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Abstract: Long term effect of testosterone (T) deficiency impairs metabolism and is associated with
muscle degradation and metabolic disease. The association seems to have a bidirectional nature and
is not well understood. The present study aims to investigate the early and unidirectional metabolic
effect of induced T changes by measuring fasting amino acid (AA) levels in a human model, in
which short-term T alterations were induced. We designed a human model of 30 healthy young
males with pharmacologically induced T changes, which resulted in three time points for blood
collection: (A) baseline, (B) low T (3 weeks post administration of gonadotropin releasing hormone
antagonist) and (C) restored T (2 weeks after injection of T undecanoate). The influence of T on AAs
was analyzed by spectrophotometry on plasma samples. Levels of 9 out of 23 AAs, of which 7 were
essential AAs, were significantly increased at low T and are restored upon T supplementation. Levels
of tyrosine and phenylalanine were most strongly associated to T changes. Short-term effect of T
changes suggests an increased protein breakdown that is restored upon T supplementation. Fasting
AA levels are able to monitor the early metabolic changes induced by the T fluctuations.

Keywords: testosterone; protein breakdown; gluconeogenesis

1. Introduction

In healthy males, catabolic (tissue breakdown) and anabolic (tissue repair) processes
are in balance throughout the diurnal cycle to maintain muscle mass [1]. Skeletal muscle
is the main source of protein for catabolism during energy shortage, caused by fasting
or exercise [2]. Gluconeogenesis can provide energy in catabolic states utilizing amino
acids (AAs).

Because essential AAs cannot be endogenously synthesized, they are good tracers
of protein turnover, which is the synthesis and breakdown of proteins [3,4]. Particu-
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larly, Branched Chain Amino Acids (BCAAs) and aromatic AAs have been extensively
studied [5–7]. BCAAs include isoleucine (Ile), leucine (Leu) and valine (Val), and are
preferentially degraded in muscle tissue [8]. The aromatic AAs include tryptophan (Trp),
tyrosine (Tyr) and phenylalanine (Phe), of which Phe and Tyr cannot be synthesized or
degraded in muscles. They can only be degraded in the liver meaning that Phe and Tyr can
be used to monitor the net rate of protein degradation [8].

Testosterone (T) has a highly complex metabolic effect on the major tissues involved
in insulin action, such as the liver, fat and muscle tissues [2,9,10]. Research suggests that
long-term T deficiency causes metabolic changes, such as favoring net protein breakdown
resulting in decreased muscle mass. Short- and long-term effects of T supplementation
suggest an increased rate of protein synthesis [1]. T has been shown to increase glucose
transport via upregulation of GLUT4 expression, facilitating insulin signaling by increasing
expression of insulin receptor substrate 1 and 2, and increasing glycogen synthesis by
raising the activity of glycogen synthase in skeletal muscle. Additionally, increased adipose
mass, reduced insulin sensitivity, impaired glucose tolerance, elevated triglycerides and
cholesterol, and low HDL-cholesterol are all symptoms of metabolic syndrome and are all
also associated with T deficiency [10].

Previously, we have designed a human model with 30 healthy young males, with
induced abrupt T fluctuations without interference of T related comorbidities. The model
yields plasma from three time points: baseline, low T and restored T [11]. This enables
us to study the possible T effects on protein turnover and the causality in development
of comorbidities. Thus, monitoring fasting plasma AA levels in response to changes in
T levels in the healthy human model could provide evidence to the early unidirectional
effects of T changes before the appearance of comorbidities and clues to the pathogenesis
and consequences of T deficiency. We hypothesize that metabolic changes occur with
short-term T alterations and therefore aim to detect a change in fasting plasma AA levels
in healthy young men with pharmacologically induced alterations in T levels.

2. Materials and Methods
2.1. Subjects and Study Outline

Thirty healthy male volunteers of 23.9 years (19–32 years) with BMI 23 (19.1–26.9 kg/m2),
were subjected to T deprivation by subcutaneous administration of 240 mg of gonadotropin
releasing hormone antagonist (Degaralix®, Ferring Pharmaceuticals). After 3 weeks,
1000 mg of T undecanoate (Nebido®, Bayer Pharmaceuticals) were given intramuscu-
larly to restore T levels. Blood was collected at three-time points (A) baseline, (B) low T
(3 weeks after Degaralix®) and (C) restored T (2 weeks after Nebido®).

The study was approved by the Swedish Ethical Review Authority (Approval number:
DNR 2014/311, date of approval 8 May 2014). Inclusion criteria were 19–32 years of age,
healthy, BMI 20–25 kg/m2, non-smoker or occasional smoker. Exclusion criteria included
regular medication, exposure to anabolic steroids, drugs of abuse used within the last
year or ever presenting with a stroke, heart and liver disease, cancer or any other chronic
disease [11]. The samples were collected from subjects in fasting condition, aliquoted and
stored at −80 ◦C. The cycle time from sample collection to storage was below two hours to
maintain sample integrity [12]. For an overview of the model and samples handling, see
Figure 1. Thirty-eight well-known biomarkers were previously reported, including time
point measurements of T, follicular stimulating hormone and luteinizing hormone [11].
The concentrations of the reproductive hormones at the three time points can be viewed in
Table 1.
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Figure 1. An overview of the pharmacologically induced testosterone (T) states with three time
points: (A) baseline (B) Low T (due to chemical castration) and (C) Restored T. Blood collected from
each time point was aliquoted and stored in −80 ◦C prior to analysis within a cycle time of two hours.

Table 1. Basic parameters of 30 healthy male subjects at different time points of the model * showing
mean and standard deviation: (A) baseline, (B) low T and (C) restored T. T was low in B and high in
C; whereas, follicular stimulating hormone (FSH) and luteinizing hormone (LH) were low in both B
and C.

Parameter Baseline (A) Low T (B) Restored T (C)

T (nmol/L) 19.97 ± 5.7 0.71 ± 0.3 37.39 ± 11.1
FSH (IU/L) 3.09 ± 1.7 0.15 ± 0.1 0.14 ± 0.1
LH (IU/L 4.99 ± 1.6 0.14 ± 0.1 0.14 ± 0.1

* Results are from our previous publication on the human model [11].

2.2. Amino Acid Analysis

The plasma collected from the fasting healthy subjects was analyzed at the Clinical
Chemistry Laboratory at Skåne university hospital in Malmö, Sweden. One sample was
not available in the biobank and was not included for further analysis. Briefly, internal
standards were added to the plasma samples after which the proteins were precipitated
with sulfosalicylic acid and the pH was adjusted with lithium hydroxide. The free AAs
were analyzed automatically on a Biochrome 30+ AA analyzer (Biochrom Ltd., Cam-
bridge, England). The ninhydrin complexes of the individual AAs were quantified by
spectrophotometry at 570 and 440 nm. The AAs were identified by their retention times.
The concentration was automatically calculated by the integration program. The AA stan-
dards used were basic (A6282 Sigma-Aldrich, Darmstadt, Germany) and acidic and neutral
(A6407 Sigma-Aldrich) as well as L-glutamine (56-85-9 Sigma-Aldrich, Darmstadt, Ger-
many). Twenty-three AAs were measured in the protocol: alanine (Ala), α-aminobutyrate
(Aaba), arginine (Arg), asparagine (Asn), aspartate (Asp), citrulline (Citr), cysteine (Cys),
glutamine (Glu), glycine (Gly), histidine (His), Ile, Leu, lysine (Lys), methionine (Met),
3-methylhistidine (3-Mhis), ornithine (Orn), Phe, serine (Ser), taurine (Taur) threonine
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(Thr), Trp, Tyr, and Val. Confidence intervals for the measurements can be found in the
supplementary material (Table S1: Low, high, SD and CI for the amino acids).

2.3. Statistical Analysis
2.3.1. Monitoring Free Amino Acids across Time Points with Testosterone Fluctuations

Concentrations of AAs were first log2 transformed in order to attempt a normal
distribution. Time points were compared by one-way paired ANOVA test (R function:
ezANOVA{ez}) for the AAs with normal distribution. For the AAs with non-normal
distribution the non-parametric Friedman rank sum test was applied. The list of p-values
obtained for each AA was adjusted (q-value) to control the false discovery rate (FDR)
(‘fdr’ method). To detect specific statistically significant changes between time points the
ANOVA and Friedman rank sum tests were followed by post hoc pairwise tests based on
paired Student’s t-test (two-tails) and Wilcoxon rank test respectively for 29 participants.
P-values obtained from pairwise analyses were adjusted to control Type I errors from
multiple comparisons, in which adjusted (FDR) p-values < 0.05 were considered significant.
As a complementary analysis, we used the 95% confidence intervals (CIs) [13] of the mean
of the differences between time points to confirm previous analyses. The change was
considered to be statistically significant if the CI did not include zero.

2.3.2. Modeling the Best Amino Acids in Response to Testosterone Fluctuations

To select the best AAs that reflect the effects of T changes on fasting plasma AA
levels, we performed a stepwise-binomial logistic regression (method: backward). We
tested all possible combinations of AAs influenced by T changes to discriminate group
B (low T) from group A and C (baseline and restored T). A Bootstrap resampling with
replacement method was applied to assess the consistency of the predictors selected from
the stepwise-binomial logistic regression (p-value < = 0.05 for acceptance). The model was
derived from the predicted log-odds (of being low T) obtained from a binomial logistic
regression analysis, in which the dichotomized variable ‘testosterone level’ (0: normal T
(time points A, C) and 1: low T (time point B)) was used as the dependent variable and
the expression of the selected AAs from the stepwise regression were the variables of the
predictors. All analyses described in this part were performed in R software (stepAIC
{MASS}; boot.stepAIC {bootStepAIC}).

3. Results

Fifteen out of 23 AAs had significant overall changes represented by q-values less than
0.05: Asn, Asp, Arg, Cys, Glu, His, Leu, Lys, Met, Phe, Ser, Taur, Trp, Tyr, and Val (Table S2:
All statistical results). The change in reproductive hormones can be viewed in Table 1. T
exhibits a significant difference between B-A and C-B, whereas luteinizing hormone and
follicular stimulating hormone only change significantly between A-B and remain at low
levels in both time point B and C.

3.1. Amino Acids Significantly Changed by Testosterone

Nine out of 15 AAs that had significant overall changes were specifically affected by T
changes, because they significantly increased with low T and restored upon T supplemen-
tation. These AAs include Asn, Val, Met, Leu, Tyr, Phe, Lys, His, and Trp (Table 2). Seven
out of nine AAs that significantly changed with T were essential AAs, meaning that all but
two essential AAs changed (i.e., Ile and Thr). Tyr and Asn were the only two non-essential
AAs that were significantly affected by T. All changes were corroborated by the analysis of
confidence intervals of the means, in which none of them included zero.
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Table 2. Significant AAs are shown that have at least significant p-values in B-A and C-B, with confidence intervals of
differences in means, and p-values with time point comparisons.

AA q-Value
(FDR < 0.05) CI (B-A) p-Value

(B-A) CI (C-B) p-Value
(C-B) CI (C-A) p-Value

(C-A)

Asn <0.001 a 0.117
<0.05

−0.229
<0.0001

−0.112
<0.05(0.011; 0.222) (−0.34; −0.119) (−0.198; −0.027)

Val e <0.001 b 0.159
<0.01

−0.323
<0.001

−0.146
<0.05(0.073; 0.23) (−0.47; −0.187) (−0.278; −0.015)

Met e <0.0001 b 0.215
<0.001

−0.448
<0.001

−0.253
<0.01(0.123; 0.314) (−0.589; −0.321) (−0.379; −0.082)

Leu e <0.0001 b 0.191
<0.001

−0.376
<0.0001

−0.191
<0.01(0.136; 0.24) (−0.508; −0.264) (−0.286; −0.086)

Tyr <0.0001 b 0.286
<0.0001

−0.615
<0.0001

−0.281
<0.001(0.211; 0.413) (−0.737; −0.492) (−0.393; −0.18)

Phe e <0.0001 b 0.249
<0.0001

−0.547
<0.0001

−0.291
<0.0001(0.196; 0.303) (−0.623; −0.473) (−0.363; −0.223)

Lys e <0.0001 b 0.245
<0.0001

−0.431
<0.0001

−0.214
<0.01(0.171; 0.319) (−0.567; −0.335) (−0.31; −0.097)

His e <0.0001 a 0.117
<0.01

−0.324
<0.0001

−0.207
<0.0001(0.038; 0.195) (−0.405; −0.243) (−0.277; −0.138)

Trp e <0.0001 b 0.205
<0.001

−0.338
<0.0001

−0.129
<0.05(0.117; 0.302) (−0.423; −0.226) (−0.238; −0.017)

T <0.0001 a −19.262
<0.0001

36.683
<0.0001

17.421
<0.0001(−21.45; −17.075) (32.451; 40.914) (13.004; 21.837)

e = essential amino acid, a = ANOVA test, with adjacent paired t-test for time point comparisons, b = Freidmans test, with adjacent paired
Wilcoxon test for time point comparisons.

The box-plot distribution of the intensities across the time points is shown in Figure 2,
as well as the changes in the individual subjects (represented by each line in the figure).
Levels of all AAs were negatively associated with those of T (Asn, His, Leu, Lys, Met, Phe,
Trp, Tyr, and Val).

3.2. Branched Chain Amino Acids and Aromatic Amino Acids Significantly Changed by
Testosterone

Leu (B-A p < 0.001, C-B p < 0.0001) and Val (B-A p < 0.01, C-B p < 0.001) were the
BCAAs that changed significantly with T changes (Table 2). Tyr (B-A p < 0.0001, C-B
p < 0.0001), Trp (B-A p < 0.001, C-B p < 0.0001) and Phe (B-A p < 0.0001, C-B p < 0.0001)
significantly change with T. Ile was the only BCAA that does not change significantly with
T (B-A p < 0.340, C-B p < 0.390) (Table S2).

3.3. Selected Amino Acids That Best Reflect Changes in Testosterone

The combination of AA levels that best explain the T changes contains Phe and
Tyr, which were selected as significant (p < = 0.05) 77 % and 50 % of times respectively
(by bootstrap resampling procedure) and it was represented by the linear combination:
Time_point = −95.4 + 3.44 Tyr + 12.76 Phe (see Supplementary Results: stepwise-binomial
logistic regression and Bootstrap resampling).
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Figure 2. Box-plots distribution at (A) baseline, (B) low T and (C) restored T for nine AAs that have at least significant
change in B-A and C-B (FDR < 0.05). The AAs are negatively influenced by T: aspargine (Asn), histidine (His), leucine (Leu),
lysine (Lys), methionine (Met), phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), and valine (Val), meaning that they are
increased with low T and restored upon T supplementation. * p < 0.05, ** p < 0.01, *** p < 0.001.
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4. Discussion

Our results clearly suggest an early anabolic effect of T on protein turnover, which can
be measured by changes in fasting plasma AA composition. Seven out of nine AAs that
significantly change with T were essential AAs, such as Phe. Essential AAs are considered
good tracers of protein turnover, because essential AAs are released to produce energy in
the catabolic state [4]. Additionally, Tyr is sometimes considered to be an essential AA as it
is synthesized by irreversible hydroxylation of Phe in the liver. Flux of Phe levels provides
a good representation of whole-body protein breakdown [14,15]. We found that Phe and
Tyr, when combined, better reflect the T effect in the human model.

Previously in the human model (n = 30), alanine aminotransferase and aspartate
aminotransferase, enzymes involved in AA metabolism, and urea, a waste product of
protein breakdown, all changed suggesting that low T induces increased protein break-
down [11]. Furthermore, unbiased proteomic analysis of the same human model yielded
that gluconeogenesis was upregulated during low T, suggesting that low T favored a
catabolic state [16]. The most common source of protein in the fasting state is muscle
tissue [2], therefore the increase in liver markers that are involved in gluconeogenesis
suggests an increased muscle degradation [17]. As this is found in a healthy human
model, the causality of increased AA levels is clear, because the results are not impacted by
confounding factors, such as comorbidities.

To our knowledge, this is the first time that AAs have been studied in relation to
early anabolic effects with induced low T in healthy males with subsequent restoration
with supplemented T. The only other study measuring AAs on healthy subjects, compared
baseline with injected T in seven young healthy males in a five-day interval, and found
a net increase in protein synthesis after injection [18]. Our results support our previous
findings in the human model and suggest that an increase of specific AA levels could
indicate T deficiency and, thereby, enable possible implementation of preventive measures
prior to the onset of metabolic comorbidities, such as insulin resistance and type II diabetes
mellitus (DM2). In addition, several studies suggest that there is a positive influence of
insulin resistance on BCAAs [5–7], and some evidence suggests that the influence is causal.
A longitudinal study on BCAAs and aromatic AAs found that the combination of Ile, Tyr
and Phe gave a five-fold higher risk of future development of DM2 [19].

Most of the AA changes in the present study were observed in previous studies on
hypogonadism or T related disease as well as DM2 [9,19,20]. Notably, Tyr was reported
significantly up regulated in hypogonadal males versus controls, while both Tyr and
Phe were among the best risk predictors of developing DM2 [19]. In contrast, Asn, a
non-essential AA, seemed to reflect the protein breakdown process in the present study.
Interestingly, a previous study comparing diabetic obese men with non-diabetic obese men,
found that fasting insulin levels is also related to Asn levels [20].

A metabolomic study comparing hypogonadal men with matched controls for age
and BMI, found that, similar to our study, Tyr and Lys were negatively associated with
T levels. In contrast, they also found that Ala, Arg and Ser were negatively associated
with T [9], which was not found in the present study. A factor that could account for this
difference is that the subjects in the present study were healthy and were their own controls,
which was not the case in the study by Fanelli et al.

Even though our human model is limited to 30 subjects, it is a considerably larger
number of subjects than most other studies found, which often include under 15 subjects.
A limitation of our study is that potential confounders that affect plasma AA composition
were not standardized, such as subject diet and exercise. However, the blood was drawn in
overnight fasting condition. A study that investigated the variation of AAs in healthy males
with different protein intake and exercise levels, hypothesized that the AAs, especially
essential AAs, would be more variable in the fed state and less variable in fasting state.
Contrarily, the results suggest that Tyr, Met and Leu were the AA markers least affected by
protein intake in the fasting state, while fasting Phe was lower in the high protein group
along with fasting Ser, Ile, and Val [21].
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On the other hand, there is a documented effect of exercise on AA concentration in
plasma [8,22–27]. In general, the change in AA levels depended on the type of exercise
training and individual performance, comparing rest vs exercise time points. The individ-
ual AA changes that vary across studies and comparisons were based on the changes before
and after exercise, with an overnight fasting state as the baseline or control. However,
when comparisons were reported in a longitudinal five-week experiment that involved
11 competitive athletes with fasting overnight AA levels before and after training, most
AAs decreased in plasma levels after the training period, except for Lys, Ser, Asn, Asp, Tyr
and Phe [25].

Taking all together, the studies suggest that plasma AAs are reliable markers over
time to predict metabolic shifts, especially when measured in overnight fasting. Some AAs
seem to be better at withstanding certain differences in lifestyle, which can be difficult
to control in a clinical setting. Additionally, some of the AAs in the present study were
found to have a clear association with long term T deficiency and previous studies found a
similar link between AAs and metabolic diseases. Consequently, this analysis supports the
evaluation of T driven influence on AA levels, particularly Phe and Tyr. These may serve as
possible early prognostic markers in the development metabolic comorbidities provoked
by T deficiency, such as insulin resistance, DM2 and metabolic syndrome. However, further
studies are needed.

In conclusion, we report that fasting plasma AA levels are influenced by T. Low T
levels mainly increase levels of essential AAs, suggesting protein breakdown, which can
be restored by T supplementation. The combination of Tyr and Phe yield the best results to
monitor T changes in our human model.
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