction to the application of dFC. We first explain what
dFC is and the circumstances under which it can be used. Next, we review two major categories of analytical approaches to
capture dFC. We discuss caveats and considerations in dFC analysis. Finally, we walk readers through an openly accessible
toolbox to capture dFC properties and briefly review some of the dynamic metrics calculated using this toolbox.
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Dynamic functional connectivity
(time-varying functional patterns)
Introduction and definitions

It has been suggested that cognition andmanymental activities
result from the interactions of distributed brain areas (Bressler
and Menon, 2010). A local neural assembly, which has its own
intrinsic functionality, interacts at the global level with other
parts of the brain. However, a major challenge to studying the
brain from this point of view is how to best capture functional

interactions across the whole brain. An ideal solution would be
to evaluatewhole-brain dynamic interactions at the neural level;
however, imaging at such a scale in humans is not possible at
present. Instead, functional imaging techniques can be used to
assess the whole-brain functional interactions at a macroscale
(mm) resolution and have yielded information of great value.

Functional magnetic resonance imaging (fMRI) measures the
blood oxygenation level-dependent (BOLD) signal, a macroscale
proxy for average neural activity, which allows simultaneous
investigation of the functional localization and interactions
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between brain regions. Most commonly, the entire fMRI scan
is used to calculate the average functional connectivity (FC),
a method known as static functional connectivity (sFC). How-
ever, spontaneous brain activity is rich with dynamic properties
which are disregarded in such a method. Therefore, research
into whole-brain dynamic functional connectivity (dFC) has
become a burgeoning field of study since initial work on the topic
(Sakoglu et al., 2010). Although one can distinguish between
approaches that leverage the time-varying signal and those that
more explicitly model/capture dynamics over time (Lurie et al.,
2020), we refer to both as dFC for convenience. dFC is defined
as time-varying FC and contains information regarding the tem-
poral reconfiguration of functional entities (also called sources).
dFC studies aim to evaluate how the interactions between func-
tional sources change over time. We can define a functional
source as a group of temporally synchronized neural assemblies,
which present similar functionality within a given dataset (Iraji
et al., 2020). Fixed anatomical locations are convenient represen-
tations of these sources, assuming all voxels within a predefined
anatomical location have the same functional profile and are the
same across individuals. More advanced approaches, such as
dynamic functional network connectivity (dFNC), leverage the
data itself to estimate the sources and study dFC (Jafri et al., 2008;
Allen et al., 2011; Calhoun and de Lacy, 2017).

Potential relationship with brain function and neural
activity

It should be noted that because fMRI is an indirect measure-
ment of neural activity, fluctuations in FC estimated by fMRI are
also indirect representations of dFC. There is ongoing discussion
regarding how well these fluctuations capture the underly-
ing brain dynamism, but previous studies provide a signifi-
cant amount of evidence to support the potential relationship
between the fluctuations in FC obtained from fMRI and neu-
ral dynamics in the brain (for review, see (Lurie et al., 2020)).
For instance, simultaneous fMRI and electroencephalography
(EEG) imaging studies show that fluctuations in FC obtained
from resting-state fMRI are associated with electrophysiological
signatures of EEG (Chang et al., 2013; Allen et al., 2018). A com-
parison between the hemodynamic signal and neuronal calcium
signal also provides strong evidence that temporal fluctuations
in hemodynamic FC are related to brain dynamics (Matsui et al.,
2019). Thus, to simplify notation in the remainder of this article,
we refer to time-varying FC estimates from fMRI as dFC.

Evidence of reliability and cognitive relevance

Studies have also evaluated the replicability and reliability of
dFC properties captured by fMRI. Previous researchers used a
large dataset (∼7500 subjects) collected from different sites and
identified replicable dFC patterns, which are robust against vari-
ations in data quality and analysis methods (Abrol et al., 2017).
Test–retest reliability analyses show the presence of reliable
dynamic patterns (Choe et al., 2017; Zhang et al., 2018a). Simi-
lar studies also identify reliable and reproducible intersession
(intervals of 2 days and 1 week) dFC patterns (Yang et al., 2014;
Smith et al., 2018). Shi et al. (2018) reported robust findings of the
association between dFC and subjective well-being across two
independent datasets and different analysis parameters, which
suggest dFC is involved in self-focused processing, emotional
regulation and the cognitive control process.

dFC also helps to index mental states dictated by a multitask
paradigm and can differentiate between task-induced cognitive
processes (Gonzalez-Castillo et al., 2015). dFC patterns of the
salience network and the posteromedial cortex are related to
individual differences in cognitive flexibility and categorization
ability (Yang et al., 2014; Chen et al., 2016). Using a continuous
auditory detection task, Sadaghiani et al. (2015) showed that dFC
features before the auditory stimulus could predict whether the
audio was recognized or not, and dFC patterns after stimula-
tion were also significantly different between the two scenarios.
Madhyastha et al. (2015) show that dFC within the dorsal atten-
tion network and frontoparietal network (FPN) predicts atten-
tion task performance. The dFC variability (see Table 1 for the
definition of different dFC measures) between the default mode
network (DMN) and FPN is shown to be related to cognitive
performance (Douw et al., 2016). Compared to low trait mind-
fulness individuals, high trait mindfulness individuals show a
higher level of transitions between brain dFC states and spend
more time in one dFC state associated with task-readiness (Lim
et al., 2018). Marusak et al. (2018) similarly found that dFC (but
not sFC) is related to mindfulness in youths such that more
mindful youths have a higher level of transitions between dFC
states. Additionally, Cabral et al. (2017) report a relationship
between cognitive performance in older adults and slow switch-
ing between dFC states. dFC properties appear to be related to
age in the early years as well.

Interestingly, regions with different cognitive and processing
demands represent different levels of dynamism. The brain net-
works/areas that are known to be involved in higher cognitive
processing show a higher level of dynamism measured by dFC
than networks/areas engaged in primary processing (Zalesky
et al., 2014; Chen et al., 2016; Iraji et al., 2019b). At the network
level, networks that are engaged in a wide range of cognitive
functions, such as the FPN, seem to have the highest level
of dynamism (Zalesky et al., 2014; Iraji et al., 2019b). The rele-
vance of dFC is also supported by other studies that evaluate
the relationship between dFC properties and biological features
such as age, gender and cognitive processes (Thompson et al.,
2013a; Leonardi et al., 2014; Elton and Gao, 2015; Hutchison and
Morton, 2015; Qin et al., 2015; Yaesoubi et al., 2015a; Yaesoubi
et al., 2015b; Shine et al., 2016a; Shine et al., 2016b; Kucyi et al.,
2017; Cai et al., 2018; Kucyi, 2018).

The findings mentioned earlier support the potential neu-
rophysiological relevance of dFC and the benefit of studying
dFC properties to elucidate the brain function. One key future
research direction is the use of cognitive/affective tasks to deter-
mine the specific dFC properties of networks/areas which are
associated with certain cognitive processing and mental states.

Neurological and mental disorders

dFC analysis also has the potential to improve the understand-
ing of impaired brains and the functional alterations caused
by brain disorders. Compared to static analysis, dFC analysis
provides additional information about the temporal profile of
brain function and its changes in disorders. dFC analysis can
detect nuanced alterations that are averaged out in static anal-
ysis (Calhoun et al., 2014; Iraji et al., 2019a). In addition, dFC
has been shown to explain some of the inconsistencies in sFC
findings (Iraji et al., 2019a). dFC studies also suggest promis-
ing research directions in neurological and psychiatric disorders
(see ‘Considerations and caveats’ for further details) (Calhoun
et al., 2014). Towards this goal, researchers have started using
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Table 1. List of dFC measures

For stateless dynamic measures:

� dFC variability: It represents the amount of variation in dFC over
time and is commonly calculated as the standard deviation of dFC
value across time/time windows.

� Coupling variability map: It is the spatial map of the amount of
variation in the dFC of a given source/network over time, and it is
estimated by calculating voxel-wise changes in the dFC of the
source using the L1 norm distance (sum of absolute differences).

� Spatiotemporal transition matrix: It summarizes the whole brain
dFC of a given source into a matrix in which each element of the
matrix is the number of times that dFC value changes from one
FC range to another. Several global metrics can be estimated from
the spatiotemporal transition matrix including energy, entropy
and homogeneity.

For state-based dynamic measures:

� dFC strength: The strength of FC in a given state.
� Dwell time: The average amount of time that a subject lingers in
each state.

� Occupancy rate: The percentage of time that each state occurs
during a scan.

� Transition matrix: The probability of transitioning from one state
to another.

� Average variability index: It is an indication of the overall level of
dynamism for a functional source. Variability index is defined as
the standard deviation of the binomial distribution and estimates
the level of variability in a region’s association to a given
source.

� Functional (inter-domain) state connectivity: It captures the level
of concurrency between states of different sources (e.g. functional
domains) when a technique (e.g. spatial dynamic hierarchy)
estimates dynamic states for each source separately.

For meta-state dynamic measures:

� Number of realized meta-states: the number of distinct
meta-states that an individual realizes during the length of a scan.

� Meta-state switching: the number of times an individual switches
from one meta-state to a different meta-state during the length of
a scan.

� Meta-state span: Maximally different (in the L1 sense)
meta-states that a given subject realizes.

� Meta-state total trajectory length: Total distance traveling in the
state space which is the sum of L1 distances between successive
meta-states for each subject.

� Level-k hub meta-states: the meta-states that an individual visit
at least k times during the scan.

� Level-k transient meta-states: the meta-states that an individual
visits less than k times during the scan.

different methods and metrics to investigate the characteristics
of dFC in various brain disorders.

Among various brain disorders, schizophrenia (SZ) has been
one of the most widely studied via dFC. Patients with SZ spend
less time in a dFC state with strong connectivity, and the
strengths of dFC between subcortical and sensory networks
are weaker in these patients (Damaraju et al., 2014). Spatial
dynamics studies have revealed weaker dFC strength (transient
hypoconnectivity) within particular networks (Iraji et al., 2019a;
Iraji et al., 2019b) in SZ. It has been shown that the decrease

in dFC strength is accompanied by higher fluctuations in dFC
between brain regions (Yue et al., 2018) and within and between
certain brain networks (Ma et al., 2014; Iraji et al., 2019a) in
patients with SZ. Studies also show frequency-specific dFC alter-
ations in patients with SZ (Yaesoubi et al., 2017; Zhang et al.,
2018b; Faghiri et al., 2019). The atypical dFC patterns in patients
with SZ may be related to disease traits (Fu et al., 2018; Yue et al.,
2018; Iraji et al., 2019a).

In another clinical condition, a study found that individu-
als with major depressive disorder (MDD) spend more time in
a state with weak FC strength across the brain (weakly con-
nected dFC state) associated with self-focused thinking (Zhi
et al., 2018). Atypical dFC patterns were significantly correlated
with both depressive symptoms and cognitive performance (Zhi
et al., 2018). Qiu et al. (2018) studied the dFC of the amygdala’s
subregions in untreated individuals with first-episode MDD and
found a decrease in the dFC strength between specific amyg-
dala subregions and several regions within the limbic–cortical–
striato–pallido–thalamic circuit. Additionally, they showed that
the age of MDD onset correlates with the dFC strength between
the left centromedial subregion of the amygdala and the brain-
stem (Qiu et al., 2018). In a different study, MDD patients show
decreased variability of dFC between the DMN and the PFN
(Demirtas et al., 2016).

Alterations in dFC features have been observed in patients
with dementia as well. Change in anterior-posterior dFC of
the brain was associated with declined episodic memory per-
formance in the elderly (Quevenco et al., 2017). Patients with
Alzheimer’s disease (AD) showed higher and lower dwell time in
dFC state with strong the anterior and posterior DMN, respec-
tively (Jones et al., 2012). Patients with AD also show alteration
in whole-brain dFC (Cordova-Palomera et al., 2017; Schumacher
et al., 2019) and spend more time in the weakly connected dFC
state (Schumacher et al., 2019). Patients with AD show both
common and distinct dFC patterns with patients who have sub-
cortical ischemic vascular disease, while the clinical features
and symptoms between these two disorders can sometimes be
difficult to distinguish (Fu et al., 2019a).

In autism spectrum disorder (ASD), alterations in dFC pat-
ternswere observed bothwithin the DMN and between the DMN
and networks involved in higher cognitive processing, includ-
ing the PFN and the cingulo-opercular network (de Lacy et al.,
2017; Rashid et al., 2018). Fu et al. (2019b) found that individu-
als with ASD show a transient increase in dFC strength between
hypothalamus/subthalamus and sensory networks, as well as
alterations in several meta-state metrics including the number
of meta-states and total traveling distance. Interestingly, these
atypical dFC patterns are significantly associated with the total
autism diagnostic observation schedule score. Individuals with
ASD show a decrease in dFC strength between the right anterior
insula and the regions associated with the DMN, including the
ventral medial prefrontal cortex and posterior cingulate cortex
(PCC) dFC (Guo et al., 2019). It has been suggested that decreased
dFC variability of the PCC is related to the role of the DMN in
the social-cognitive deficits of ASD. The lower dFC variability
between the PCC and sensorimotor cortex was correlated with
deficits in social motivation and social relating in ASD indi-
viduals (He et al., 2018). Harlalka et al. (2019) reported positive
correlations between autism diagnostic observation schedule
scores and dFC variability, particularly in the DMN connections.

The dFC of the DMN and its associated areas were also asso-
ciatedwith cognition in other populations. In (left) temporal lobe
epilepsy, the lower dFC variability of the PCC was related to dis-
turbed verbalmemory functioning (Douw et al., 2015). The dFC of
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the DMN and memory functioning were positively correlated in
Parkinson’s disease patients (Engels et al., 2018). Parkinson’s dis-
ease patients also show a loss of specificity of dFC in putaminal
subunits with the exception of the caudal middle frontal gyrus
(Liu et al., 2018). Changes in the dFC strength of the putamen
subunits (particularly anterior subunits) are shown to be corre-
lated with the unified Parkinson’s disease rating scale III (UPDRS
III), and joint dFC features (strength and variability) were able to
predict UPDRS III and Montreal cognitive assessment scores (Liu
et al., 2018).

Alterations in dFC states were also observed in mild trau-
matic brain injury patients (Vergara et al., 2018; Hou et al.,
2019; van der Horn et al., 2019) and had better discriminatory
power than sFC (Vergara et al., 2018). In relapsing-remitting
multiple sclerosis, dorsal and ventral attention networks dis-
played lower within-network dFC and higher between-network
dFC, and the dFC alterations were linked to white matter
lesion damage (Huang et al., 2019). Better executive functions
in relapsing-remitting multiple sclerosis patients were associ-
ated with higher dFC (Lin et al., 2018). Atypical dFC patterns
present in other cohorts and brain disorders, includingmigraine
(Tu et al., 2019), stroke (Chen et al., 2018), epilepsy (Douw et al.,
2015; Liu et al., 2017; Klugah-Brown et al., 2019), attention deficit
hyperactivity disorder (Ou et al., 2014; de Lacy and Calhoun,
2019), post-traumatic stress disorder (Li et al., 2014; Jin et al.,
2017), frontotemporal dementia (Premi et al., 2019) and Lewy
body dementia (Schumacher et al., 2019).

Despite the rising interest and great potential of dFC in vari-
ous circumstances, the application of dFC is still not a baseline
tool for neuroscientists. One main reason is the rapidly grow-
ing pool of analytical approaches. In the following sections,
we provide a basic summary of the most common analytical
approaches and a straightforward tool to study dFC.

Analytic approaches to study dFC

In general, dFC studies probe the dynamic properties of the
brain via variations in FC estimations over time. A dFC study
can evaluate changes in spatial patterns of functional sources
over time (also known as spatial dynamics) and/or varia-
tions in their activity profiles of sources over time (which is
called temporal dynamics) (Figure 1) (Iraji et al., 2020). Several
analytical techniques have been proposed to capture and eval-
uate dFC using fMRI data (Figure 2). Here, we review essen-
tial concepts and terms behind two major non-exclusive cate-
gories, ‘window-based approaches (WBAs)’ and ‘event detection
approaches (EDAs)’. There are several technical reviews on dif-
ferent approaches of these two categories, as well as other
categories ofmethods, such as those that use dynamicmodeling
techniques or temporal sequence information (Hutchison et al.,
2013; Calhoun et al., 2014; Keilholz et al., 2017; Preti et al., 2017).

FC is estimated by calculating the statistical association
between measured brain signals, commonly between different
spatial localities (nodes) (Figure 2A). A node can be a voxel, an
anatomical region/seed or computed from the fMRI data itself,
e.g. an intrinsic connectivity network (ICN). Functional homo-
geneity within a node is the crucial factor in defining nodes. For
instance, when we use anatomical regions as nodes, we should
verify that the voxels within a node must have more similar
time courses than voxels from different nodes. To ensure func-
tional homogeneity, we can use data-driven approaches like

independent component analysis (ICA) to estimate the ICNs as
nodes (Calhoun and Adali, 2012). ICA is a multivariate approach
that simultaneously estimates the spatial patterns and activ-
ity profiles (time courses) of ICNs. For simplicity, we assume
FC is calculated using Pearson correlation, but other metrics
such as coherence are equally valid and can be used to cap-
ture additional information (Yaesoubi et al., 2015a; Salman et al.,
2019).

Window-based approaches

The substantial similarity with conventional FC (i.e. sFC) and
ease of use make the applications of WBAs to study dFC and the
interpretation of their findings straightforward. Window-based
approaches (commonly known as sliding-window approaches),
in simple terms, estimate conventional FC for durations larger
than the sampling rate of the acquired data (Sakoglu et al., 2010).
The time courses are divided into short segments (time win-
dows), and FC is calculated for each time window. This results
in a series of windowed-FC over time (FC as a function of time)
that contains dFC information. WBAs require defining time win-
dow and the node(s) of interest before calculating windowed-FC
(Figure 2B).

Time windows can have different sizes, shapes and win-
dow overlaps, but these parameters commonly remain constant
throughout a study. The best choice of these parameters is
unknown and can be different depending on the available data
and the goals of studies. However, we can make a general rec-
ommendation from previous literature. For the window shape,
the most common choice is tapered windows (Allen et al., 2014;
Leonardi and Van De Ville, 2015). For the window overlap, win-
dowswith zero overlap or andmaximumoverlap (all time points
except one time point are shared between consecutivewindows)
are the two most common choices. The most important aspect
of time windows to capture dFC is the window size. Very small
window sizes may not have enough information to estimate
dFC robustly and thus introduce spurious fluctuations while
large window sizes may smooth out the dynamic properties and
fail to capture dynamic properties (Fu et al., 2014; Vergara et al.,
2019). Ideally, we should choose window sizes that match the
timescale of underlying brain dynamism; however, there is no
prior information about the underlying dFC profile. At the same
time, studies suggest WBAs can distinguish underlying men-
tal states even using window sizes substantially different from
the duration of the underlying cognitive processes. For instance,
Gonzalez-Castillo et al. (2015) modulate mental states using a
series of well-defined cognitive tasks. While the optimal win-
dow size to match the transition betweenmental states was 180
s, window sizes as short as 22.5 s accurately track mental states.
A recommended window size is between 30 and 60 s (Leonardi
and Van De Ville, 2015; Zalesky and Breakspear, 2015).

Meanwhile, several approaches have been proposed to cir-
cumvent the selection of window size. One may use adaptive
window size approaches to match window size with the under-
lying brain dynamics by estimating local stationarity or change
points (Fu et al., 2014; Xu and Lindquist, 2015; Jeong et al., 2016;
Jin et al., 2017). One can also explore dFC at different frequencies
which is similar to adapting the window size to the frequency
scale (Chang and Glover, 2010; Yaesoubi et al., 2015a). Another
solution is to estimate FC for single time points (instantaneous)
FC and reduce or even eliminate the need of choosing a window
(Thompson et al., 2018; Yaesoubi et al., 2018; Faghiri et al., 2019,
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Fig. 1. Example of temporal, spatial and spatiotemporal dynamic with a scenario that the brain has only two functional sources. The brain is temporally dynamic if

the temporal coupling between the temporal activity of sources varies over time. The brain is spatially dynamic if the spatial properties of sources change over time

(e.g. translations of sources in space). If functional sources hold both spatially and temporally dynamic properties, it is spatiotemporally dynamic.

2020; Iraji et al., 2019b). The next step after defining our window
parameters is to select the node(s) of interest. Commonly, we
select the nodes from across the whole brain to summarize the
whole-brain dFC as per-window FCmatrices for the given nodes
(Allen et al., 2014). We can also focus on the dFC of a specific set
of nodes based on the hypothesis of a study (Yang et al., 2014).
Another option is to calculate the FC of each source with every
voxel of the brain for every time window to provide a detailed
whole-brain, comprehensivemap of the dFC of each source (Iraji
et al., 2019a).

Once dFC is calculated via WBAs, various techniques can
be used to quantify dFC and evaluate dynamic properties
(Figure 2C) (see ‘Implementing a dFC study: a GIFT walk-
through’ for some examples of metrics to quantify dFC prop-
erties). One standard procedure is to determine distinct and
recurring dynamic patterns such as dFC (meta-)states and cal-
culate dFC properties by assessing the temporal profiles of
(meta-)states. dFC states are a set of distinct FC patterns, which
are commonly identified by grouping windowed-FC using k-
means clustering. In this way, each window is assigned to
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Fig. 2. Cartoon examples of the analysis pipeline dFC analysis. (A) We first select nodes (proxies for spatial locations of sources) to calculate functional connectivity

between sources of interests. (B) We use a dFC estimator approach to calculate dFC between selected nodes. Different estimators measure different dynamic properties

(temporal dynamic or spatial dynamic). WBA: Window-based approaches, EDA: Event detection approaches. (C) After estimating dFC, various techniques can be used

to quantify dFC and evaluate dynamic properties.

one state (Allen et al., 2014). Meta-state analysis, on the other
hand, assumes windowed-FCs are a combination of meta-states
with continuous contributions over time (Miller et al., 2016).
Indeed, there is a close relationship between states and meta-
states. Meta-states are equal to states if only one of them
is present at any given time (power of all but one of them

is zero). It is worth mentioning that both terms, states and
meta-states, have been used for different purposes in litera-
ture. For instance, while in dFC studies, meta-state refers to
an instantaneous coordinate of the brain in the state-space
(Miller et al., 2016), it has also been used to refer to FC patterns
which recur across sessions (Shine et al., 2016b). As the actual
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Fig. 3. Left: GIFT toolbox. Right: dynamic functional connectivity toolbox.

Fig. 4. Temporal dFNC toolbox.

number of (meta-) states of the brain is unknown, it needs to be
estimated using different techniques and criteria. Event detec-
tion approaches (see ‘Event detection approaches’) carry the
same limitations as they estimate dynamic states in a similar

manner. (Meta-) states can then be evaluated by different met-
rics such as dwell time, fraction rate, the number of transitions
(switching), total traveling distance, the total number of (meta-)
statesmet during the length of scan and community/modularity
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Fig. 5. Temporal dFNC setup analysis.

of states. We can also directly evaluate the dFC proper-
ties from windowed-FC, for instance, by calculating FC varia-
tion over time (dFC variability) and spatiotemporal transition
matrix.

Event detection approaches

In a nutshell, EDAs identify dynamic states by grouping time
points based on the similarity in the amplitude of BOLD signals
(or its derivations) from a subset of the brain’s regions or
the entire brain (Figure 2B). The idea behind the EDA can
be explained as follows: a group of functionally connected
regions (neural assemblies) activates together in response to
either internal or external events (stimuli), which results in a
momentarily increase in their BOLD signal amplitude. Assuming
each dynamic state represents a distinct pattern of sponta-
neous events, we can obtain brain dynamic states by identifying
different (co-)activation patterns (CAPs) in the time series. Note
that this is a simplification of the idea behind EDAs and their
relationship with the dFC states. The EDAs were initially devel-
oped based on the hypothesis that spontaneous BOLD signal
originates from infrequent (i.e. sparse in time) neuronal events,
such as large-scale neuronal avalanching activity (Chialvo, 2010;
Tagliazucchi et al., 2011, 2012). EDAs commonly consist of three
steps: (1) detecting the time points in which neural-related
events occur, (2) grouping the selected time points to identify
different dynamic states and (3) quantifying dynamic proper-
ties using different metrics (similar to the examples discussed
WBAs).

Several methods have been developed to detect the time
points in which spontaneous, infrequent events occur. The sim-
plest and most common category of time point detection meth-
ods leverages the amplitude of the BOLD signal. Point process
analysis (Tagliazucchi et al., 2012) and CAPs (Liu et al., 2013) com-
monly use this category of time point detection methods. Two
familiar procedures to select time points from the amplitude of

BOLD signal are (1) choosing time points which pass a thresh-
old value (e.g. above one standard deviation of the time series)
(Tagliazucchi et al., 2011, 2012; Liu andDuyn, 2013) and (2) select-
ing time points which are the local maxima/minima of the time
series (Tagliazucchi et al., 2016). Another category of time point
detection methods uses deconvolution techniques, which was
previously applied to task-based fMRI studies (Gitelman et al.,
2003). A hemodynamic model is used to deconvolve the BOLD
signals and resolve them into a set of sparse, event-related time
points. Paradigm free mapping (Caballero Gaudes et al., 2013)
and total activation (Karahanoglu et al., 2013) are some exam-
ples of time point detectionmethods that use the hemodynamic
deconvolution technique. In the same category, the innovation-
driven CAPs approach suggests applying temporal derivatives
to the deconvolved BOLD signal to capture transient informa-
tion (identify regions with a simultaneous increase or decrease)
(Karahanoglu and Van De Ville, 2015). While standard EDAs are
based on the assumption of sparse events, a study may disre-
gard this fundamental assumption and consider all time points
for the second step of the analysis (Liu et al., 2013).

In the second step, we divide the selected (event-related)
time points intomultiple groups based on the similarity between
their spatial patterns (commonly using k-means clustering).
Each group (cluster) represents a dynamic state and consists of
time points with a similar co-activation (spatial) pattern, which
is distinct from other groups. Subsequent thresholding is com-
monly used to identify regions associated with each state. The
second step is similar to howWBAs identify dynamic states, but
instead of using the similarity between connectivity patterns,
EDAs use the similarity between CAPs. Interestingly, the results
of EDAs resemble the spatial patterns ofwell-knownFCpatterns,
such as large-scale networks, which further highlight the simi-
larity between co-activation and FC patterns. This resemblance
is somewhat expected as when two regions are co-activated,
they are also covarying over time which fits the definition of sta-
tistical dependency and FC. Finally, like the third step of WBAs,
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Fig. 6. Post-processing dFNC.

dynamic properties and the timing of dynamic states can be
quantified using various metrics such as dwell time, transition
probability and the occurrence rate of dynamic states.

Instead of identifying recurring time points, some EDAs focus
on identifying recurring patterns of sequences of time points.
In other words, these approaches are interested in finding a
particular temporal sequence that repeats over time. For exam-
ple, quasi-periodic patterns are a sequence of consecutive time
points that recur during a scan (Majeed et al., 2011). It is worth
mentioning that the idea behind these approaches is closely
related to propagating waves observed in other imaging modal-
ities (Matsui et al., 2016; Muller et al., 2018). There are also other
approaches that detect dynamic states by characterizing tempo-
ral sequence information at the cost of additional computations
and stricter assumptions, such as specific state-space mod-
els (hidden Markov models) (Eavani et al., 2013; Vidaurre et al.,
2017).

While EDAs can be used to evaluate dFC properties, like
any other approach, EDA methods come with assumptions and

limitations. For instance, the choices of threshold or decon-
volution parameters can significantly affect the sensitivity of
EDAs to detect the time points of events and therefore alter
results. Another major issue is sensitivity to noise. Because the
fMRI signal has a low contrast to noise ratio, using individual
time points makes EDAs significantly susceptible to noise. As
a result, detecting time points of events and allocating time
points to dynamic states can be inaccurate due to low SNR.
For instance, noise contamination can influence local max-
ima/minima or alter those time points that survive thresholding,
and thus makes the selection of event-related time points inac-
curate. Deconvolution techniques are also inherently sensitive
to noise and are constrained by the specific assumptions of their
HRF model. The susceptibility to noise becomes more concern-
ing when we study the temporal patterns of dFC. For instance,
whenwe use temporal ordering information to identify dynamic
states or when we quantify dFC using the temporally depen-
dentmeasures like dwell time, fraction rate, etc. Moreover, EDAs
commonly use anatomical regions as nodes to detect events.
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Fig. 7. One of the clusters represented as a connectogram.

Fig. 8. Dynamic coherence toolbox.

This demands additional pre-specified parameters. Using fixed
anatomical regions makes EDAs susceptible to functional inho-
mogeneity within nodes and disregards inter- and intra-subject
spatial variability.

Considerations and caveats

dFC can occur at different time scales, from milliseconds to
the entire life span, and fMRI provides an excellent opportunity
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Fig. 9. Dynamic coherence setup analysis.

Fig. 10. Dynamic coherence results.
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Fig. 11. Windowless FC toolbox.

Fig. 12. An example of one (K-SVD) dFC state.

to non-invasively study whole-brain dynamics in spatial and
temporal resolutions simultaneously, which currently cannot
be achieved using other imaging modalities. More specifically,
fMRI can capture hemodynamic dFC that occurs on the order
of seconds with spatial resolution in the order of a millime-
ter. While the sluggish hemodynamic response limits the upper

band of the temporal resolution of dFC captured by fMRI,
higher sampling rates and sub-second resolutions have several
advantages including: (1) capturing higher-frequency informa-
tion of dFC; (2) improving specificity and robustness of find-
ings by providing more data for any given temporal scale (e.g.
in sliding window); (3) increasing the sensitivity to identify
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Fig. 13. Spatial dFNC toolbox.

dynamic states and their onset, which is especially critical for
EDAs; (4) more accurately quantifying dFC properties (particu-
larly those measuring temporal profile) and (5) improving effi-
cacy of noise-reduction techniques such as reducing the effect of
aliasing. While the slow hemodynamic responses are the major
contributor to neural-related changes in the fMRI signal, other
neural-related properties within higher-frequencies (e.g. 1 >Hz)
have also been reported studies (Lin et al., 2015; Lewis et al.,
2016). It is thus possible to capture higher temporal resolutions
than the conventional 0.01–.15 Hz frequency band (Chen et al.,
2017).

dFC is intertwined with many temporal factors such as vig-
ilance, sleep state and arousal states, maturation, aging, and
learning experiences (Lurie et al., 2020). While a substantial
body of evidence supports the relationship between dFC and
neural communication, other mechanisms such as physiology,
metabolism, autonomic activities and neurovascular coupling
also modulate dFC patterns. These are important factors to
consider when we evaluate dFC using the BOLD signal (for prior
review see Thompson, 2018). There is a large body of research
on what portion (if any) of changes in FC measured in the BOLD
signal is related to brain dynamism (Thompson, 2018), and sev-
eral methods have been developed to evaluate the significance
of various FC measurements against different null hypotheses
(Bassett et al., 2013; Lindquist et al., 2014; Hindriks et al., 2016;
Laumann et al., 2017). However, one should keep in mind any
null model only test the presence of a specific type of dFC prop-
erties, and the result of a statistical test does not guarantee

the presence or absence of dFC (Miller et al., 2018). Hypothesis-
driven studies should be conducted to understand the neural
basis and mechanisms of dFC estimated by fMRI.

Furthermore, WBAs and EDAs are neither mutually exclu-
sive nor collectively exhaustive as some analytical approaches
can be categorized as both and there are approaches that can-
not fit into either of these categories. However, WBAs and EDAs
are the most established and verified categories which have
straightforward applications in clinical and research environ-
ments. Other categorizations such as spatially vs temporally
dynamic approaches, model-based vs data-driven techniques
and univariate vs multivariate analyses can provide a more
complete picture of existing approaches.

The BOLD signal is an indirect measurement of neural
activities and significantly contaminated with many so-called
non-neural signals such as motion, heart rate and respira-
tion. Therefore, it is important to take measures to remove or
model the spurious fluctuations and confounding factors from
the BOLD signal. At the same time, some of these signals,
such as heart rate and motion, are physiological changes asso-
ciated with neural processes. This impacts the effectiveness
of the noise reduction approaches to minimize the contribu-
tion of spurious fluctuations, particularly in the absence of
ground truth. Therefore, extra care is needed when performing
noise-reduction techniques and cleaning procedures to avoid
removing meaningful, neural-related information. For instance,
although global signal regression, a preprocessing procedure, is
shown to improve the relationship between the dFC of BOLD
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Fig. 14. Spatial dFNC setup analysis.

signal and the dynamic changes in simultaneously recorded
local field potentials (Thompson et al., 2013b), it may have a
negative impact on the reliability dFC analysis (Smith et al.,
2018) and cause heterogeneous changes in dFC across the brain
(Xu et al., 2018). Regardless of these debates, several pre- and
post-processing procedures, including despiking, filtering and
nuisance-regression, have been recommended as a trade-off
to minimize the impact of spurious fluctuations and statistical
uncertainty (Hahamy et al., 2014). However there are still many
choices to optimize (e.g. filter early or late, etc.) (Vergara et al.,
2017).

While dFC analysis explains specific inconsistencies in sFC
findings, the addition of the time-varying properties comes
with its own complexities. Furthermore, different analytical
approaches use different modeling techniques which might,
therefore, capture different aspects of dFC. Some assumptions
and limitations of analytical frameworks such as overlooking
the inter- and intra-subject spatial variations also lead to incon-
sistencies and significantly impact the validity of the results.
Acquisition parameters and data quality such as low SNR, low
temporal resolution or collecting a short segment of data (short

scan time) are other components associated with inconsisten-
cies in dFC findings. Furthermore, brain dynamism is uncon-
strained in nature, and individuals during scans report a variety
of different mental activities such as daydreaming, recalling
events, planning, dreaming, etc. It is important to consider this
when trying to replicate dFN results, for example, it would be
unlikely to replicate the same timing for the earlier events; how-
ever, this is probably not the ideal goal for a replication study
of dFC.

Finally, while task-based dFC is relatively young within this
field, it has high potential. Studies demonstrated that task-
modulated dFC (dFC during a task) can predict task performance.
In addition, pre-stimuli dFC can predict responses to upcoming
events (for review, see Gonzalez-Castillo and Bandettini, (2018)).
However, task-based dFC studies carry additional challenges
compared to resting dFC analyses. For instance, a task-related
BOLD signal can generate CAPs arguably not related to intrinsic
dFC. Thus, it is common to remove task-induced activity before
computing dFC. However, given within- and between-subject
variability and the possibility of task effects being modulated
by or modulating intrinsic connectivity, the efficiency of this



A. Iraji et al. | 863

Fig. 15. Spatial dFNC post-processing graphical user interface (GUI).

procedure is under question. Examples of subject-specific vari-
ability include differences in response to tasks, temporal pro-
files of neural activity and hemodynamic responses. Incorrect
implementation of this procedure will not only fail to remove
task-induced co-activation, but it may also induce spurious
fluctuations in dFC. One approach is to regress out both the
averages of task-induced activity and its first derivative to
account for transient task-induced activity) (Gonzalez-Castillo
and Bandettini, 2018). In contrast to removal, other approaches
consider task-modulation within the context of intrinsic con-
nectivity. One procedure is to evaluate the relationship between
dFC and ‘task-load function’ (Sakoglu et al., 2010). The task-load
function is a measure of a subject engagement with a given
task over time, and in WBAs, it can be computed as the time-
windowed integral of the HRF-convolved task paradigm. The
correlation between the windowed-FC during a task and the
task-load function is a straightforward, intuitive way to imple-
ment task-concurrent dFC (Sakoglu et al., 2010). This approach
has been implemented in the GIFT toolbox (see ‘Implementing
a dFC study: a GIFT walkthrough’), and further details on the
implementation of task-based dFC can be found at Gonzalez-
Castillo and Bandettini, (2018).

Concluding remarks

dFC analysis using fMRI is still a very active area of devel-
opment, but it is quickly turning into a critical element of
brain research because it provides exceptional opportunity to
study brain dynamismand its relationshipwith differentmental
states, cognitive conditions and disorders. In this manuscript,
we review some research on the potential association of fMRI-
dFC with cognitive demands and behavioral performance. We
also present examples of how dFC patterns are disrupted in
various brain disorders and the relationship of atypical dFC pat-
terns with both cognitive impairments and the outcomes of the
disorders (for reviews, see Calhoun and Adali (2016), Keilholz
et al. (2017), Cohen (2018), Thompson (2018), Lurie et al. (2020)).
Alterations in dFC patterns across a wide range of conditions
have been observed even in the absence of sFC differences.
One proposition is that each sFC pattern is an average of a
set of dFC patterns and therefore smooths out the nuanced
differences (Iraji et al., 2020). The dFC patterns are capable of
encoding variations across conditions that are more transient
than those captured by conventional sFC analyses. Considering
the dynamic nature of the brain, the dFC information obtained
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Fig. 16. One example of the spatial dFNC results. Kullback–Leibler divergence is computed between pairs of windows.

Fig. 17. Spatial chronnectome toolbox.
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Fig. 18. Spatial chronnectome setup analysis.

Fig. 19. Spatial chronnectome defaults menu. Left: preprocessing options; Right: dynamic coupling prefs options.

from fMRI might be a crucial piece in providing a more thor-
ough understanding of the brain’s function and characterizing
neurological and psychiatric disorders. Quantifying the spatial
and temporal dynamics of the brain opens more opportuni-
ties to study the brain through a window of dynamism and
help answer some of the most compelling questions in cogni-
tive and affective neuroscience. However, this goal requires a
hypothesis-driven, carefully designed study and contributions
from neuroscientists. Moving forward, dFC research benefits
from careful design studies, which allows researchers to under-
stand the mechanisms underlying dynamism, identify neural
etiology, elucidate the mechanisms of healthy cognition, inves-
tigate individual differences in cognition, and probe dFC alter-
ations and disruptions in the brain illnesses. This can potentially
lead to identifying imaging-based clinical biomarkers for early
diagnosis and disease treatments. We encourage researchers
who are new to dFC analysis to become more familiar with dif-
ferent analytical steps and limitations of techniques in each

step. We also emphasize the importance of inter- and intra-
subject variability and the need to consider spatial dynamic
properties in future studies (Iraji et al., 2020).

Implementing a dFC study: a GIFT
walkthrough

In this section, we provide a brief overview of the dFC options
available in the GIFT toolbox and provide a quick walkthrough
to facilitate the application of dFNC analyses for those new
to this field. The GIFT toolbox and manual can be found
at https://trendscenter.org/software/gift/. GIFT is a MATLAB
toolbox which can be used standalone (i.e. a complied version
without a MATLAB license) or with MATLAB. It also includes
a python interface (giftpy) and is also released as a (docker)
containerized tool which also does not require a MATLAB
license. GIFT consists of a wide range of ICA, allowing group
inferences from the fMRI data. It also contains several other

https://trendscenter.org/software/gift/


866 | Social Cognitive and Affective Neuroscience, 2021, Vol. 16, No. 8

Fig. 20. Spatial chronnectome post-processing.

toolboxes, such as the dFC toolbox to study brain dynamism
and the Mancovan toolbox to determine the significant covari-
ates using multivariate analysis of covariance and a stepwise
regression model as well as univariate testing. The resulting
covariates found out to be significant can be used in a uni-
variate framework. The noise cloud toolbox uses both spatial
and temporal characteristics of independent components to
automatically identify noise/artifact components from the spec-
ified components after an initial training process. This can also
be used to clean fMRI data. To clean data, we can use the
remove component(s) option within the GIFT toolbox. ICA is a
powerful method for cleaning fMRI data prior to dynamic and
static FC studies, including for ROI-based analysis. In addi-
tion, we developed SimTB (A simulation toolbox for fMRI data)
toolbox to generate simulate data and to test different analytical
methods. SimTB gives users full control over generating data,
including the creation of desirable spatial patterns of sources,
the implementation of block-related and event-related exper-
imental designs, the inclusion of tissue-specific baselines and
simulated head movement.

A video tutorial of the dFC pipeline is available at
https://trendscenter.org/software/gift/videos. After adding the

GIFT directory to the MATLAB search path, the GIFT toolbox can
be launched by entering ‘gift’ into the MATLAB command line.
By clicking on the dFC button, the ‘dynamic functional connec-
tivity’ toolbox appears and allows you to choose among several
available dFC techniques (Figure 3). The dFC techniques are
separated into two categories, temporal dynamics and spatial
dynamics.

Temporal dynamic analyses (‘Temporal dFC’ options) study
dFC via variations in the temporal patterns of sources, which
are commonly achieved by studying the changes in their sta-
tistical dependency over time (Iraji et al., 2020). Spatial dynamic
analyses (‘Spatial dFC’ options) focus on variations in the spatial
patterns of sources over time (Iraji et al., 2020) (Figure 3). The list
of measures available in GIFT to quantify dFC properties can be
found in Table 1.

Temporal dFC

Temporal dFNC toolbox. It is a WBA which computes whole-
brain dFC (Allen et al., 2014). It uses ICA from the GIFT toolbox
to estimate nodes/sources and their associated time course. To
access temporal dFNC, click on ‘Temporal dFNC (ICA)’ button

https://trendscenter.org/software/gift/videos
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Fig. 21. An example of spatial chronnectome results. States are presented as vertically stacked orthogonal slices.

Fig. 22. Spatial dynamics hierarchy toolbox.

under Temporal dFC options (Figure 3). Briefly, the steps include
the following (Figure 4):

(1) ‘Setup/Run Analysis’ panel (Figure 5) in which we enter
the repetition time (TR) of the experiment and organize
components by functional domains/networks which will
be useful in plotting FNC matrices at the end of the anal-
ysis. dFNC defaults menu allows users to choose differ-
ent preprocessing options and dFC parameters. For pre-
processing, options include detrending, despiking, low-
pass/band-pass filtering and regressing out confounding

covariates from time courses. dFNC parameters include
the parameters associated with window (e.g. window
size, the alpha parameter of the Gaussian window) and
the regularization method (L1 or none). After complet-
ing the parameter selection, use the Run button to run
the dynamic FNC. Windowed dFNCmatrices are saved for
each subject.

(2) ‘Post-processing’ option (Figure 6) which consists of two
panels: state-based dFNC and meta-state dFNC (meta-
state analysis). For state-based analysis, we can enter
the number of k-means clusters (states) or estimate
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Fig. 23. Spatial dynamics hierarchy setup analysis.

it using various algorithms, such as Gap statistic,
Akaike/Bayesian information criteria, Dunns Index
and Silhouette algorithms We can also custo-
mize k-means options like the number of k-means
iterations, the distance metric, the maximum num-
ber of iterations and the number of reference datasets
used for the gap statistic in ‘Cluster options’ menu.
For meta-state analysis, several methods
like k-means, PCA and various ICA techniques are avail-
able. It should be noted that ‘Post-processing’ options are
similar across different dFC analyses (some have already
been implemented in GIFT); therefore, for the sake
of brevity, we will not repeat them in the other
techniques.

(3) ‘Display’ option allows us to visualize the result of both
(meta-) state results, such as state dFNC, connectivity
patterns of meta-state dFNC and connectogrom plot (e.g.
Figure 7).

(4) ‘Stats’ option provides various statistical analysis
choices, like one sample t-test, two-sample t-test and
paired t-test on the dFNC strength of each state and
(meta-) states metrics.

Temporal dFNC Toolbox also consists of ‘Task-based dFNC’
option (Sakoglu et al., 2010), which uses experimental design
information (regressors) as input. Regressors are obtained by
convolving onsets with a hemodynamic response function. To
compute task-based dFNC, click on the ‘Import Design’ menu
available in the ‘Setup/Run Analysis’ panel (Figure 5). The
sliding window approach is applied to the task-based regres-
sors and ICA components’ time courses. Correlation is com-
puted between the windowed-FC and windowed task-load func-
tion. Task load function is obtained by computing the aver-
age of the model time courses at each window (Sakoglu et al.,
2010). Options are provided to apply statistical testing to the
correlations.
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Fig. 24. An example of spatial states for the default mode.

Temporal dFC (BOLD) toolbox. In contrast to temporal dFNC,
‘Temporal dFC (BOLD)’ uses predefined regions of interest (ROIs),
and the average BOLD signals within ROIs are used to calcu-
late dFC patterns at each window. It should be noted that
we do not recommend using predefined ROIs to study dFC as
they do not consider inter- and intra-subject variation. Two
options are available in this toolbox. The first one is ROI-ROI
dFC in which the user inputs ROIs mask, and WBA is used to
estimate dFC between ROIs. The other option is to estimate
ROI-to-voxel dFC in which windowed-FC is calculated between
the average BOLD signal of each ROI and the BOLD signal of
every voxel in the brain. After calculating windowed-FC, the
rest of the analysis would be similar to temporal dFC analy-
sis. For instance, k-mean clustering can be used to estimate
dFC states, and we can performmeta-state analysis in the same
manner.

Dynamic coherence toolbox. ‘Dynamic Coherence’ applies com-
plex Morlet wavelet on the time courses of ICNs to capture dFNC
in the augmented time and frequency space (Yaesoubi et al.,
2015a). In other words, it estimates dFC at different frequencies
and phase lags. Dynamic Coherence Toolbox is divided into two
parts (Figure 8):

1. ‘Setup/Run Analysis’ allows us to enter analysis param-
eters. Options are provided to group components by net-
work names and to enter experimental TR in seconds and
complex k-means specific setting like the number of clus-
ters and k-means replicates (Figure 9). There are options
to preprocess the time courses like detrending, despik-
ing, filtering and regressing out variance associated with
noise from the time courses when you click the ‘Dynamic
Coherence Defaults’ menu. After the analysis is complete,
the cluster states information is saved to the disk.

2. ‘Display’ option visualizes the results of the analysis,
including estimated dFC states and associated frequency
and phase histogram (e.g. Figure 10).

Windowless FC toolbox. ‘Windowless FC’ bypasses windowing
operation by directly measuring linear dependence in the sam-
ple space (Yaesoubi et al., 2018). This approach calculates dFNC
states as the outer product between the subspace bases esti-
mated using K-SVD. As a result, it can detect dFC patterns with
arbitrary rates of changes. The toolbox consists of two panels
(Figure 11):

1. ‘Setup/Run Analysis’ panel provides options for preprocess-
ing the time courses of ICNs, selecting the number of
dictionary elements, and the maximum number of
iterations. After the analysis, dictionary elements
and mixing coefficients are saved to the disk space.

2. ‘Display’ panel allows users to organize components by net-
works for displaying purposes using matrix plots or a con-
nectogram (e.g. Figure 12).

Spatial dFC

Spatial dFNC toolbox. ‘Spatial dFNC’ treats data from each time
window as a separate dataset for independent vector analysis
(IVA) to capture variations in the spatial pattern of each source
over time (Ma et al., 2014). The steps of spatial dFNC include
(Figure 13):

1. ‘Setup/Run Analysis’ in which we enter the window size,
the number of IVA components and the number of IVA run
(Figure 14). We also assign subjects into different groups
in this panel (Figure 14).
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2. ‘Post-processing’ in which we insert the parameters of
Markov chain analysis and the threshold for t-tests
(Figure 15).

3. ‘Display’ in which all the spatial dFNC results (e.g.
Figure 16) are summarized in an HTML page and shown
in a web browser.

Spatial chronnectome toolbox. ‘Spatial Chronnectome’ cap-
tures on voxel-wise changes in the spatial patterns of sources
over time. While the original work (Iraji et al., 2019a) used pair-
wise correlation to calculate the association of each voxel to
a given source/network regardless of its contribution to other
sources, the partial correlation is also implemented in GIFT
to evaluate the spatial dynamics of each source while control-
ling for the contribution of other sources. The toolbox uses ICA
results from the GIFT toolbox to select the source of interest and
their associated time courses.

The toolbox is divided into three steps (Figure 17):

(1) ‘Setup/Run Analysis’ in which we can enter the analy-
sis parameters (Figure 18). When you click on Setup/Run,
a figure window will open to select sources (ICA com-
ponents) of interests and to enter experimental TR in
seconds. ‘Spatial Chronnectome Defaults’ menu contains
options for preprocessing BOLD and ICA time courses as
well as options for computing dynamic coupling maps
in the ‘Dynamic Coupling Prefs’ entry (Figure 19). BOLD
signal and ICA components’ time courses are prepro-
cessed (despiking, filtering and motion covariates vari-
ance removal) before calculating dFC maps. The param-
eters for sliding window procedures can be entered in
‘Dynamic Coupling Prefs’.

(2) ‘Post-processing’ (Figure 20) in which we quantify the dFC
properties. This step calculates the coupling variability
map, spatiotemporal transition matrix and spatial states
associated with each source (network) and their proper-
ties such as dwell time, occupancy rate and transition
matrix. Parameters of k-means clustering like the number
of clusters, the number ofmax iterations and the distance
metric can be selected here. We can also estimate the
number of clusters using various algorithms, such as the
gap statistic, Akaike/Bayesian information criteria, Dunns
index and Silhouette algorithms, available in the ‘clus-
ter options’ panel. A recent study compares a number of
cluster validation indices (Vergara et al., 2020).

(3) ‘Display’ in which the results of spatial chronnectome
analysis for each source of interest will be displayed (e.g.
Figure 21).

Spatial dynamic hierarchy toolbox. The spatial dynamic hier-
archy model studies the dynamic properties within brain hier-
archy models. In the current version of GIFT (Version 4.0c), the
method presented in (Iraji et al., 2019b) assumes fixed member-
ship assignments between the elements of a hierarchy model
and captures spatial dynamics within the functional domain
as well as temporal dynamics within and between functional
domains. Future versions will allow changes in membership
assignments over time. This Toolbox is divided into three parts
(Figure 22):

(1) ‘Setup/Run Analysis’ panel in which we enter the analy-
sis parameters (Figure 23). We assign the components to

functional domains and choose the parameters of cluster-
ing. Like other toolboxes, we can estimate the number of
clusters using various algorithms, available in the ‘cluster
options’ menu. We can also choose parameters for prepro-
cessing or cleaning ICA components’ time courses, including
despiking, low pass or bandpass filtering and regressing out
covariates.

(2) ‘Post-processing’ in which we quantify the dFC proper-
ties. This step calculates dFC states associated with each
functional domain and their properties such as dwell time,
occupancy rate and transitionmatrix. It also computes Func-
tional State Connectivity and associated Functionalmodules.

(3) ‘Display’ in which the results of spatial dynamic hierar-
chy analysis, such as states associated with each functional
domain, are displayed (e.g. Figure 24).

It worth mentioning that we have developed other tool-
boxes to facilitate the advancement of neuroimaging research.
For instance, the fusion ICA toolbox contains several analyti-
cal techniques, such as joint ICA (Calhoun et al., 2006), parallel
ICA (Liu et al., 2009) and CCA-Joint ICA (Sui et al., 2009), multi-
set canonical correlation analysis (MCCA) (Adali et al., 2015),
transposed independent vector analysis (IVA) (Adali et al., 2015),
Parallel-Group ICA+ ICA (PGICA) (Qi et al., 2019) and deep fusion
to analyze multimodal data (Plis et al., 2018). Joint ICA can be
applied to different modalities (or task-fMRI) to extract maxi-
mally spatially independent maps for each modality (or task)
that are coupled together by a shared loading parameter (in
other words mixing coefficients is fixed between the modali-
ties) (Calhoun et al., 2006). Parallel ICA is an extension of ICA
that allows simultaneously running ICA on multiple modalities
(Liu et al., 2009). For example, for two modalities, it extracts
sources from both modalities and connections between them.
Comparing with Joint ICA, where a shared mixing matrix is
used for both modalities, parallel ICA assumes the two data sets
are mixed in a similar pattern but not with identical parame-
ters. CCA+ joint ICA uses canonical correlation analysis (CCA)
and ICA to extract both shared and distinct sources across fea-
tures and mixing coefficients (Sui et al., 2009). MCCA estimates
sources using the similarity in the mixing coefficients between
the different modalities (Adali et al., 2015). Transposed inde-
pendent vector analysis incorporates higher-order statistics in
the MCCA model to extract common features across modali-
ties (Adali et al., 2015). PGICA uses temporal information from
first-level group ICA into a Parallel ICA framework. PGICA can
detect linked FNC and structural covariations in the components
when first-level fMRI and structural MRI (sMRI) datasets are used
(Qi et al., 2019). Deep Fusion uses neural networks for finding
associations between fMRI and sMRI datasets (Plis et al., 2018).
Collaborative Informatics and Neuroimaging Suite Toolkit for
Anonymous Computation (COINSTAC) is another useful toolbox
that was designed to address the need for sharing and collabo-
ration in effective and easy-to-use manner. COINSTAC provides
tools to performdecentralized, privacy-enabled analysis to elim-
inate the need of directly sharing the data (Plis et al., 2016). We
have implemented a number of algorithms within COINSTAC
including preprocessing for fMRI, sMRI, diffusion MRI data as
well as regression, group ICA, dynamic connectivity, support
vector machine classification and many more.

Acknowledgements

We are grateful for the opportunity to serve in this special issue
on Tools of the Trade in SCAN.



A. Iraji et al. | 871

Funding

This work was supported by grants from the National Insti-
tutes of Health grant numbers 2R01EB005846, R01EB020407,
R01MH118695 and P20GM103472; and National Science Founda-
tion (NSF) grant 1539067 to Dr Vince Calhoun.

Conflict of Interest

The authors declare no conflicts of interest.

References

Abrol, A., Damaraju, E., Miller, R.L., et al. (2017). Replicability of
time-varying connectivity patterns in large resting state fMRI
samples. Neuroimage, 163, 160–76.

Adali, T., Levin-Schwartz, Y., Calhoun, V.D. (2015). Multi-modal
data fusion using source separation: two effective models
based on ICA and IVA and their properties. Proceedings of
the IEEE. Institute of Electrical and Electronics Engineers, 103(9),
1478–93.

Allen, E.A., Damaraju, E., Eichele, T., Wu, L., Calhoun, V.D. (2018).
EEG signatures of dynamic functional network connectivity
states. Brain Topography, 31(1), 101–16.

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele,
T., Calhoun, V.D. (2014). Tracking whole-brain connectivity
dynamics in the resting state. Cerebral Cortex, 24(3), 663–76.

Allen, E.A., Erhardt, E.B., Damaraju, E., et al. (2011). A base-
line for themultivariate comparison of resting-state networks.
Frontiers in Systems Neuroscience, 5, 2.

Bassett, D.S., Porter, M.A., Wymbs, N.F., Grafton, S.T., Carlson,
J.M., Mucha, P.J. (2013). Robust detection of dynamic commu-
nity structure in networks. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 23(1), 013142.

Bressler, S.L., Menon, V. (2010). Large-scale brain networks in
cognition: emerging methods and principles. Trends in Cogni-
tive Sciences, 14(6), 277–90.

Caballero Gaudes, C., Petridou, N., Francis, S.T., Dryden, I.L.,
Gowland, P.A. (2013). Paradigm free mapping with sparse
regression automatically detects single-trial functional mag-
netic resonance imaging blood oxygenation level dependent
responses. Human Brain Mapping, 34(3), 501–18.

Cabral, J., Vidaurre, D., Marques, P., et al. (2017). Cognitive
performance in healthy older adults relates to spontaneous
switching between states of functional connectivity during
rest. Scientific Reports, 7(1), 5135.

Cai, B., Zille, P., Stephen, J.M., Wilson, T.W., Calhoun, V.D., Wang,
Y.P. (2018). Estimation of dynamic sparse connectivity patterns
from resting state fMRI. IEEE Transactions on Medical Imaging,
37(5), 1224–34.

Calhoun, V.D., Adali, T. (2012). Multisubject independent com-
ponent analysis of fMRI: a decade of intrinsic networks,
default mode, and neurodiagnostic discovery. IEEE Reviews in
Biomedical Engineering, 5, 60–73.

Calhoun, V.D., Adali, T. (2016). Time-varying brain connectivity
in fMRI data: whole-brain data-driven approaches for captur-
ing and characterizing dynamic states. IEEE Signal Processing
Magazine, 33(3), 52–66.

Calhoun, V.D., Adali, T., Kiehl, K.A., Astur, R., Pekar, J.J., Pearlson,
G.D. (2006). A method for multitask fMRI data fusion applied
to schizophrenia. Human Brain Mapping, 27(7), 598–610.

Calhoun, V.D., de Lacy, N. (2017). Ten key observations on the
analysis of resting-state functional MR imaging data using

independent component analysis.Neuroimaging Clinics of North
America, 27(4), 561–79.

Calhoun, V.D., Miller, R., Pearlson, G., Adali, T. (2014). The chron-
nectome: time-varying connectivity networks as the next
frontier in fMRI data discovery. Neuron, 84(2), 262–74.

Chang, C., Glover, G.H. (2010). Time-frequency dynamics of
resting-state brain connectivitymeasured with fMRI.Neuroim-
age, 50(1), 81–98.

Chang, C., Liu, Z., Chen, M.C., Liu, X., Duyn, J.H. (2013). EEG
correlates of time-varying BOLD functional connectivity. Neu-
roimage, 72, 227–36.

Chen, J., Sun, D., Shi, Y., et al. (2018). Alterations of static func-
tional connectivity and dynamic functional connectivity in
motor execution regions after stroke. Neuroscience Letters, 686,
112–21.

Chen, J.E., Jahanian, H., Glover, G.H. (2017). Nuisance regression
of high-frequency functional magnetic resonance imaging
data: denoising can be noisy. Brain Connectivity, 7(1), 13–24.

Chen, T., Cai, W., Ryali, S., Supekar, K., Menon, V. (2016). Distinct
global brain dynamics and spatiotemporal organization of the
salience network. PLoS Biology, 14(6), e1002469.

Chialvo, D.R. (2010). Emergent complex neural dynamics. Nature
Physics, 6(10), 744–50.

Choe, A.S., Nebel, M.B., Barber, A.D., et al. (2017). Comparing test-
retest reliability of dynamic functional connectivity methods.
Neuroimage, 158, 155–75.

Cohen, J.R. (2018). The behavioral and cognitive relevance of
time-varying, dynamic changes in functional connectivity.
Neuroimage, 180 (Pt BR), 515–25.

Cordova-Palomera, A., Kaufmann, T., Persson, K., et al. (2017).
Disrupted global metastability and static and dynamic brain
connectivity across individuals in the Alzheimer’s disease
continuum. Scientific Reports, 7, 40268.

Damaraju, E., Allen, E.A., Belger, A., et al. (2014). Dynamic func-
tional connectivity analysis reveals transient states of dyscon-
nectivity in schizophrenia. NeuroImage: Clinical, 5, 298–308.

de Lacy, N., Calhoun, V.D. (2019). Dynamic connectivity and the
effects of maturation in youth with attention deficit hyperac-
tivity disorder. Network Neuroscience, 3(1), 195–216.

de Lacy, N., Doherty, D., King, B.H., Rachakonda, S., Calhoun, V.D.
(2017). Disruption to control network function correlates with
altered dynamic connectivity in the wider autism spectrum.
NeuroImage: Clinical, 15, 513–24.

Demirtas, M., Tornador, C., Falcon, C., et al. (2016). Dynamic
functional connectivity reveals altered variability in func-
tional connectivity among patients with major depressive
disorder. Human Brain Mapping, 37(8), 2918–30.

Douw, L., Leveroni, C.L., Tanaka, N., et al. (2015). Loss of resting-
state posterior cingulate flexibility is associated with memory
disturbance in left temporal lobe epilepsy. PLoS One, 10(6),
e0131209.

Douw, L., Wakeman, D.G., Tanaka, N., Liu, H., Stufflebeam, S.M.
(2016). State-dependent variability of dynamic functional con-
nectivity between frontoparietal and default networks relates
to cognitive flexibility. Neuroscience, 339, 12–21.

Eavani, H., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Davatzikos, C.
(2013). Unsupervised learning of functional network dynamics
in resting state fMRI. Information Processing in Medical Imaging,
23, 426–37.

Elton, A., Gao, W. (2015). Task-related modulation of functional
connectivity variability and its behavioral correlations. Human
Brain Mapping, 36(8), 3260–72.



872 | Social Cognitive and Affective Neuroscience, 2021, Vol. 16, No. 8

Engels, G., Vlaar, A., McCoy, B., Scherder, E., Douw, L. (2018).
Dynamic functional connectivity and symptoms of Parkin-
son’s disease: a resting-state fMRI study. Frontiers in Aging
Neuroscience, 10, 388.

Faghiri, A., Iraji, A., Damaraju, E., et al. (2020). Weighted average
of shared trajectory: a new estimator for dynamic functional
connectivity efficiently estimates both rapid and slow changes
over time. Journal of Neuroscience Methods, 334, 108600.

Faghiri, A., Iraji, A., Damaraju, E., Turner, J., Calhoun, V.D. (2019).
A unified approach for characterizing static/dynamic connec-
tivity frequency profiles using filter banks. Calhoun Network
Neuroscience, 1–27. 10.1162/netn_a_00155.

Fu, Z., Caprihan, A., Chen, J., et al. (2019a). Altered static and
dynamic functional network connectivity in Alzheimer’s dis-
ease and subcortical ischemic vascular disease: shared and
specific brain connectivity abnormalities. Human Brain Map-
ping, 40(11), 3203–21.

Fu, Z., Chan, S.C., Di, X., Biswal, B., Zhang, Z. (2014). Adap-
tive covariance estimation of non-stationary processes and
its application to infer dynamic connectivity from fMRI. IEEE
Transactions on Biomedical Circuits and Systems, 8(2), 228–39.

Fu, Z., Tu, Y., Di, X., et al. (2018). Characterizing dynamic
amplitude of low-frequency fluctuation and its relationship
with dynamic functional connectivity: an application to
schizophrenia. Neuroimage, 180(Pt B), 619–31.

Fu, Z., Tu, Y., Di, X., et al. (2019b). Transient increased thalamic-
sensory connectivity and decreasedwhole-brain dynamism in
autism. Neuroimage, 190, 191–204.

Gitelman, D.R., Penny, W.D., Ashburner, J., Friston, K.J. (2003).
Modeling regional and psychophysiologic interactions in fMRI:
the importance of hemodynamic deconvolution. Neuroimage,
19(1), 200–7.

Gonzalez-Castillo, J., Bandettini, P.A. (2018). Task-based dynamic
functional connectivity: recent findings and open questions.
Neuroimage, 180(Pt B), 526–33.

Gonzalez-Castillo, J., Hoy, C.W., Handwerker, D.A., et al.
(2015). Tracking ongoing cognition in individuals using brief,
whole-brain functional connectivity patterns. Proceedings of
the National Academy of Sciences of the United States of America,
112(28), 8762–7.

Guo, X., Duan, X., Suckling, J., et al. (2019). Partially impaired
functional connectivity states between right anterior insula
and default mode network in autism spectrum disorder.
Human Brain Mapping, 40(4), 1264–75.

Hahamy, A., Calhoun, V., Pearlson, G., et al. (2014). Save the
global: global signal connectivity as a tool for studying clini-
cal populations with functional magnetic resonance imaging.
Brain Connectivity, 4(6), 395–403.

Harlalka, V., Bapi, R.S., Vinod, P.K., Roy, D. (2019). Atypical
flexibility in dynamic functional connectivity quantifies the
severity in autism spectrum disorder, Frontiers in Human Neu-
roscience, 13, 6.

He, C., Chen, Y., Jian, T., et al. (2018). Dynamic functional con-
nectivity analysis reveals decreased variability of the default-
mode network in developing autistic brain. Autism Research,
11(11), 1479–93.

Hindriks, R., Adhikari, M.H., Murayama, Y., et al. (2016). Can
sliding-window correlations reveal dynamic functional con-
nectivity in resting-state fMRI? Neuroimage, 127, 242–56.

Hou, W., Sours Rhodes, C., Jiang, L., et al. (2019). Dynamic func-
tional network analysis in mild traumatic brain injury. Brain
Connectivity, 9(6), 475–87.

Huang, M., Zhou, F., Wu, L.. et al. (2019). White matter lesion
loads associated with dynamic functional connectivity within
attention network in patients with relapsing-remitting multi-
ple sclerosis. Journal of Clinical Neuroscience, 65, 59–65.

Hutchison, R.M., Morton, J.B. (2015). Tracking the brain’s func-
tional coupling dynamics over development. Journal of Neuro-
science, 35(17), 6849–59.

Hutchison, R.M., Womelsdorf, T., Allen, E.A., et al. (2013).
Dynamic functional connectivity: promise, issues, and inter-
pretations. Neuroimage, 80, 360–78.

Iraji, A., Deramus, T.P., Lewis, N., et al. (2019a). The spatial chron-
nectome reveals a dynamic interplay between functional
segregation and integration. Human Brain Mapping, 40(10),
3058–77.

Iraji, A., Fu, Z., Damaraju, E., et al. (2019b). Spatial dynamics
within and between brain functional domains: a hierarchical
approach to study time-varying brain function. Human Brain
Mapping, 40(6), 1969–86.

Iraji, A., Miller, R., Adali, T., Calhoun, V.D. (2020). Space: amissing
piece of the dynamic puzzle. Trends in Cognitive Sciences, 24(2),
135–49.

Jafri, M.J., Pearlson, G.D., Stevens, M., Calhoun, V.D. (2008). A
method for functional network connectivity among spatially
independent resting-state components in schizophrenia.Neu-
roimage, 39(4), 1666–81.

Jeong, S.O., Pae, C., Park, H.J. (2016). Connectivity-based change
point detection for large-size functional networks.Neuroimage,
143, 353–63.

Jin, C., Jia, H., Lanka, P., et al. (2017). Dynamic brain connectivity
is a better predictor of PTSD than static connectivity. Human
Brain Mapping, 38(9), 4479–96.

Jones, D.T., Vemuri, P., Murphy, M.C., et al. (2012). Non-
stationarity in the “resting brain’s” modular architecture. PLoS
One, 7(6), e39731.

Karahanoglu, F.I., Caballero-Gaudes, C., Lazeyras, F., Van de Ville,
D. (2013). Total activation: fMRI deconvolution through spatio-
temporal regularization. Neuroimage, 73, 121–34.

Karahanoglu, F.I., Van De Ville, D. (2015). Transient brain activity
disentangles fMRI resting-state dynamics in terms of spatially
and temporally overlapping networks. Nature Communications,
6, 7751.

Keilholz, S., Caballero-Gaudes, C., Bandettini, P., Deco,
G., Calhoun, V. (2017). Time-resolved resting-state func-
tional magnetic resonance imaging analysis: current status,
challenges, and new directions. Brain Connectivity, 7(8),
465–81.

Klugah-Brown, B., Luo, C., He, H., et al. (2019). Altered dynamic
functional network connectivity in frontal lobe epilepsy. Brain
Topography, 32(3), 394–404.

Kucyi, A. (2018). Just a thought: how mind-wandering is repre-
sented in dynamic brain connectivity. Neuroimage, 180(Pt B),
505–14.

Kucyi, A., Hove, M.J., Esterman, M., Hutchison, R.M., Valera,
E.M. (2017). Dynamic brain network correlates of spon-
taneous fluctuations in attention. Cerebral Cortex, 27(3),
1831–40.

Laumann, T.O., Snyder, A.Z., Mitra, A., et al. (2017). On the
stability of BOLD fMRI correlations. Cerebral Cortex, 27(10),
4719–32.

Leonardi, N., Shirer, W.R., Greicius, M.D., Van De Ville, D. (2014).
Disentangling dynamic networks: separated and joint expres-
sions of functional connectivity patterns in time. Human Brain
Mapping, 35(12), 5984–95.



A. Iraji et al. | 873

Leonardi, N., Van De Ville, D. (2015). On spurious and real
fluctuations of dynamic functional connectivity during rest.
Neuroimage, 104, 430–6.

Lewis, L.D., Setsompop, K., Rosen, B.R., Polimeni, J.R. (2016). Fast
fMRI can detect oscillatory neural activity in humans. Proceed-
ings of the National Academy of Sciences of the United States of
America, 113(43), E6679–85.

Li, X., Zhu, D., Jiang, X., et al. (2014). Dynamic func-
tional connectomics signatures for characterization and dif-
ferentiation of PTSD patients. Human Brain Mapping, 35(4),
1761–78.

Lim, J., Teng, J., Patanaik, A., Tandi, J., Massar, S.A.A. (2018).
Dynamic functional connectivity markers of objective trait
mindfulness. Neuroimage, 176, 193–202.

Lin, F.H., Chu, Y.H., Hsu, Y.C., et al. (2015). Significant feed-
forward connectivity revealed by high frequency components
of BOLD fMRI signals. Neuroimage, 121, 69–77.

Lin, S.J., Vavasour, I., Kosaka, B., et al. (2018). Education, and
the balance between dynamic and stationary functional con-
nectivity jointly support executive functions in relapsing-
remitting multiple sclerosis. Human Brain Mapping, 39(12),
5039–49.

Lindquist, M.A., Xu, Y., Nebel, M.B., Caffo, B.S. (2014). Eval-
uating dynamic bivariate correlations in resting-state fMRI:
a comparison study and a new approach. Neuroimage, 101,
531–46.

Liu, A., Lin, S.J., Mi, T., et al. (2018). Decreased subregional
specificity of the putamen in Parkinson’s disease revealed by
dynamic connectivity-derived parcellation. NeuroImage: Clini-
cal, 20, 1163–75.

Liu, F., Wang, Y., Li, M., et al. (2017). Dynamic functional
network connectivity in idiopathic generalized epilepsy with
generalized tonic-clonic seizure. Human Brain Mapping, 38(2),
957–73.

Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-
Bizzozero, N.I., Calhoun, V. (2009). Combining fMRI and
SNP data to investigate connections between brain function
and genetics using parallel ICA. Human Brain Mapping, 30(1),
241–55.

Liu, X., Chang, C., Duyn, J.H. (2013). Decomposition of sponta-
neous brain activity into distinct fMRI co-activation patterns.
Frontiers in Systems Neuroscience, 7, 101.

Liu, X., Duyn, J.H. (2013). Time-varying functional network infor-
mation extracted from brief instances of spontaneous brain
activity. Proceedings of the National Academy of Sciences of the
United States of America, 110(11), 4392–7.

Lurie, D.J., Kessler, D., Bassett, D.S., et al. (2020). Ques-
tions and controversies in the study of time-varying func-
tional connectivity in resting fMRI. Network Neuroscience, 4(1),
30–69.

Ma, S., Calhoun, V.D., Phlypo, R., Adali, T. (2014). Dynamic
changes of spatial functional network connectivity in healthy
individuals and schizophrenia patients using independent
vector analysis. Neuroimage, 90, 196–206.

Madhyastha, T.M., Askren, M.K., Boord, P., Grabowski, T.J.
(2015). Dynamic connectivity at rest predicts attention task
performance. Brain Connectivity, 5(1), 45–59.

Majeed, W., Magnuson, M., Hasenkamp, W., et al. (2011). Spa-
tiotemporal dynamics of low frequency BOLD fluctuations in
rats and humans. Neuroimage, 54(2), 1140–50.

Marusak, H.A., Elrahal, F., Peters, C.A., et al. (2018). Mindfulness
and dynamic functional neural connectivity in children and
adolescents. Behavioural Brain Research, 336, 211–8.

Matsui, T., Murakami, T., Ohki, K. (2016). Transient neu-
ronal coactivations embedded in globally propagating waves
underlie resting-state functional connectivity. Proceedings of
the National Academy of Sciences of the United States of America,
113(23), 6556–61.

Matsui, T., Murakami, T., Ohki, K. (2019). Neuronal origin of the
temporal dynamics of spontaneous BOLD activity correlation.
Cerebral Cortex, 29(4), 1496–508.

Miller, R.L., Abrol, A., Adali, T., Levin-Schwarz, Y., Calhoun,
V.D. (2018). Resting-state fMRI dynamics and null models: per-
spectives, sampling variability, and simulations. Frontiers in
Neuroscience, 12, 551.

Miller, R.L., Yaesoubi, M., Turner, J.A., et al. (2016). Higher dimen-
sional meta-state analysis reveals reduced resting fMRI con-
nectivity dynamism in schizophrenia patients. PLoS One, 11(3),
e0149849.

Muller, L., Chavane, F., Reynolds, J., Sejnowski, T.J. (2018). Cortical
travelling waves: mechanisms and computational principles.
Nature Reviews. Neuroscience, 19(5), 255–68.

Ou, J., Lian, Z., Xie, L., et al. (2014). Atomic dynamic functional
interaction patterns for characterization of ADHD. Human
Brain Mapping, 35(10), 5262–78.

Plis, S.M., Amin, M.F., Chekroud, A., et al. (2018). Reading
the (functional) writing on the (structural) wall: multimodal
fusion of brain structure and function via a deep neural net-
work based translation approach reveals novel impairments
in schizophrenia. Neuroimage, 181, 734–47.

Plis, S.M., Sarwate, A.D., Wood, D., et al. (2016). COINSTAC: a pri-
vacy enabledmodel and prototype for leveraging and process-
ing decentralized brain imaging data. Frontiers in Neuroscience,
10, 365.

Premi, E., Calhoun, V.D., Diano, M., et al. (2019). The inner
fluctuations of the brain in presymptomatic frontotempo-
ral dementia: the chronnectome fingerprint. Neuroimage, 189,
645–54.

Preti, M.G., Bolton, T.A., Van De Ville, D. (2017). The dynamic
functional connectome: state-of-the-art and perspectives.
Neuroimage, 160, 41–54.

Qi, S., Sui, J., Chen, J., et al. (2019). Parallel group ICA+ICA: joint
estimation of linked functional network variability and struc-
tural covariation with application to schizophrenia. Human
Brain Mapping, 40(13), 3795–809.

Qin, J., Chen, S.G., Hu, D., et al. (2015). Predicting individual brain
maturity using dynamic functional connectivity. Frontiers in
Human Neuroscience, 9, 418.

Qiu, L., Xia, M., Cheng, B., et al. (2018). Abnormal dynamic
functional connectivity of amygdalar subregions in untreated
patients with first-episode major depressive disorder. Journal
of Psychiatry & Neuroscience, 43(4), 262–72.

Quevenco, F.C., Preti, M.G., van Bergen, J.M., et al. (2017). Mem-
ory performance-related dynamic brain connectivity indicates
pathological burden and genetic risk for Alzheimer’s disease.
Alzheimer’s Research & Therapy, 9(1), 24.

Rashid, B., Blanken, L.M.E., Muetzel, R.L., et al. (2018). Connec-
tivity dynamics in typical development and its relationship
to autistic traits and autism spectrum disorder. Human Brain
Mapping, 39(8), 3127–42.

Sadaghiani, S., Poline, J.B., Kleinschmidt, A., D’Esposito, M.
(2015). Ongoing dynamics in large-scale functional connectiv-
ity predict perception. Proceedings of the National Academy of
Sciences of the United States of America, 112(27), 8463–8.

Sakoglu, U., Pearlson, G.D., Kiehl, K.A., Wang, Y.M., Michael,
A.M., Calhoun, V.D. (2010). A method for evaluating dynamic



874 | Social Cognitive and Affective Neuroscience, 2021, Vol. 16, No. 8

functional network connectivity and task-modulation: appli-
cation to schizophrenia.Magnetic ResonanceMaterials in Physics,
Biology and Medicine, 23(5-6), 351–66.

Salman, M.S., Vergara, V.M., Damaraju, E., Calhoun, V.D. (2019).
Decreased cross-domain mutual information in schizophre-
nia from dynamic connectivity states. Frontiers in Neuroscience,
13, 873.

Schumacher, J., Peraza, L.R., Firbank, M., et al. (2019). Dynamic
functional connectivity changes in dementia with Lewy bod-
ies and Alzheimer‘s disease. NeuroImage: Clinical, 22, 101812.

Shi, L., Sun, J., Wu, X., et al. (2018). Brain networks of happiness:
dynamic functional connectivity among the default, cognitive
and salience networks relates to subjective well-being. Social
Cognitive and Affective Neuroscience, 13(8), 851–62.

Shine, J.M., Bissett, P.G., Bell, P.T., et al. (2016a). The dynamics of
functional brain networks: integrated network states during
cognitive task performance. Neuron, 92(2), 544–54.

Shine, J.M., Koyejo, O., Poldrack, R.A. (2016b). Temporal metas-
tates are associatedwith differential patterns of time-resolved
connectivity, network topology, and attention. Proceedings of
the National Academy of Sciences of the United States of America,
113(35), 9888–91.

Smith, D.M., Zhao, Y., Keilholz, S.D., Schumacher, E.H. (2018).
Investigating the intersession reliability of dynamic brain-
state properties. Brain Connectivity, 8(5), 255–67.

Sui, J., Adali, T., Pearlson, G.D., Clark, V.P., Calhoun, V.D. (2009). A
method for accurate group difference detection by constrain-
ing the mixing coefficients in an ICA framework. Human Brain
Mapping, 30(9), 2953–70.

Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R. (2012).
Criticality in large-scale brain FMRI dynamics unveiled by a
novel point process analysis. Frontiers in Physiology, 3, 15.

Tagliazucchi, E., Balenzuela, P., Fraiman, D., Montoya, P.,
Chialvo, D.R. (2011). Spontaneous BOLD event triggered aver-
ages for estimating functional connectivity at resting state.
Neuroscience Letters, 488(2), 158–63.

Tagliazucchi, E., Siniatchkin, M., Laufs, H., Chialvo, D.R. (2016).
The voxel-wise functional connectome can be efficiently
derived from co-activations in a sparse spatio-temporal point-
process. Frontiers in Neuroscience, 10, 381.

Thompson, G.J. (2018). Neural and metabolic basis of dynamic
resting state fMRI. Neuroimage, 180(Pt B), 448–62.

Thompson, G.J., Magnuson, M.E., Merritt, M.D., et al. (2013a).
Short-time windows of correlation between large-scale func-
tional brain networks predict vigilance intraindividually
and interindividually. Human Brain Mapping, 34(12),
3280–98.

Thompson, G.J., Merritt, M.D., Pan, W.J., et al. (2013b). Neural
correlates of time-varying functional connectivity in the rat.
Neuroimage, 83, 826–36.

Thompson, W.H., Richter, C.G., Plaven-Sigray, P., Fransson, P.
(2018). Simulations to benchmark time-varying connectivity
methods for fMRI. PLoS Computational Biology, 14(5), e1006196.

Tu, Y., Fu, Z., Zeng, F., et al. (2019). Abnormal thalamocortical
network dynamics in migraine. Neurology, 92(23), e2706–16.

van der Horn, H.J., Vergara, V.M., Espinoza, F.A., Calhoun, V.D.,
Mayer, A.R., van der Naalt, J. (2020). Functional outcome is tied
to dynamic brain states aftermild tomoderate traumatic brain
injury. Human Brain Mapping, 41(3), 617–31.

Vergara, V.M., Abrol, A., Calhoun, V.D. (2019). An average sliding
window correlation method for dynamic functional connec-
tivity. Human Brain Mapping, 40(7), 2089–103.

Vergara, V.M., Mayer, A.R., Damaraju, E., Calhoun, V.D. (2017).
The effect of preprocessing in dynamic functional network

connectivity used to classify mild traumatic brain injury. Brain
and Behavior, 7(10), e00809.

Vergara, V.M., Mayer, A.R., Kiehl, K.A., Calhoun, V.D. (2018).
Dynamic functional network connectivity discriminates mild
traumatic brain injury throughmachine learning. NeuroImage:
Clinical, 19, 30–7.

Vergara, V.M., Salman, M., Abrol, A., Espinoza, F.A., Calhoun,
V.D. (2020). Determining the number of states in dynamic
functional connectivity using cluster validity indexes. Journal
of Neuroscience Methods, 337, 108651.

Vidaurre, D., Smith, S.M., Woolrich, M.W. (2017). Brain network
dynamics are hierarchically organized in time. Proceedings of
the National Academy of Sciences of the United States of America,
114(48), 12827–32.

Xu, H., Su, J., Qin, J., et al. (2018). Impact of global signal regres-
sion on characterizing dynamic functional connectivity and
brain states. Neuroimage, 173, 127–45.

Xu, Y., Lindquist, M.A. (2015). Dynamic connectivity detection:
an algorithm for determining functional connectivity change
points in fMRI data. Frontiers in Neuroscience, 9, 285.

Yaesoubi, M., Adali, T., Calhoun, V.D. (2018). A window-less
approach for capturing time-varying connectivity in fMRI data
reveals the presence of states with variable rates of change.
Human Brain Mapping, 39(4), 1626–36.

Yaesoubi, M., Allen, E.A., Miller, R.L., Calhoun, V.D. (2015a).
Dynamic coherence analysis of resting fMRI data to jointly
capture state-based phase, frequency, and time-domain
information. Neuroimage, 120, 133–42.

Yaesoubi, M., Miller, R.L., Bustillo, J., Lim, K.O., Vaidya, J., Cal-
houn, V.D. (2017). A joint time-frequency analysis of resting-
state functional connectivity reveals novel patterns of connec-
tivity shared between or unique to schizophrenia patients and
healthy controls. NeuroImage: Clinical, 15, 761–8.

Yaesoubi, M., Miller, R.L., Calhoun, V.D. (2015b). Mutually tempo-
rally independent connectivity patterns: a new framework to
study the dynamics of brain connectivity at rest with applica-
tion to explain group difference based on gender. Neuroimage,
107, 85–94.

Yang, Z., Craddock, R.C., Margulies, D.S., Yan, C.G., Milham, M.P.
(2014). Common intrinsic connectivity states among postero-
medial cortex subdivisions: insights from analysis of temporal
dynamics. Neuroimage, 93(Pt 1), 124–37.

Yue, J.L., Li, P., Shi, L., Lin, X., Sun, H.Q., Lu, L. (2018). Enhanced
temporal variability of amygdala-frontal functional connec-
tivity in patients with schizophrenia. NeuroImage: Clinical, 18,
527–32.

Zalesky, A., Breakspear, M. (2015). Towards a statistical test for
functional connectivity dynamics. Neuroimage, 114, 466–70.

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., Breakspear, M.
(2014). Time-resolved resting-state brain networks. Proceedings
of the National Academy of Sciences of the United States of America,
111(28), 10341–6.

Zhang, C., Baum, S.A., Adduru, V.R., Biswal, B.B., Michael, A.M.
(2018a). Test-retest reliability of dynamic functional connec-
tivity in resting state fMRI. Neuroimage, 183, 907–18.

Zhang, W., Li, S., Wang, X., et al. (2018b). Abnormal dynamic
functional connectivity between speech and auditory areas in
schizophrenia patients with auditory hallucinations.NeuroIm-
age: Clinical, 19, 918–24.

Zhi, D., Calhoun, V.D., Lv, L., et al. (2018). Aberrant dynamic
functional network connectivity and graph properties in
major depressive disorder. Frontiers in Psychiatry, 9, 339.


	Tools of the trade: estimating time-varying connectivity patterns from fMRI data
	Dynamic functional connectivity (time-varying functional patterns)*-1.5pt
	Introduction and definitions*-1.5pt
	Potential relationship with brain function and neural activity
	Evidence of reliability and cognitive relevance
	Neurological and mental disorders

	Analytic approaches to study dFC
	Window-based approaches
	Event detection approaches

	Considerations and caveats
	Concluding remarks
	Implementing a dFC study: a GIFT walkthrough
	Temporal dFC
	Temporal dFNC toolbox.
	Temporal dFC (BOLD) toolbox.
	Dynamic coherence toolbox.
	Windowless FC toolbox.

	Spatial dFC
	Spatial dFNC toolbox.
	Spatial chronnectome toolbox.
	Spatial dynamic hierarchy toolbox.


	Acknowledgements
	Funding
	Conflict of Interest
	References


