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While efficacy and safety data collected from randomized clinical trials are the evidentiary standard for determining market
authorization, this alonemay no longer be sufficient to address the needs of key stakeholders (regulators, providers, and payers)
and guarantee long-term success of pharmaceutical products. There is a heightened interest from stakeholders on understand-
ing the use of real-world evidence (RWE) to substantiate benefit–risk assessment and support the value of a new drug. This
review provides an overview of real-world data (RWD) and related advances in the regulatory framework, and discusses their
impact on clinical research and development. A framework for linking drug development decisions with the value proposition
of the drug, utilizing pharmacokinetic–pharmacodynamic–pharmacoeconomic models, is introduced. The summary presented
here is based on the presentations and discussion at the symposium entitled Innovation at the Intersection of Clinical Trials and
Real-World Data to Advance Patient Care at the American Society for Clinical Pharmacology and Therapeutics (ASCPT) 2017
Annual Meeting.
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The fundamental goal of advancing patient care through
precision and translational medicine is to provide targeted
treatments enabling favorable treatment outcomes while
minimizing the risk. Traditional clinical trials and regula-
tory approval processes focus on “does the drug work?”
under a(n) selected/ideal design. While this is reasonable,
it may not provide sufficient information on how well the
drug works under real-world conditions in varied con-
texts (e.g., polypharmacy or comorbidities) and across
patient subpopulations.1 Consequently there has been an
increasing focus on inclusion of real-world data (RWD) in
healthcare decisions as well as in the development and
commercialization of new medicines.2,3 Further, with the
heightened attention to value-based pricing, pharmaceutical
companies are under increased pressure to demonstrate
the value of new drugs in the context of their routine use.
It is more pressing than ever, therefore, to understand the
value (cost-effectiveness) of new drugs early in the devel-
opment process using novel predictive approaches such as
pharmacokinetic–pharmacodynamic–pharmacoeconomic
(PK-PD-PE) models.
Advances in digital technology and analytics are making

use of RWD more feasible than ever; however, important
challenges remain to be resolved. Privacy laws, technical
complications, and evolving regulations have all hindered
access and implementation of RWD to improve the efficiency
of the drug development cycle. Uptake of RWD to inform
development of the target product profile and/or design of
clinical studies is still a work in progress.4 Nevertheless,
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as discussed in this review, many of these hurdles can be
overcome to improve clinical research, support application
for marketing authorization, conduct postmarketing safety
surveillance, and expand patient access.
The aim of this article is to provide an overview of RWD and

recent advances in the regulatory framework, highlight gaps
and limitations, and discuss implementation opportunities
in the areas of drug development, regulatory assessments,
medical practice, and payer assessments to readers who
are familiar with clinical development applications of PK-PD
models. More important, a method for integrating RWD
within the paradigm of model-based drug development,
namely PK-PD-PE modeling, is introduced, to highlight
opportunities for contribution in early value assessment for
clinical pharmacology and pharmacometric scientists.

REAL-WORLD DATA AND REAL-WORLD EVIDENCE

Real-world data (RWD) and real-world evidence (RWE) are
typically used interchangeably. The following section will
introduce, discuss, and provide clarity around these terms.

Types and sources of real-world data
When used in the healthcare context, the term “Real-World
Data” usually refers to patient-level data gathered outside
the conventional clinical trial setting. Such data may be
generated in the course of normal clinical practice or admin-
istrative claims processing, or may be reported directly
by patients. Examples include data from: patient charts,
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Figure 1 Types of real-world data.

laboratory reports, prescription refills, patient registries,
patients treated on- and off-label, patients treated through
expanded access, pragmatic clinical trials, surveys, and
mobile health devices, as well as other data from exist-
ing secondary sources used to support decisions con-
cerning safety, quality, care coordination, coverage, and
reimbursement.5

Advances in technology, data science, and healthcare
policies have resulted in tremendous growth in the volume,
sources, and utilization of RWD with collection of larger
and more diverse data sets. The expansion in the use of
electronic health records (EHRs) and the proliferation of
consumer digital technologies including mobile devices,
wearables, sensors, adherence tools, social media plat-
forms, and online patient communities have provided new
data sources as well as improved means of capturing,
storing, and analyzing longitudinal RWD on patients. The
current RWD landscape is characterized by enormous vari-
ety and complexity (Figure 1). It extends beyond traditional
sources such as chart reviews, prescription, or claims data
to include both structured and unstructured data from a
host of heterogeneous sources. These data include, among
others, phenotypic and genotypic data from discrete fields
as well as clinical notes in electronic health records, multi-
omics and other molecular profiling data from biospecimen
banks, and patient-reported outcomes from surveys and
prospective registries. Mobile health devices and other
wearable applications comprise additional novel sources of
previously unavailable patient-level data. These devices offer
continuous monitoring, data collection, and real-time trans-
mission capabilities that is rarely achieved in routine clinical
care.6 Online patient communities such as PatientsLikeMe7

and initiatives like PCORnet8 as well as consumer genetic

services like 23andMe (Mountain View, CA) and uBiome
(San Francisco, CA) have led to the rise of empowered
patients who are more open and willing to share their health
information for decision-making and research purposes.

Real-world evidence
Real-world evidence refers to the output of RWDanalysis that
is used to generate insights, using appropriate study design
and scientific methods, to inform decision-making by health-
care stakeholders. Generating evidence from RWD therefore
depends not only on capturing “big data”—large volumes of
these diverse data—but in effectively integrating these mul-
tiple and often disparate sources of data to obtain meaning-
ful insights. Most recently, a publication from the US Food
and Drug Administration (FDA) broadened the definition of
RWE to any data “generated from any study design (includ-
ing RCTs) as long as the data source is from routine care and
the design is highly pragmatic, meaning the trial design and
conduct closely approximate the eventual use of the product
in clinical practice.”9

Regional perspectives on real-world data
The emphasis on the use of RWE to inform and improve
healthcare decisions reverberates across all major mar-
kets. However, the acceptance and applications of RWE
for decision-making is variable across the globe. In the
United States, the FDA has long been interested in using
healthcare data generated in the real world to learn about
medical products, particularly drug safety. In considering
this, the FDA launched the Sentinel initiative in 2008, which
allows monitoring of the safety of FDA-regulated products
using RWD from sources such as EHRs, insurance claims
data, and registries.10 More recently, the Sentinel capabilities
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Figure 2 Key events leading to the importance of real-world evidence. International Society for Pharmacoeconomics and Outcomes
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were expanded under a public–private partnership in order
to provide access of Sentinel data to private-sector enti-
ties, such as regulated industry, academic institutions, and
nonprofit organizations. This program, named Innovation in
Medical Evidence Development and Surveillance (IMEDS),
is a national resource of big healthcare data, promoting the
use of RWD for research related to broader public health
benefit and medical evidence generation.11 RWD is also
used routinely in the EU, particularly for monitoring of safety
and drug utilization for marketed products. Further, in the EU
there is “increasing interest in the use of RWE for efficacy,
outcomes for Health Technology Assessment (HTA), and for
rapid cycle evaluation of medicines.”12

Government policies to address rising healthcare costs
and the need for better ways to measure performance have
also fueled a strong demand for RWD. In the United States,
healthcare reforms intended to improve healthcare qual-
ity and reduce costs are a strong driver in this respect.
Value-based payment reforms contain direct provider incen-
tives that rely on the collection, reporting, and analysis of
RWD to assess and improve provider performance based
on approved quality metrics. In Europe, similar budget pres-
sures are driving HTA bodies and payers to use RWE in con-
junction with evidence from clinical research to inform reim-
bursement decisions.

PROMISE OF RWD FOR VARIOUS STAKEHOLDERS

As RWD has become more robust and ubiquitous, various
stakeholders have become increasingly interested in its use
and application in a variety of different settings (Figure 2).

Regulatory agencies
The passage of the 21st Century Cures Act (“The Act”)
by the US Congress in December 2016 opened up a new

pathway for pharmaceutical companies to leverage RWD
in the development and expansion of indications for their
products in the United States, which was reinforced in the
Prescription Drug User Fee Act (PDUFA) VI authorization.
The Act clearly defines a role for RWE in the regulatory
process by mandating that the US FDA must issue guid-
ance describing how pharmaceutical companies may use
RWE:

1. To help support the approval of a new indication for a
drug approved under section 505(c); and

2. To help support or satisfy postapproval study require-
ments.

This has significant implications for both the cost and
speed of drug development. Pharmaceutical companies
have sought to utilize combinations of multiple existing reg-
istries to satisfy postapproval safety study (PASS) require-
ments in both US and EU contexts.12

In addition to increased use due to better data availability
and regulatory accommodation, the role of RWD/RWE only
appears poised to increase as drugs target smaller and
smaller populations of patients. These niche populations
limit pharmaceutical companies’ attempts to undertake
randomized controlled trials (RCTs). RWD could potentially
provide another axis of data to consider how evidence of
efficacy and safety are substantiated in niche populations.
RWD may be combined with traditional data to increase
efficiency and reduce costs of clinical development without
lowering the standard of evidence. RWE can be leveraged
for regulatory decision-making related to label extension
or to support a new indication for an approved drug, as
well as to substantiate confirmatory evidence for drugs
approved under the expedited regulatory programs. Other
authors have described opportunities for single-arm trials
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to be implemented and evaluated through the concept of
“threshold-crossing.”13 In this model, an efficacy or safety
threshold is established as a benchmark for a new drug
via the use of RWD, and if this threshold is achieved the
new drug can be considered successful and can forgo RCT
evaluation. If unsuccessful, a traditional RCT is established.
Finally, RWD/RWE is being used to fulfill postmarketing
commitments in many instances, and increased uptake of
RWE will further improve the efficiency of such monitoring
and surveillance activities.

Payers
Besides the use of RWD in a regulatory context, novel types
of RWD are creating efficiencies and permitting uses hereto-
fore unavailable to pharmaceutical companies and payers.
In many indications, end points for efficacy and effective-
ness are subjective, or occur so infrequently in early stages
of the disease progression that drug developers choose
to use proxies for the true clinical end points. Examples
include cholesterol as a surrogate for adverse cardiovas-
cular events, HbA1c for diabetes end points such as nerve
damage or kidney disease, and progression-free survival in
many types of cancer. In addition to surrogate-to-real end-
point comparisons, payers have concerns about small sam-
ple sizes among drugs approved to treat rare diseases.
RWD can facilitate the creation of larger cohorts of patients
with rare diseases where patients are extremely difficult to
identify, or those slow-progressing conditions, otherwise not
amenable to prospective clinical trial-based analyses. This is
being achieved via aggregation of multiple RWE data sets to
enable creation of “virtual control arms” or “synthetic patient
cohorts” that combine smaller cohorts of similar indication
and stage of diseasemultiple data sets. This combined group
of patients can then be used as both test and counterfactual
arms for rare-disease analyses.
Increasingly, payers are concerned about the validity of

surrogate end points among their populations, and the
smaller sample sizes used to test new medications in tar-
geted and genetic therapies.14 Payers are turning to their
own or third-party RWD repositories to undertake analy-
ses of the relationships between these surrogate end points
reported from randomized clinical trials, and the true clinical
end points available in larger RWD repositories that are most
relevant to the disease being treated. Large data sets are
also being used to collect data from prospective drug trials to
provide estimates of drug treatment effects in broader, more
heterogeneous populations using a variety of end points. The
use of these data sets can overcome the limitations of clinical
trials, where end points have to be valid within the (relatively
short) duration of the trial, and the set of end points captured
is often limited by financial and patient and provider burden
considerations. This is a concept exemplified by the Salford
Lung Study.15

These questions of surrogate to real-end point consistency
and efficacy in heterogeneous patient populations are sig-
nificant in the context of medication value, where outcomes
among the highly selected patient participants in an RCT
can be markedly different when seen in a real-world patient
population with comorbidities and imperfect medication
adherence. Payers have begun to use these RWD-enabled

analyses to drive conversations with pharmaceutical compa-
nies regarding prices for therapies and appropriate payment
models.16 The availability of RWD enables these new pay-
ment models by allowing pharmaceutical companies and
payers to identify performance in individual patients and pay
for good outcomes, or avoid paying for bad ones for drugs
while they are being used by patients in real practice. This
parallels the pay-for-performance models that have been,
and continue to be used, for healthcare providers.

Care delivery system
The use of RWD may also permit more accurate ways to
align drugs to patients than is possible with clinical trial or
anecdotal physician experience data. Using RWD, popula-
tion health analysts and epidemiologists are able to identify
large subsets of patients within specific disease populations,
and using phenotypic, genotypic, or laboratory data avail-
able within the patient record, more effectively and appropri-
ately assign treatments. Examples of this in practice include
analysis of RWD on diabetic patients’ use of specific drugs
to identify inappropriate use of medications with renal dos-
ing implication among patients with kidney disease, through
estimated glomerular filtration rate calculation via electronic
medical record (EMR) data.17 The application of these results
at a population-level and via feedback to physicians through
clinical decision support systems embedded within the
EMR and data collection tools can lead to better patient
management.

The potential for RWD to improve the provision of health
care is enormous. It remains to be seen, though, to
what extent RWD can significantly change the healthcare
landscape.

BARRIERS AND SOLUTIONS TO ENABLE USE
OF REAL-WORLD DATA

While RWD offers significant opportunities for improving
healthcare research, innovation, and decision-making, as
with any rapidly evolving field there are challenges to lever-
aging its full potential. These challenges range from technical
(e.g., claims data are collected for administrative billing pur-
poses but are envisioned now to support drug development
decisions), to ethical (a risk to privacy as health information
and patient data sets are aggregated), to analytical (select-
ing which RWD are appropriate to informing a particular deci-
sion, and reducing the risk of bias). The growing emphasis on
the use of RWD is expected to improve our understanding of
these data sets as well as fill existing knowledge gaps.

Data quality
Since most RWD are not collected for research purposes,
the data collection is episodic, reactive, and at best offers
a partial picture. As a result, RWD is in general messy and
sparse, and requires statistically rigorous and valid meth-
ods to clean the data and correct inconsistencies. Careful
data curation, using both structured and unstructured data,
is especially important for precision therapeutics in oncology,
where often crucial information related to molecular biomark-
ers or end-points data can be missing. Missing data may
also need to be filled by linking to alternative data sources.18
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Analysts must also identify and adjust for confounding fac-
tors such as demographics, socioeconomic and insurance
status, disease severity, comorbidities, concomitant med-
ications, and genetic predispositions to certain conditions
before conducting in-depth analyses. RWD is also subject
to selection bias, as cohort selection and treatment deci-
sions in clinical practice are not random. Therefore, follow-
ing appropriate guidelines on design and validation of RWE
studies can help in minimizing some of the sources of bias
and inconsistencies.19

Interoperability
In addition, standards for the development and maintenance
of data assets have not yet caught up with the rapid evo-
lution of RWD. A lack of interoperability between real-world
databases creates difficulties for combinatorial analysis and
collaboration between data holders. Even within individual
organizations there is often a lack of consolidated or cen-
tralized data storage, leading to difficulties in analyzing data
across different data sets. Overall, there is a need to imple-
ment standardization and maintain robust quality assurance
(QA) / quality control (QC) practices to support data robust-
ness. The not-for-profit organizations such as Health Level
7 (http://www.hl7.org/) and the IMEDS initiative11 are cre-
ating standards for electronic health data and promoting
interoperability among systems. In the future, advances in
data standardization, interoperability, and linkage techniques
are anticipated to further enable disparate data sources
to converge into a single platform for more seamless and
efficient analytics. One such example is the Administrative
Data Research Network (https://adrn.ac.uk) established in
the United Kingdom in 2012, which allows access to linked,
deidentified government data for social, economic, environ-
mental, and health research. Commercial organizations like
QuintilesIMS and Flatiron Health have linked numerous com-
munity healthcare practice data sets to provide larger, more
robust data analytic platforms for research.

Analytical platforms
Even though the adoption and use of EHRs has grown signif-
icantly, extracting meaningful data from EHRs in an accurate
and efficient manner remains challenging. This is due to the
fact that a significant portion of high-value clinical informa-
tion in EHRs is often stored in unstructured, free-text clinical
documents that are inaccessible to algorithms and requires
layers of preprocessing. For example, even a frequently used
metric such as the ankle-brachial index (ABI)—a “quantita-
tive” data point for defining peripheral arterial disease (PAD),
is typically embedded in the text of radiology reports, hidden
from structured data analytics tools.
Natural Language Processing (NLP) methods provide one

approach for extraction and conversion of unstructured infor-
mation from clinical text data to structured observations—
such as Karnofsky andMini Mental State Examination scores
for determination of disease severity and functional status
in oncology and Alzheimer’s disease patients, extraction of
findings such as ejection fraction from laboratory reports,
biomarker information from pathology reports, as well as
in the assessment of patient characteristics such as emo-
tional and social behaviors from physician notes. Further,

predefined fields in EHR (e.g., problem lists, past history, or
test result fields) capture only certain disease information
and may miss the trends of other prevalent, but unlisted,
health conditions. NLP can be a powerful tool to extract
symptoms from physician notes or textual data from lab
reports to enable identification of those trends/conditions,
thus complementing the assessments using structured data.
NLP uses a combination of linguistics, pattern recogni-

tion, and machine-learning techniques to extract context-
appropriate information from reports to derive insights from
a clinical text narrative. In addition to routine text-mining and
extraction capabilities, more sophisticated machine-learning
algorithms can also be layered on top of NLP for automated
assignment of diagnosis codes as well as in the identification
of patient cohorts, using predefined inclusion/exclusion cri-
teria, based on information contained in clinical notes. More
recently, application of deep learning methods have resulted
in impressive advances in NLP, especially in the development
of unsupervised models using recurrent neural networks and
autoencoders that reduce dependence on high-quality, man-
ual annotations of text data.20–22 These methods allow algo-
rithms to learn high-level abstractions from clinical data and
notes when concepts are not mentioned explicitly. Avail-
ability of large volumes of real-world clinical data enables
the training, development, and validation of new algorithms.
However, before clinical notes can be used for research,
adequate precautions must be taken to ensure all HIPAA
(Health Insurance Portability and Accountability Act)-defined
protected health information (PHI) elements are removed or
anonymized to deidentify the data set. Overall, NLP methods
can add significant analytical capabilities that can increase
the utility of EHR data.
Beyond NLP, advances in machine learning have enabled

new approaches for prediction of disease onset, future
diseases,23,24 and risk scores25,26 from longitudinal EHRs
and lab tests, identification of treatment course based on
patient outcomes,27 and in image recognition for classifi-
cation of radiology and pathology images.28,29 Methods for
assessing disease heterogeneity and predicting patient out-
comes, given the information about a patient, their history,
and individual-specific variability, have demonstrated capa-
bilities to include both observed as well as latent features
extracted from messy, multivariate EHR data.30 Advanced
analytics using machine learning on longitudinal RWD has
the potential to inform and reframe drug development and
clinical trial design strategy—through patient stratification
into subgroups based on disease subtypes, drug treatment
efficacy, progress, side effects, and toxicity profiles—by
shifting from presumption of a single disease to multiple,
related diseases. As machine-learning algorithms and frame-
works continuously advance, there will be improvements
in the ability of these models to learn continuously as new
information emerges either in the form of additional data
sources or updated treatment guidelines.31

APPLICATIONS OF RWD FOR PHARMACEUTICAL R&D

The following section will discuss application of RWE in
clinical development and introduce PK-PD-PE modeling to
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Figure 3 Innovation in the traditional drug development paradigm moving from the randomized controlled trial to gain regulatory approval
to an all-encompassing collection of real-world evidence in the context of a therapeutic solution.

highlight opportunities for early value assessment as part of
clinical development.

Transforming clinical development through RWE
RWD presents an opportunity to disrupt an inefficient phar-
maceutical businessmodel stifled by a high failure rate, rising
development costs,32 and increased pressure from various
stakeholders including regulators, payers, prescribers, and
patients.33

To discuss future opportunities for leveraging RWD, a tra-
ditional drug discovery/development model is contrasted to
propose a new model for drug discovery/development in the
digital era (Figure 3). In the traditional model, the goal is to
obtain regulatory approval for a “pill-in-a-bottle” followed by
real-world considerations (differentiation, value, integration
with other modalities, etc.). The proposed new model lever-
ages the advances in big data such as multi-omics, sensor
devices and technology, imaging, and other relevant data in
health ecosystem wellness apps, social networking, etc., to
garner the RWE while still gaining the necessary data for reg-
ulatory approval. The new types of data can also allow phar-
maceutical companies to change the product identity from
merely selling a pill-in-a-bottle, to offering a comprehensive
therapeutic solution. The new goal of drug developers should
be to develop an integrated therapeutic strategy that takes
into consideration real-world usage of a therapeutic solution
in the context of digital devices, behavioral interventions, and
other therapeutic options, which may or may not include a
pill.
In addition to eventually changing the treatment paradigm

from a product identity to a therapeutic solution that the phar-
maceutical industry can deliver in conjunction with health-
care providers, there are some immediate benefits to the cur-
rent business model that can be leveraged by using RWD
during clinical development:

Improve clinical trials execution and success
� Optimize drug dosing through adherence measure-
ment: Adherence in clinical trials remains largely

unmonitored and is assumed to be high, contrary
to evidence.34,35 There have been several develop-
ing approaches to monitor and potentially improve
adherence.36 As an example, with a combination of sen-
sors and a mobile technology interface, Otsuka Phar-
maceuticals and Proteus Digital Health developed the
first FDA-approved real-time adherencemonitoring plat-
form that will allow physicians, caregivers, and others
involved in care delivery to monitor adherence for a
patient, as well as relate drug intake to activity and
other vital measures.37 The use of electronic moni-
toring devices coupled with provision of feedback to
patients of their recent dosing histories is an evidence-
based approach to enhancing patient adherence to
medications.38 These types of data are rarely avail-
able during clinical development and could be used to
optimize dosing based on adherence profiles observed
in clinical trials. Collection of adherence data in clini-
cal trials and the real world would strengthen the pre-
dictive analytics on generating the patient response
given relevant data with respect to drug intake and
action.39,40

� Leverage digital biomarkers/phenotypes to increase
trial success by enriching clinical trial population:
Understanding the determinants of placebo and drug
response has been of interest to pharmaceutical spon-
sors and regulators.41 However, traditionally these deter-
minants have been limited to demographics and cer-
tain baseline variables collected in a typical clinical
study. With the availability of dynamic measures, as
well as detailed data on activity, sleep, vitals, circa-
dian rhythm, and behavior, speech, etc., there exists
an opportunity to better understand these determinants
and optimize the clinical trial population. For example,
one of the primary reasons for psychiatry trial failures is
believed to be inclusion of refractory patients and partial
responders. However, traditional inclusion/exclusion cri-
teria are unable to differentiate these types of patients.
It is possible that digital phenotype of patients based
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Figure 4 (a) Conceptual framework of a pharmacometric-pharmacoeconomic model; and (b) an illustrative application in the context of
medication adherence.

on activity, sleep, behavior, etc., might be able to
offer a better view of potential response. These data
types have the potential to be leveraged to enrich
the appropriate population studied in a given clinical
trial.42

Real-world differentiation for products
� Predictive analytics of real-world effect given clinical
trial response: Real-world effect of drugs has always
been debated with regard to the generalizability of the
response observed in a clinical trial conducted with a
specific and limited patient population.5 Modeling and
simulation is an often-overlooked tool that can be used
early on in the development to project real-world perfor-
mance of drugs under different combinations of patient
characteristics and/or conditions (such as adherence)
not explicitly studied in clinical trials. One such exam-
ple is an integration of adherence rates taken from RWD
with PK-PD modeling to inform go/no-go decisions.43

In this example, as shown in the schematic in
Figure 4b, dose and response data from RCTs were
modeled using the PK-PD modeling approach. Sepa-
rately, RWD on patient adherence from a large database
with prescription refill history was transformed into
an individual patient level database (by making some
assumptions) to bring it in the same format as the PK-
PD database (to allow simulations by using the PK-PD

modeling software). Subsequently, the PK-PD model
based on RCT was applied to the individual patient
database created from the prescription refill history to
simulate the clinical responses under different degrees
of adherence in the real-world setting. These response
predictions were entered into a health economic model
to assesswhat degree of adherence improvement would
result in a clinically meaningful improvement in clinical
outcomes that are also cost-effective. Such approaches
can be used to analyze the economic value of thera-
peutic interventions directed at improving adherence,
as well as to assess the need of acquiring more infor-
mation. Predictive analytics is potentially the only way
to project real-world performance before a drug is
released to a broader population. Such model-based
outputs for future performance can be effectively lever-
aged to support realistic future value during clinical
development.

� Leverage digital biomarkers/phenotypes to generate
hypotheses for real-world differentiation:With a broader
definition of RWD noted above, the ability to collect
data in both a healthy and diseased state could enable
generation of new hypotheses during clinical trials. The
measurement of activity, vitals, sleep, behavior, speech,
etc., in real time makes it possible to learn more about
the therapeutic or adverse effect of drugs and can be uti-
lized to show differentiation among drugs. While these
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data can be collected on an exploratory basis and likely
have minimal impact on the primary results of a clin-
ical trial, they provide a big opportunity to generate
additional hypotheses and test those in prospective clin-
ical trials.

PK-PD-PE modeling for early prediction of outcomes
Model-based clinical drug development uses pharmacomet-
ric (quantitative pharmacology) approaches to inform trial
design and optimize compound development strategies.44

This is achieved by integrating PK, PD, and clinical evidence
using empirical or mechanism-based modeling to predict
efficacy and safety outcomes from simulated clinical trials.
Such approaches have been used to facilitate the identifi-
cation of trial design inefficiencies, adjust for nonadherence
and dropout, for exploration of the effects of different dos-
ing regimens, for consideration of specific populations,45 and
offer valuable insights for future studies with the aim of reduc-
ing late-stage failure and improving the efficiency of drug
development.46–48

A natural extension to pharmacometric analyses, exploit-
ing the structural relationship between dose and response
and accounting for the statistical uncertainty, is to link with
PE models (Figure 4a) that consider the resource constraints
of payers of health care.49 Collectively, these models can be
defined as PK-PD-PE models. PE models assess the incre-
mental costs per quality-adjusted life years (QALY) gained
for a given intervention. If the cost per QALY is below a
predefined threshold (often accepted as £30,000; €50,000;
$100,000 per QALY in the United Kingdom, European Union,
and United States, respectively) then the intervention is con-
sidered cost-effective. This evaluative framework has the
potential to improve methods for strategic, clinical, and
pricing decisions during phase II/III drug development and
offers advantages over standard (empirical) PE models dur-
ing these phases of clinical drug development.50,51 The deter-
mination of a value-based price, for instance, will inform
whether further development is commercially viable—it may
be appropriate to halt the development of a drug with no
prospect of achieving a value-based price. Alternatively, a
value of information analysis might be carried out, taking
advantage of the PK/PD uncertainty as well as economic
parameters derived from RWE. This can inform go/no-go
decisions on whether a trial is worth undertaking, based on
the expected net trade-off of the benefits of the trial in rela-
tion to its costs.52,53

Published examples of PK-PD-PE models are limited to
application in relation to rituximab for follicular lymphoma,54

pharmacogenetics-guided warfarin dosing,55 eribulin for
castration-resistant prostate cancer,56 a hypothetical drug
(potentially representative of a drug in development) for
chronic obstructive pulmonary disease,57 and oseltamivir for
themanagement of influenza pandemics.58 While these stud-
ies support the proof of principle of the method, the appli-
cation of pharmacometrics in pharmacoeconomic evalua-
tion and HTA is very much in its infancy. However, the lim-
ited published evidence to date suggests utility in many
contexts, most evidently in integrating RWE in early-stage
evaluation. These relate to: (i) providing early indications
of cost-effectiveness before large-scale trial data become

available; (ii) directing future research based on the cost
of reducing uncertainty; (iii) assessing subgroups, dosing
schedules, and protocol deviations; (iv) informing strategic
research and development along with pricing decisions; and
(v) estimating the cost-effectiveness of complex pharmaceu-
tical interventions (such as pharmacogenetics testing).

Key challenges to the further advancement of PK-PD-PE
model development and application, however, include over-
coming different modeling paradigms in pharmacometrics
and health economic evaluation, a need for increased accep-
tance of model-based drug development through to pricing
and reimbursement to inform critical-stage decision-making,
and further evidence on the validity and reliability of complex
and computationally intensive models. These may be over-
come through closer integration and collaboration between
the disparate disciplines of pharmacometrics, clinical phar-
macology, and health economics / outcomes research, which
may be achieved through colocation and appropriate train-
ing of discipline-agnostic biostatisticians and mathematical
modelers. This should ultimately lead to greater acceptance
of model-based drug development incorporating RWE and
PK-PD-PE, specifically, in the drug development process.

DISCUSSION/FUTURE DIRECTIONS

The application of RWD is growing in several areas includ-
ing, but not limited to, supporting decisions in drug devel-
opment and medical practice, as well as decisions by HTA
agencies and regulators. Greater adoption of RWE in these
areas is closing the gaps between evidence used to sup-
port drug approval or reimbursement decisions and evidence
used by the medical community. RWE is also augmenting the
information healthcare providers’ use for clinical decision-
making by adding information that is not collected as part of
RCTs such as benefit–risk in underrepresented patients with
comorbidities or in the elderly. Overall, enhanced use of RWE
is anticipated to enable the development of medicines with
unambiguous value to patients, make the selection of med-
ical treatments more effective and efficient, and reduce the
time for bringing novel drugs to market.

Impact on drug development
RWE will not replace the need for data from traditional tri-
als; however, technologies supporting RWD are enabling far
richer and more diverse information to be collected during
drug development. Traditional drug development restricts
capturing of quality of life measurements within RCTs to
when instruments like patient-reported outcomes (PROs) are
administered, whereas RWD allows for more efficient and
unrestricted capturing of these data in larger volumes and
novel settings. Incorporation of technologies for RWD col-
lection (e.g., wearables) (Figure 5a) and use of RWE in drug
development decision-making may also inspire innovation in
clinical programs and trial designs. This has the potential to
favorably impact the efficiency of planning and operations,
and ultimately pave the path for reductions in the cost of drug
development. To realize the full impact of RWE on drug devel-
opment, the healthcare community will need to make funda-
mental changes in the way clinical information is collected.
Due to its historical use for billing and claims management

Innovation at the Intersection of Clinical Trials
Swift et al.

457

www.cts-journal.com



Figure 5 Increasing application of RWD in drug development through (a) utilization of wearables in clinical trials and with payer assess-
ments through (b) the use of value-based pricing agreements. (a) Data extracted from https://clinicaltrials.gov using the search term
“wearables.” (b) Data extracted from the University of Washington School of Pharmacy Performance Based Risk Sharing database.

the current system was not designed for research purposes.
It therefore lacks some of the critical details that researchers
require, for example, detailed clinical information on such
things as tumor biomarkers, PROs or similarly nuanced, but
valuable clinical insights. Often if this detailed clinical infor-
mation exists, it resides in the unstructured data, making
analytical tools such as NLP evenmore important. The scien-
tific community will need to continue working on improving
the methodologies for handling complex and unstructured
data.

Impact on regulatory decisions
The use of RWE in regulatory decisions about efficacy has
been historically very limited; however, the narrative is chang-
ing. This has been spurred by the recent series of pub-
lications and presentations, as well as statutory changes
enforced by the FDA. In the short period from December
2016 to the present, the FDA has published opinion articles5,9

and actively participated in public discussions59 to define
and promote the use of RWD and RWE as an evidentiary
standard for drug approval. Additionally, the recently leg-
islated 21st Century Cures Act and the new user fee laws
(Prescription Drug User Fee Act VI) provide enough oppor-
tunity for expanding the use of RWE for demonstrating effi-
cacy for drug approval and mandates the FDA to hold pub-
lic workshops and develop draft guidance documents aimed
at enhancing the use of RWE in regulatory decision-making
within the next 5 years. In fact, the current statutes provide
enough latitude for incorporation of RWE in decision-making,
as remarked by the FDA commissioner Dr. Scott Gottlieb at
a recently held workshop: “there is nothing in our statute or
regulations that prevent FDA from using a broad range of
informative sources of evidence. On the contrary many of
our statutory responsibilities boil down to one principal cal-
culus, what do we know and how dowe balance benefits and

risks based on the fullest possible information.”59 Dr. Gottlieb
also remarked on the important role RWD can play in meet-
ing the postmarket study requirements and approval of new
indications for already marketed drugs. RWE is also playing
a key role in approval of medical devices strengthened by the
recently finalized FDA guidance. Since 2015 alone, approval
of at least eight new medical devices and expanded use of at
least six technologies have relied on evidence derived from
RWD.59 Other regulatory agencies such as the EMA60 and
PMDA61 are also taking initiatives to expand the use of RWD.
For example, the adaptive pathways approach implemented
by the EMA aims to provide timely access for patients to new
medicines and seeks to involve patients and health technol-
ogy assessment agencies in discussions during drug devel-
opment. Overall, the evolving changes in the regulatory land-
scape regarding use of RWD hold promise for a new future.

Impact on medical practice
Experiences with medication use in the real world has
always influenced decisions in medical practice and is the
foundation of evidence-based medicine (EBM). However,
over reliance on inferences from RCT and the ensuing
inability to individualize for specific clinical scenarios has
often been seen to limit the application of EBM.62 The
ability to collect richer data from the real world both pre-
and postapproval and advanced analytics has promise to
overcome these limitations. This change would offer the
opportunity for integration of multiple sources of data and
from many more patients than one provider sees on an
individual basis, which in turn could bring medical decisions
specific to the individual characteristics of patients, with
the potential of making health care more personalized and
effective. Access to RWD can allow exploration of important
clinical outcomes which may not be possible otherwise
and it can also help with development and validation of
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surrogate instruments for such outcomes for incorporation
in clinical practice. RWD can also provide insights on rare
safety events which could potentially be prevented. To capi-
talize on these obvious advantages, healthcare stakeholders
including Aetna, Kaiser-Permanente, and Geisinger to name
a few are increasingly applying “big data” to improve patient
care guidelines and manage formularies.63,64

Impact on payer assessments
The need to price drug products based on the value offered
to patients is clearly reflected in value-based contracts
between pharmaceutical companies and payers to link the
price of a prescription drug to its clinical and economic per-
formance (Figure 5b). As discussed in this article, collec-
tion of RWD is helping payers in economic assessments by
providing information on outcomes in real-world settings (as
opposed to controlled settings in clinical trials), by provid-
ing evidence of effectiveness (or lack of it) in population sub-
groups not adequately represented in randomized trials, and
by aiding to the assessments of comparative effectiveness.
A repository of patient characteristics data built using RWD
also enables payers to run simulations for effectiveness or
budget impact in populations that are not clinically tested or
for which only limited data exist.
In conclusion, RWD and RWE have promise to strengthen

the current ecosystem of data supporting healthcare deci-
sions, and support transition into a new era of personalized,
more effective, and more efficient health care. Collabora-
tion among providers, patients, payers, drug companies, and
other players in the healthcare system, aided by technology,
would be necessary to unleash a new age of medicine.
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