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ABSTRACT: Background: VPS35 is part of the retromer
complex and is responsible for the trafficking and recycling
of proteins implicated in autophagy and lysosomal degrada-
tion, but also takes part in the degradation of mitochondrial
proteins via mitochondria-derived vesicles. The p.D620N
mutation of VPS35 causes an autosomal-dominant form of
Parkinson’s disease (PD), clinically representing typical PD.
Objective: Most of the studies on p.D620N VPS35 were
performed on human tumor cell lines, rodent models
overexpressing mutant VPS35, or in patient-derived fibro-
blasts. Here, based on identified target proteins, we
investigated the implication of mutant VPS35 in
autophagy, lysosomal degradation, and mitochondrial
function in induced pluripotent stem cell-derived neurons
from a patient harboring the p.D620N mutation.
Methods: We reprogrammed fibroblasts from a PD
patient carrying the p.D620N mutation in the VPS35
gene and from two healthy donors in induced pluripotent
stem cells. These were subsequently differentiated into
neuronal precursor cells to finally generate midbrain
dopaminergic neurons.

Results: We observed a decreased autophagic flux and
lysosomal mass associated with an accumulation of
α-synuclein in patient-derived neurons compared to
controls. Moreover, patient-derived neurons presented
a mitochondrial dysfunction with decreased membrane
potential, impaired mitochondrial respiration, and
increased production of reactive oxygen species asso-
ciated with a defect in mitochondrial quality control via
mitophagy.
Conclusion: We describe for the first time the impact of the
p.D620N VPS35 mutation on autophago-lysosome pathway
and mitochondrial function in stem cell-derived neurons
from an affected p.D620N carrier and define neuronal phe-
notypes for future pharmacological interventions. © 2020
The Authors. Movement Disorders published by Wiley Peri-
odicals LLC on behalf of International Parkinson and Move-
ment Disorder Society.
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The functional characterization of Parkinson’s disease
(PD)-linked mutations has enabled he identification
of impaired cellular pathways underlying the neu-
rodegeneration of dopaminergic neurons of the substantia
nigra.1 Recently, based on a growing number of genes
identified in monogenic forms of PD, alterations of
endosomal trafficking came into focus as a pathway
linked to the disease. The p.D620N mutation in VPS35
was identified by two independent research groups
in 20112,3 and causes a rare autosomal-dominant form of
PD, occurring in 1.3% of familial cases and 0.1% of
all PD cases.4 The clinical phenotype of patients resembles
the one of typical sporadic PD patients, although variabil-
ity is present in terms of age of onset.3,5 Furthermore,
VPS35 expression has been showed to be reduced in the
substantia nigra of sporadic PD patients.6 Therefore, the
study of the VPS35 pathway is of interest for a wide
range of PD patients.
VPS35 is part of the retromer complex, responsible

for the recycling of targeted transmembrane proteins
from the early endosome back to the plasma membrane
and the retrograde transport from the endosomal sys-
tem towards the trans-Golgi network (TGN).7 The
retromer is composed of VPS35, VPS29, VPS26A, or
VPS26B, and various sorting nexins. The pathogenic p.
D620N VPS35 does not intervene with the proper for-
mation of the retromer.8

The retromer transports proteins essential to lyso-
somal clearance, carrying them to the TGN to avoid
their degradation. One of the most studied cargo pro-
teins of the retromer is the cation-independent mannose
6-phosphate receptor (CIMPR).9 CIMPR is an
endosomal protein that transports procathepsin D from
the endoplasmic reticulum (ER) to the lysosome and is
essential for the maturation into the hydrolase cathep-
sin D. CIMPR is then recycled via the retromer. In cells
with a deficiency in VPS35, either through knockdown
or by expressing the p.D620N mutant protein, CIMPR
is not properly recycled back to the TGN, which leads
to the degradation of the receptor and the subsequent
mistrafficking of cathepsin D.10-12 The retromer also
recycles key autophagy proteins: Lamp2a, implicated in
chaperone-mediated autophagy, and ATG9, a protein
involved in the induction of autophagy. Retromer com-
plexes containing mutant VPS35 can no longer bind
their cargo proteins and, thus, these proteins cannot
escape degradation by the lysosome.8,13 Overall, the
retromer is crucial for proper trafficking of lysosomal
clearance proteins, and the p.D620N mutation in
VPS35 was found to be associated with dysfunctional
lysosomal clearance.12

Several studies have identified mitochondrial impair-
ment in rodent dopaminergic neurons expressing p.
D620N VPS35. It has been reported that p.D620N
VPS35 directly interacts with Drp1 (dynamin-related
protein 1), a key component in mitochondria fission,

leading to fragmented mitochondria and cell death.14

Moreover, in dopaminergic neurons from mice
depleted of VPS35 or expressing p.D620N VPS35,
mitochondrial fragmentation was observed with
reduced level of mitochondrial fusion protein Mfn2
(mitofusin 2).15 This was related to increased mito-
chondrial fragmentation, with decreased mitochon-
drial membrane potential (MMP) and impaired
respiration.14,15 Similar results were described in
patient-derived fibroblasts.16 Overall, VPS35, by its
central role in endosomal trafficking, regulates cellular
and mitochondrial quality control.17

Most studies with VPS35 deficiency have been con-
ducted in rodent dopaminergic neurons or VPS35
knockdown models. Similar loss of function phenotypes
were observed in cell lines overexpressing p.D620N
VPS35, or in patient-derived fibroblasts of p.D620N
VPS35 carriers. To date there have been no studies
investigating the effect of mutant p.D620N VPS35 on
cellular phenotypes related to mitochondrial function,
autophago-lysosomal pathway, and α-synuclein levels
in patient-derived neuronal models. Here, we rep-
rogrammed fibroblasts from one patient carrying the p.
D620N VPS35 mutation and two gender-matched con-
trols of similar age into induced pluripotent stem cells
(iPSCs). Then, we differentiated iPSCs into small mole-
cule neuronal precursor cells (smNPC) and further into
neuronal populations enriched in dopaminergic
neurons.18

We found that iPSC-derived neurons carrying the p.
D620N mutation in VPS35 displayed severe mitochon-
drial dysfunction with decreased MMP, increased mito-
chondrial reactive oxygen species (ROS) level, and
impaired respiration. Further, we found alterations in
mitophagy and a decrease in overall autophagic flux
that may be associated with the observed impaired lyso-
somal function. Moreover, these patient-derived neu-
rons harboring the p.D620N VPS35 mutation
displayed a typical accumulation of α-synuclein protein.
This suggests that p.D620N VPS35 leads to a profound
dysfunction of several cellular processes through its
central role in trafficking of proteins.

Materials and Methods
Subjects

We included a male patient carrying the p.D620N
mutation in VPS35, described previously by Follet
et al10 and two healthy male controls from Tübingen
Biobank Control 1 and Control 2. Skin biopsies were
taken from each individual aged 73, 72, and 77 years,
respectively.
Ethical approval for the generation and functional

characterization of patient-derived iPSCs have been
provided by informed consent.
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Cell Culture and Treatments
For mitochondrial morphology, membrane potential,

and ROS assessment, neurons were cultivated in neuro-
nal medium without B27 and ascorbic acid (without
antioxidants supplementation) 4 hours prior to the
experiment. All treatments were performed in the neu-
ronal medium without antioxidants. To assess the
mitophagic clearance capacity, the edited neurons with
the Rosella construct were treated with 10 μM CCCP
(carbonyl cyanide 3-chlorophenylhydrazone) (Abcam,
Cambridge, UK) for 24 hours. For the autophagy exper-
iment, neurons were treated with 100 nM Bafilomycin
A1 (Enzo Life Sciences, Bruxelles, Belgium) for 24 hours.
For autophagy enhancement, neurons were treated
with 25 or 50 nM rapamycin (Enzo Life Sciences) for
24 hours. All experiments were repeated on three to six
independent neuronal differentiations.

Live Cell Imaging and Analysis
Mitochondria were visualized using 100 nM

MitoTracker Green FM (Invitrogen, Gent, Belgium) in
neuronal medium without antioxidants and lysosomes
with 100 nM LysoTracker Deep Red (Invitrogen) in
neuronal medium with or without antioxidants. At least
five Z-stack images per well were acquired using a Zeiss
spinning disk confocal microscope. All the raw image
datasets used in this study are deposited online in our R3
lab of the University of Luxembourg (https://webdav-
r3lab.uni.lu/public/MitoNetworks/VPS35Neurons/).
To segment mitochondria, the mitochondrial channel

was pre-processed with a difference of Gaussians where
the foreground image was convolved with a Gaussian
of size 11 and standard deviation 1 and the subtracted
background image with a Gaussian of size 11 and stan-
dard deviation 3 (Mito_DoG). Only pixels above
threshold 3000 in Mito_DoG and an intensity above
5000 in the raw mitochondrial channel were considered
as foreground pixels. The mitochondrial mask was
defined by removing connected components with less
than 10 pixels. Mitochondrial morphometrics were
quantified as previously described.19 Additional data on
mitochondrial network can be consulted in Zanin
et al.20

Mitorosella Sensor, Generation of the Lines,
Image Acquisition and Analysis

The generation of the lines carrying the Rosella
reporter was performed as previously described.21

Briefly, the tandem fluorescent proteins consisting of pH
sensor fluorescent protein pHluorin (F64L, S65T,
V193G, and H231Q) and DsRed were fused to the
entire open reading frame of ATP5C1 serving as a mito-
chondrial targeting sequence, and placed in between the
homology arms targeting the AAV1 safe harbour22

(Addgene plasmid #22075). A double-strand break for

triggering homologous recombination was performed
with the px33023 (Addgene plasmid #42230) carrying
the sgRNA targeting sequence for the safe harbor as
described by Mali et al.24 SmNPC from patients (VPS35
1_2) and control individuals (Control 1) were nucleo-
fected (P3 Primary Cell 4D-Nucleofector, V4XP-3024;
Lonza, Basel, Switzerland) with both constructs and
expanded before purification by fluorescence-activated
cell sorting (FACS) (Aria III; Beckton Dickinson, Frank-
lin Lakes, NJ).
Images were obtained on an Opera QEHS confocal

spinning disk microscope (Perkin Elmer, Waltham, MA)
with a 60× water immersion objective (NA = 1.2).
pHluorin was excited with a 488 nm laser and
detected on camera 1 behind a 520/35 bandpass fil-
ter, while DsRed was excited with a 561 nm laser
and detected on camera 2 behind a 600/40 bandpass
filter. A 568 dichroic mirror split the light towards
the corresponding cameras. Both fluorescent channels
were acquired simultaneously with a binning setting
of 2. One plane and 15 fields per well were acquired.
One pixel corresponds to 0.2152 μm. Differentiated
neurons were maintained under normal incubation
conditions (37�C, 5% CO2, and 80% humidity)
within the microscope in between and during the dif-
ferent acquisition time points.
The automated image analysis was performed

through a series of pre-processing and thresholds in
MATLAB (The MathWorks, Inc., Natick, MA) as pre-
viously described.21 Briefly, a difference of Gaussian of
convoluted foreground and background images was
used for detecting all the events in the field. For classify-
ing the events either as a mitochondrial or mitophagic
event, a combination of green to red fluorescence ratio
analysis and morphological filtering based on difference
of Gaussians thresholding was used. Those presenting
a mean ratio value below 0.6 were classified as
mitophagic events.

Flow Cytometry
Neurons were detached with Accutase (Sigma,

Bornem, Begium) and centrifuged at 300 g for
3 minutes. Batches of 200,000 cells were then incubated
in the dye or in the buffer (unstained). MMP was
assessed by staining the single-cell suspension with
200 nM tetramethylrhodamine ethyl ester (TMRE; Invi-
trogen) for 30 minutes at 37�C. To correct for mito-
chondrial mass, MitoTracker Green FM (Invitrogen)
was used as a counterstaining. For mitochondrial ROS,
the single-cell suspension was stained with 2 μM
MitoSOX Red (Invitrogen) for 15 minutes at 37�C with-
out CO2. Cells were analyzed with the BD LSRFortessa
flow cytometry analyser and the mean fluorescence
intensity of each dye was assessed on at least 20,000 sin-
gle cells by using FlowJo LLC software. Mean
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fluorescence of the unstained cells was subtracted to
account for autofluorescence.

Oxygen Consumption Rate Measurement
Oxygen consumption rate (OCR) was measured in

whole cells using the Seahorse XFe96 Cell Metabolism
Analyser (Agilent, Diegem, Belgium). Neurons were
plated in the Seahorse XFe96 well plates 24 hours
prior to measuring at a density of 80,000 cells per well.
The concentrations of mitochondrial toxins used were
optimized for neurons according to the manufacturer’s
recommendations. The final concentrations of toxin
used were: oligomycin (oligo) - 2 μM; FCCP - 250 nM;
antimycin A (AA), and rotenone (rot) - 5 μM. The
cells of each well were lysed with radioimmuno-
precipitation assay (RIPA) buffer after the experiment

and the OCR of each well was corrected for protein
amount.Statistics
Statistical analyses were performed with GraphPad

Prism. The statistical analyses performed and the
P value of each experiment can be found in the legend
of the figures.

Data Availability
The authors confirm that the data supporting the

findings of this study are available within the article
and its supplementary material.

Results
Clinical Phenotype of p.D620N VPS35 Patient
The male patient donor case #2610 comes from a

multi-incident family #445 reported previously from

FIG. 1. No difference in neuronal morphology and network nor in levels of VPS35 and VPS29 proteins between patient and control induced pluripotent
stem cell (IPSC)-derived neurons. (A) Representative images of immunofluorescence staining show expression of tyrosine hydroxylase (TH), class III
β-tubulin (Tuj1), and nuclear DAPI in IPSC-derived neurons. (B) Fluorescence-activated cell sorting (FACS) analysis of neuronal culture revealed no dif-
ference in terms of percentage of dopaminergic neurons (TH+) among all neurons (Tuj1+) in control- and patient-derived neuronal cultures after 30 days
of maturation (n = 4). (C) Analysis of the neuronal network by comparison of neurite length (skeleton) and number of branchpoints shows similar com-
plexity between control- and patient-derived neurons. Values represent pixel count of skeleton or branchpoint normalized to the pixel count of the
respective neuronal mask (n = 4). (D,E) Western blot analysis of VPS35 (D), VPS29 (E), and β-actin (loading control) show no difference in protein levels
between control (Control 1 and 2) and VPS35 D620N mutant (VPS35 clones 1_1 and 1_2) neurons under basal culture condition. Values normalized to
Control 1 (n = 4–6). [Color figure can be viewed at wileyonlinelibrary.com]
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the Queensland Parkinson’s Project,25 that immigrated
from Western Europe. Besides the index patient, the
diagnosis of PD was made in his mother and maternal
grandfather but no additional family members are
known to be affected. The diagnosis of PD was made
by a movement disorders neurologist after a 1-year his-
tory of muscular rigidity and tremor. The PD-related
motor symptoms responded well to levodopa therapy.
The index patient underwent deep brain stimulation
6 years after diagnosis after experiencing motor fluctua-
tions with good treatment response.

VPS35 and VPS29 Levels are Unchanged in
p.D620N VPS35 Patient-Derived Neurons

Previous studies have reported that VPS35 protein
levels did not change in cells carrying mutant VPS35.8

The p.D620N mutation in VPS35 has been shown not
to impair its binding to the other components of the
retromer.10 To investigate the levels of retromer com-
ponents we differentiated iPSC from the index patient
(VPS35 1_1 and 1_2)26 and two age- and gender-
matched controls (Control 1 and 2) into smNPC.18All
iPSC and smNPC clones were fully characterized in
this study (Figs. S1–S3) or elsewhere.26 We success-
fully differentiated these smNPC into physiologically
active neurons expressing the neuronal marker Tuj1
(tubulin β3), enriched in dopaminergic neurons
expressing tyrosine hydroxylase (TH) (Figs. 1A and
S4A-H).18 No difference was observed in terms of
neuronal differentiation efficiency (Figs. 1B and S4A,
B) or neuronal network complexity between control-
and patient-derived lines (Figs. 1C and S4D). We
identified by western blotting that protein levels of
both retromer components VPS35 and VPS29 were
unchanged between control- and patient-derived neu-
rons (Fig. 1D,E).

p.D620N VPS35 Patient-Derived Neurons
Display Mitochondrial Dysfunction

To evaluate the mitochondrial network, we analyzed
Z-stack images from two controls and two clones of
patient-derived neurons stained with MitoTracker
Green FM (Fig. 2A). Computational analyses revealed
a decrease in mitochondrial size representative of
fragmentation (Fig. 2B). Moreover, mitochondrial
branching as a readout for connectivity within the
mitochondrial network was impaired with a decreased
average number of links (Fig. 2C) and nodes (Fig. 2D).
The identification of these morphological alterations

observed in patient-derived neurons led us to assess the
mitochondrial function. We measured the bioenergetic
profile and found a decreased MMP in patient-derived
neurons compared to controls (Fig. 2E). The reduced
MMP was accompanied by an increase of intra-
mitochondrial ROS compared to controls (Fig. 2F).

Subsequently, mitochondrial respiration was assessed
by recording the OCR while we applied mitochondrial
stressors: oligomycin, FCCP, antimycin A, and rote-
none to measure different respiratory parameters
(Fig. 2G). We found that neurons carrying the p.
D620N VPS35 mutation displayed a reduced basal and
maximal respiration, reduced spare respiratory capac-
ity, and non-mitochondrial oxygen consumption
(Fig. 2H). This was associated with a significantly
reduced ATP production in patient-derived neurons
compared to controls.

VPS35 D620N Patient-Derived Neurons Show
an Impaired Mitochondrial Clearance

As patient neurons present morphologically and func-
tionally altered mitochondria, we hypothesized that
mitochondrial mass, biogenesis, and clearance (ie,
mitophagy) might be dysregulated. We found no differ-
ence in mitochondrial mass between patient and control
neurons as defined by western blotting against the mito-
chondrial proteins TOM20 (Fig. 3A) and VDAC1
(Fig. 3B). Moreover, protein expression levels of
PGC1α (Fig. 3C), the master regulator of mitochondrial
biogenesis, were unchanged in patient-derived neurons
under basal conditions.
In order to study mitophagy, Control 1 and VPS35

1_2 cell lines underwent CRISPR-Cas9 gene engineering
as iPSC-derived smNPC to express a mitochondrial
fusion protein: ATP5C1-DsRed-pHluorin. Briefly, when
mitochondria are in the cytoplasm, both fluorophores are
functional. Once mitochondria are exposed to an acidic
environment inside the autophagosome (mitophagic
event) the green fluorescence will be quenched (Fig. 3D).
To induce mitophagic events, we treated the gene-edited
neurons with CCCP and acquired images from the same
field of view at different time points: t = 0, 3, 8, and
24 hours. In control neurons (Fig. 3E), the number of
mitochondria inside autophagosomes increased signifi-
cantly after 3 hours CCCP treatment. After 8 hours and
further after 24 hours of CCCP treatment, the number of
mitochondria inside autophagosomes were decreasing,
showing an efficient clearance. In the patient-derived neu-
rons harbouring the p.D620N VPS35 (Fig. 3F), the num-
ber of mitochondria inside autophagosome also increased
significantly after 3 hours of CCCP treatment. After
8 hours and 24 hours, the number of mitochondria inside
autophagosomes failed to decrease and stayed elevated,
indicating a deficient clearance (Fig. 3G). Under basal
conditions (t = 0), we see no significant differences in the
number of mitochondria inside autophagosomes between
patient and control neurons. In addition, after 3 hours of
CCCP treatment there was no difference in the number
of mitochondria inside autophagosomes between patients
and controls (Fig. 3G), indicating that the induction of
mitophagy was not impaired in patient neurons.
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However, the difference between patient and control cells
becomes significant at 8 hours and 24 hours, as the num-
ber of mitochondria inside autophagosomes decreased in
control-derived neurons and stayed elevated in patient-
derived neurons.

Lysosomal Clearance Dysfunction and
α-Synuclein Accumulation in p.D620N VPS35

Patient-Derived Neurons
The link between the retromer and macroautophagy

has been identified by the sorting of ATG9, an

FIG. 2. Mitochondrial dysfunction in VPS35 mutant induced pluripotent stem cell (IPSC)-derived neurons. (A) Representative image of mitochondria stained
with MitoTracker Green FM and evaluation of mitochondrial size (B), average links per mitochondrion (C), and average nodes per mitochondrion (D) in con-
trol (Control 1 and 2) and VPS35 D620N mutant (VPS35 clones 1_1 and 1_2) neurons in culture medium without antioxidants (without B27 and ascorbic
acid) for 24 hours (n = 4). (E) Mitochondrial membrane potential measured by tetramethylrhodamine ethyl ester (TMRE) mean fluorescence intensity and (F)
mitochondrial reactive oxygen species measured by MitoSOX mean fluorescence intensity by flow cytometry in control (Control 1 and 2) and VPS35 D620N
mutant (VPS35 clones 1_1 and 1_2) neurons in culture medium without antioxidants (without B27 and ascorbic acid) for 4 hours (n = 4). (G) Mean average
oxygen consumption rate (OCR) of control (Control 1 and 2) and VPS35 D620N mutant (VPS35 clones 1_1 and 1_2) neurons over a time course. Measure-
ment of basal OCR is followed by the addition of oligomycin (oligo) 2 μM final concentration, FCCP 250 nM final concentration, and antimycin A (AA) 5 μM
final concentration and rotenone (rot) 5 μM final concentration (n = 4). (H) Calculated basal respiration, maximal respiration, spare respiratory capacity, pro-
ton leak, ATP production, and non-mitochondrial oxygen consumption (n = 4). All statistical tests were Mann–Whitney tests to compare groups. Error bars
show standard deviation and ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 3. Mitophagy clearance impairment in VPS35 mutant induced pluripotent stem cell (IPSC)-derived neurons after CCCP (carbonyl cyanide
3-chlorophenylhydrazone) treatment. (A,B,C) Western blot analysis of TOM20 (A), VDAC (B), PGC1α (C), and β-actin (loading control) of control (Control
1 and 2) and VPS35 D620N mutant (VPS35 clones 1_1 and 1_2) neurons under basal culture condition (n = 4). (D) Representative image of mitochon-
dria and mitophagy events under CCCP treatment over a time course. The scale bar represents 20 μm. Calculated mitophagic events by mitochondria
count in Control 1 (E) and mutant VPS35 1_2 (F) from three independent differentiations of control (Control 1) and VPS35 D620N mutant (VPS35 clone
1_2) neurons expressing ATP5C1-RFP-pHluorin protein in culture medium without antioxidants (without B27 and ascorbic acid) and treated with CCCP
10 μM for 0, 3, 8, and 24 hours. Each time point is compared with the previous one (n = 3). (G) Comparison of both lines. All statistical tests were
Mann–Whitney tests or one-way ANOVA followed by Sidak’s multiple comparisons tests to compare groups and conditions. Error bars show standard
deviation and ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. [Color figure can be viewed at wileyonlinelibrary.com]
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important protein for induction of autophagy with the
retromer.27 Additionally, in cells overexpressing the
mutant p.D620N VPS35 it was shown that ATG9 was
missorted, which is thought to lead to impaired
autophagy.8 Here, we measured the steady-state level
of the autophagy protein p62 (Fig. 4A), which was not
differing between patient and control-derived neurons.
Upon treatment with Bafilomycin A1, which blocks
autophagy by inhibiting the lysosomal v-ATPase, p62
was accumulating in the controls, as shown by an
increase compared to the untreated state. However,
p62 did not significantly increase in the patient neurons

after Bafilomycin A1 treatment, showing an impaired
autophagic flux. Moreover, compared to control-derived
neurons, we found reduced Lamp1 and Lamp2 steady-
state protein levels in the patient neurons (Fig. 4B),
suggesting a lower late-endosome/lysosome mass com-
pared to controls. This decrease in Lamp1 and Lamp2
levels was accompanied by the presence of smaller lyso-
somes in patient-derived neurons, while the number of
lysosomes was comparable between groups (Fig. 4C).
This reduction in content and size of lysosome is imply-
ing an impaired functionality13 which is also revealed
by a decreased intensity of the acidotropic probe,

FIG. 4. Impaired lysosomal clearance and α-synuclein accumulation in VPS35 mutant induced pluripotent stem cell (IPSC)-derived neurons. (A) Western
blot analysis of p62 and β-actin (loading control) in control (Control 1 and 2) and VPS35 D620N mutant (VPS35 clones 1_1 and 1_2) neurons under
basal culture condition and Bafilomycin A1 (BafA1) 100 nM treatment for 24 hours (n = 5). (B) Western blot analysis of Lamp1, Lamp2, and β-actin
(loading control) in control (Control 1 and 2) and VPS35 D620N mutant (VPS35 clones 1_1 and 1_2) neurons under basal culture condition (n = 4). (C)
Left: evaluation of lysosomal size and number by LysoTracker staining in control (Control 1 and 2) and VPS35 D620N mutant (VPS35 clones 1_1 and
1_2) neurons under basal culture condition (n = 3). Right: representative images of lysosomes stained with LysoTracker Deep Red (white). Nucleus are
stained with Hoechst. (D) Evaluation of LysoTracker Deep Red staining intensity in control (Control 1 and 2) and VPS35 D620N mutant (VPS35 clones
1_1 and 1_2) neurons under basal culture condition and mild stress (antioxidant removal) (n = 3). (E) Western blot analysis of α-synuclein (α-syn) and
β-actin (loading control) in control (Control 1 and 2) and VPS35 D620N mutant (VPS35 clones 1_1 and 1_2) neurons under basal culture condition
(n = 4). (F) Time-resolved fluorescence energy transfer (TR-FRET) measurement of total α-synuclein (α-syn) amount in control (Control 1 and 2) and
VPS35 D620N mutant (VPS35 clones 1_1 and 1_2) neurons under basal culture condition (n = 4). All statistical tests were Mann–Whitney tests or one-
way ANOVA followed by Sidak’s multiple comparisons tests to compare groups and conditions. Error bars show standard deviation and *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001. [Color figure can be viewed at wileyonlinelibrary.com]

Movement Disorders, Vol. 36, No. 3, 2021 711

M I T O C H O N D R I A L I M P A I R M E N T I N V P S 3 5 P A T I E N T - D E R I V E D N E U R O N S

http://wileyonlinelibrary.com


LysoTracker, in patient-derived neurons when exposed
to mild oxidative stress (antioxidant removal) (Fig. 4D)
as already described in other genetic models of PD.28

The impaired lysosomal clearance was accompanied
by an increase of the amount of α-synuclein in patient-

derived neurons as demonstrated by western blotting
for the monomeric form of α-synuclein (Fig. 4E)
and validated by time-resolved fluorescence energy
transfer (TR-FRET) assessing total α-synuclein amount
(Fig. 4F).

FIG. 5. Autophagy enhancement and α-synuclein knockdown are not sufficient to alleviate mitochondrial dysfunction. (A,B) Western blot analysis of
Lamp1 (A) and α-synuclein (B) of control and VPS35 D620N mutant neurons after 24 hours of treatment with DMSO (50 nM) or rapamycin (25 or 50 nM)
(n = 5). Values are normalized to DMSO-treated line respectively. (C) Mitochondrial membrane potential measured by tetramethylrhodamine ethyl ester
(TMRE) mean fluorescence intensity, (D) mitochondrial reactive oxygen species measured by MitoSOX mean fluorescence intensity, and (E) mitochon-
drial mass measured by MitoTracker Green FM mean fluorescence intensity by flow cytometry in control and VPS35 D620N mutant neurons after
24 hours of treatment with DMSO (50 nM) or rapamycin (25 or 50 nM) (n = 5). Values are normalized to DMSO-treated Control 1. (F) Mitochondrial
membrane potential measured by TMRE mean fluorescence intensity and (G) mitochondrial reactive oxygen species measured by MitoSOX mean fluo-
rescence intensity by flow cytometry in control and VPS35 D620N mutant neurons transduced with scramble shRNA and shRNA against α-synuclein
(n = 3). Values are normalized to scramble transduced line respectively. All statistical tests were Mann–Whitney tests or one-way ANOVA followed by
Sidak’s multiple comparisons tests to compare groups and conditions. Error bars show standard deviation and *P < 0.05; **P < 0.01. [Color figure can
be viewed at wileyonlinelibrary.com]
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α-Synuclein Accumulation is not the Main
Cause of Mitochondrial Impairment in pD620N

VPS35 Neurons
In patient-derived neurons carrying a triplication of the

SNCA gene locus, extensive mitochondrial defects are
found.29, 30 Consequently, we hypothesized that the
mitochondrial impairment seen in our patient-derived
neurons could be due to both a general impairment of
the autophagy machinery and to α-synuclein accumula-
tion. Therefore, we used a pharmacological approach to
rescue autophagy with rapamycin.31 Rapamycin has been
shown to increase lysosomal biogenesis and to enhance
mitophagy in cellular models of PD.32, 33 After 24 hours
of treatment, Lamp1 levels were increased in both
control- and patient-derived neurons (Fig. 5A) and this
led to a moderate decrease of α-synuclein levels in
patient-derived neurons (Fig. 5B). We evaluated the effect
of this treatment on mitochondrial dysfunction but did
not observe a rescue of the decreased MMP nor of the
increased ROS levels in patient-derived lines (Fig. 5C,D).
Of note, mitochondrial mass was not affected (Fig. 5E),
which shows that rapamycin did not enhance basal
mitophagy in these experimental conditions. We hypothe-
sized that a more efficient decrease of α-synuclein levels
might influence the mitochondrial impairment. We
knocked-down α-synuclein in both control- and patient-
derived neurons with shRNA against SNCA.34 After
transduction, we detected a reduction of the levels of
α-synuclein in patient-derived neurons to the physiologi-
cal levels of α-synuclein (Fig. S5A,B). Using the same
technique as previously, we found that the reduction of
α-synuclein protein levels did not rescue the loss of MMP
(Fig. 5F) nor the increased ROS level (Fig. 5G).

Discussion

The increasing importance of endosomal trafficking
pathways in PD pathogenesis has been widely recog-
nized besides established pathways such as mitochon-
drial impairment, lysosomal dysfunction, protein
aggregation, and synaptic dysfunction.35 Indeed,
numerous PARK genes (DNAJC13, LRRK2, and
SNCA) are implicated in this pathway and there is a
growing interest in finding other disease-relevant
endosomal trafficking genes.36

VPS35 deficiency has been previously linked to
mitochondrial and lysosomal clearance impairment in
multiple cellular models such as dopaminergic neurons
from mice carrying a heterozygous loss of VPS35, rat
cortical neurons overexpressing p.D620N VPS35, and
patient fibroblasts carrying the p.D620N VPS35
mutation. These studies consistently report fragmented
mitochondria with decreased MMP and impaired respira-
tion.14-16 Moreover, decreased autophagic flux together
with impaired cathepsin D and Lamp2a trafficking was

also previously described in other models.5 In this study,
we demonstrate for the first time in patient-specific iPSC-
derived neurons that the PD-causing mutation p.D620N
in VPS35 leads to fragmented and impaired mitochon-
dria with decreased size and branching, decreased mem-
brane potential, increased mitochondrial ROS, and
dysfunctional respiration (Fig. 2). These defects were
linked to dysfunctional mitochondrial clearance with
accumulation of mitophagic events under mitochondrial
stress without completion of the full mitophagic process
(Fig. 3). Lysosomal clearance was also more globally
impaired with decreased autophagic flux, decreased late-
endosome/lysosome mass and size, and impaired acidifi-
cation (Fig. 4A–D). Possibly linked to the lysosomal dys-
function, we observed an accumulation of α-synuclein in
patient-derived neurons (Fig. 4E,F).
We hypothesize that mitochondrial impairment in

iPSC-derived neurons carrying the p.D620N VPS35
mutation is caused by a substantially impaired mito-
chondrial quality control linked to a more general
autophagy defect. Improving autophagic function by
rapamycin treatment reduced α-synuclein levels in
patient-derived neurons, showing the involvement of
lysosomal dysfunction in α-synuclein accumulation, but
the mitochondrial dysfunction remained (Fig. 5A–D).
As it is known that the induction of autophagy via
rapamycin is only mild in mammalian cells, for exam-
ple, compared to yeast cells,37 we used a more stringent
reduction of α-synuclein levels via RNA knockdown.
However, also this was not sufficient to significantly
improve mitochondrial function (Fig. 5F,G) and shows
that α-synuclein accumulation is not the main cause of
mitochondrial impairment in p.D620N VPS35 neurons.
Further pharmacological and genetic modification of

the lysosome, as well as alternative organellar degrada-
tion pathways, may help to better understand the link
between lysosomal dysfunction and mitochondrial
impairment. Indeed, previous studies also reported that
VPS35 and the retromer are involved in an alternative
subtype of mitochondrial quality control, via the for-
mation of mitochondria-derived vesicles (MDVs).38

Two cargos have been identified trafficking towards the
lysosome or the peroxisome for degradation, namely
Drp114 and MAPL (mitochondrial-associated protein
ligase).15,38 MAPL is known to stabilize Drp1, a mito-
chondrial fission protein, and degrade Mfn2, a mito-
chondrial fusion protein. By trafficking both proteins,
VPS35 seems to stabilize the mitochondrial network in
a fused state. In cells overexpressing p.D620N VPS35,
the retromer does not correctly transport Drp1 and
MAPL, which leads to increased MAPL and Drp1 pro-
tein levels and a decreased Mfn2 protein level. This
subsequently leads to a fragmented mitochondrial
network,14,15 also observed in patient-derived neurons
in our study. Interestingly, treatment of cells over-
expressing p.D620N VPS35 and patient fibroblasts
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carrying the p.D620N VPS35 variant with Mdivi1, a
Drp1 inhibitor, rescues the mitochondrial functional
impairment.14,16 This suggests that mitochondrial func-
tional impairment is at least in part caused by the mis-
trafficking of Drp1 and MAPL by the retromer-
containing mutant p.D620N VPS35.
Although providing evidence for novel cellular phe-

notypes related to mutant VPS35 in patient-derived
neurons, our study has limitations towards the specific-
ity of these findings for the dopaminergic pathway. In
order to directly assess a specific role of mutations of
VPS35 on dopaminergic neurons, single-cell analyses of
these neurons within a mixed culture including glial
cells or a cell-sorting of dopaminergic neurons for
enrichment prior to experiments would allow evalua-
tion of the specific contribution of these observed cellu-
lar phenotypes for dopaminergic neurons. Previous
findings on iPSC-derived neurons with heterozygous
VPS35 mutations39 suggested that the p.D620N VPS35
mutation acts by a loss-of-function mechanism, while
animal models using overexpression of human mutant
VPS35 tend to support a toxic gain-of-function or a
dominant-negative mechanism.40,41 The present data
show conserved levels of VPS35 protein and suggest an
impairment of physiological functions of VPS35. The
next steps to better qualify the p.D620N mutation
would include the investigation of the described pheno-
types on a larger panel of patient-derived VPS35
D620N lines as well as overexpression of the wild-type
and mutant protein in different cell types. Also, the
inclusion of isogenic controls would allow dissection of
the specific contribution of the p.D620N VPS35 muta-
tion within the individual genetic background of the
controls and the patient, which may influence the dis-
ease phenotype by itself. Taken together, our findings
provide the first evidence for mitochondrial impair-
ment, lysosomal degradation defects, and α-synuclein
accumulation in patient-derived neurons, which con-
firm the implication of the p.D620N VPS35 mutation
in the typical pathophysiology of PD.
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