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Abstract: Habitual coffee consumption is an addictive behavior with unknown genetic variations
and has raised public health issues about its potential health-related outcomes. We performed exome-
wide association studies to identify rare risk variants contributing to habitual coffee consumption
utilizing the newly released UK Biobank exome dataset (n = 200,643). A total of 34,761 qualifying
variants were imported into SKAT to conduct gene-based burden and robust tests with minor allele
frequency <0.01, adjusting the polygenic risk scores (PRS) of coffee intake to exclude the effect
of common coffee-related polygenic risk. The gene-based burden and robust test of the exonic
variants found seven exome-wide significant associations, such as OR2G2 (PSKAT = 1.88 × 10−9,
PSKAT-Robust = 2.91 × 10−17), VEZT1 (PSKAT = 3.72 × 10−7, PSKAT-Robust = 1.41 × 10−7), and IRGC
(PSKAT = 2.92 × 10−5, PSKAT-Robust = 1.07 × 10−7). These candidate genes were verified in the GWAS
summary data of coffee intake, such as rs12737801 (p = 0.002) in OR2G2, and rs34439296 (p = 0.008) in
IRGC. This study could help to extend genetic insights into the pathogenesis of coffee addiction, and
may point to molecular mechanisms underlying health effects of habitual coffee consumption.

Keywords: coffee consumption; exome-wide association study; olfactory receptor; hyperphagia;
nervous system

1. Introduction

Coffee is among the most popular drinks in the world [1]. North American coffee
drinkers usually consume two cups per day, whereas European drinkers consume at
least four cups per day [2]. In prospective cohort studies, habitual coffee consumption
has been related to a decreased risk of Alzheimer’s disease, Parkinson’s disease [3], and
type II diabetes [4]. However, the influences of coffee consumption on some cancers [5],
cardiovascular disease [6], myocardial infarction [7], and other health-related phenotypes
remain controversial. For most people, coffee is the main source of caffeine and a form
of addictive behavior [1,8]. Caffeine withdrawal has been listed in the Diagnostic and
Statistical Manual of Mental Disorders-5 (DSM-5), and the severity of caffeine use disorder
is affected by the amount of caffeine consumption [9]. Habitual coffee consumption has
raised public health issues of its potential health-related outcomes [10]. Knowledge of
factors contributing to habitual coffee consumption may facilitate public knowledge and
clinical research on coffee intake.

Coffee consumption varies greatly between individuals within populations, which
was shown to be affected by coffee preferences and genetic variation [11]. Genetic studies
in twins indicated that the heritability of coffee and caffeine intake was estimated to
be between 0.39 and 0.56 [12,13]. The quantile-specific heritability regression showed
that there were differences in estimated heritability between heavier and lighter coffee
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intake [14]. Most genetic studies of coffee intake have focused on caffeine and have limited
the candidate gene to polymorphisms in ADORA2A and CYP1A2 [15,16]. Genome-wide
association studies (GWAS) of habitual caffeine and coffee consumption identified coffee-
related variants closed to CYP1A2 and AHR [17,18]. Later, the Coffee and Caffeine Genetics
Consortium conducted a meta-GWAS of habitual coffee consumption, and identified six
novel loci located in or close to genes potentially related to pharmacokinetics (ABCG2, AHR,
POR, and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) [2]. Recently, epigenome-
wide association studies for coffee consumption revealed 11 candidate CpGs annotated
to the AHRR, HDAC4, GFI1, F2RL3, FLJ43663, and PHGDH genes [19]. Thus far, few
rare variants of habitual coffee consumption have been identified, and most of its genetic
architecture remains unknown.

To date, GWASs have identified many variants at genomic loci related to polygenetic
traits in a large cohort of population, particularly between common single-nucleotide
polymorphisms (SNPs) and complex diseases [20]. However, linkage disequilibrium
(LD) and population stratification make it convoluted for GWAS to identify exact causal
variants [20]. In addition, most of the genetic variants investigated by GWASs are common
in the population, due to their minor allele frequency (MAF) typically being greater than
1% [21]. Although these common DNA sequence variations produce many reproducible
associations for GWAS in complex traits, it remains challenging to understand the biological
underpinnings of complex phenotypes [22]. Exome-wide association studies (exome-WAS)
found that rare coding variants (MAF <1%) were likely to have stronger phenotypic effects
than common variants and jointly contribute to the heritability of complex traits [23,24].
Recently, by using 10,900 whole-exome sequences linked to electronic health records data,
Park et al. identified new gene–phenotype associations of the cumulative effects of rare
coding variants on human disease [25]. However, identifying pathogenic genes and rare
coding variants of habitual coffee consumption remains a huge challenge.

It has been reported that rare risk variants are more widespread among patients with
low polygenic risk scores (PRS) of disease [26]. Lu et al. indicated that individuals with low
polygenic risk for disease may be more likely to harbor rare variants than people with high
polygenic risk [26]. Identifying rare risk variants for disease may be important for clinical
care via adjusting diagnostic and treatment strategies [27]. Recently, we identified novel
risk rare variants associated with depression in participants with low PRS of depression
via exome-WAS [28]. In this study, we aimed to identify rare pathogenic variants for the
phenotype of habitual coffee consumption but exclude the effect of common polygenic
risk associated with coffee intake. We generated PRS for coffee intake and identified rare
pathogenic variants among 20,566 individuals with the exome sequencing dataset from UK
Biobank by adjusting the levels of polygenic risk.

2. Materials and Methods
2.1. Ethic Statement

Ethical approval of UK Biobank was granted by the National Health Service National
Research Ethics Service (reference 11/NW/0382).

2.2. Study Participants from UK Biobank

Our study samples were driven from the UK Biobank (UKB), a widely used resource
for genetic research due to its large-scale database and wealth of genetic and health infor-
mation [29]. The UKB recruited about half a million participants aged between 40 and 69,
and collected a large amount of phenotypic and health information for everyone, including
physical and biological measurements, lifestyle indicators, and genome-wide genotyping
from 2006 to 2010 [29]. The UK Biobank resource with application No. 46478 was used
in this study. Health-related records for each participant were obtained from screenshot
questions or verbal interviews within the assessment center, including age, sex, alcohol use
frequency/week, smoking frequency/day, energy, body mass index (BMI), and Townsend
deprivation index (TDI).
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2.3. UK Biobank Genotyping and Imputation for PRS Calculation

The UK Biobank performed high-quality genome-wide genotyping and genotype
imputation [29]. Briefly, genome-wide genotyping for DNA samples was conducted using
either the Affymetrix UK BiLEVE Axiom (807,411 markers) or Affymetrix UK Biobank
Axiom (825,927 markers) array. Imputation for SNPs was performed by IMPUTE2 against
the reference panel of the Haplotype Reference Consortium, 1000 Genomes, and UK10K
projects [29]. Detailed information of the array design, genotyping, and quality control
procedures are available elsewhere [29].

2.4. Exome Sequencing, Genotype Calling, and Data Processing in UK Biobank

The exome data were obtained from the UK Biobank exome releases, including
200,643 participants who participated in exome sequencing and genotype calling via
the UK Biobank Exome Sequencing Consortium (UKB-ESC). We used the hg38 assembly
with coverage exceeding 20X at 95.6% of the sites on average [30]. The IDT xGen Exome
Research Panel v1.0 was used to capture the exomes. BWA-MEM was used in the OQFE
protocol to map raw reads (Fastq) to the hg38 reference in a deterministic manner, pre-
serving all supplementary alignments [30]. DeepVariant 0.10.0 was used to call variants
on each CRAM via a deep learning model retrained on exome data. The genomic Variant
Call Format (gVCF) was generated for each sample containing all variant genotypes by
limiting variant calls to the exome capture region and the 100 base-pairs flanking each
capture target. GLnexus 1.2.6 was used for merge and joint-genotyping of all gVCFs via
the default ‘DeepVariantWES’ parameters to build a single multi-sample VCF (pVCF) for
all 200,643 UKB samples [30]. PLINK format files were directly derived from this pVCF.
The OQFE version of the UKB exome files (Data-field 23155, PLINK format-interim 200 k
release) were utilized in our subsequent analysis.

2.5. Habitual Coffee Consumption Definition

The phenotype of habitual coffee consumption was defined based on the coffee intake
from the diet category of UK Biobank (Data-Field 1498). The units of measurement for
coffee intake were in number of cups per day (cups/day). The averages of coffee intake
over the last year for all participants were collected by the UKB Assessment Centre via
the touchscreen question, “How many cups of coffee do you drink each day? (Include
decaffeinated coffee)”. Answers less than 0 or greater than 99 were rejected, and answers
greater than 10 were asked for confirmation. The numbers of coffee consumption cups
were mean-centered and normalized to one standard deviation (SD) before subsequent
analysis. The participants were restricted to only “White British”, based on ancestry. The
participants who reported discordance between self-reported sex and genetic sex, were
genotyped but not imputed, and who did not attend exome sequencing were excluded in
this study. Finally, 20,566 participants of habitual coffee consumption were included.

2.6. Filtering and Annotation of Genetic Variants

The single nucleotide variations (SNVs) with MAF >0.01, missing call rates <0.1 were
excluded from annotation among all variants and samples. ANNOVAR was used to annotate
all variants on human genome hg38 [31]. In population-based genetic analysis, the most
common strategy for grouping rare variants together is at the gene level, often through a
gene-based collapsing test [32]. For exome sequencing data, genes are the natural units for
collapsing genetic variants, and collapsing rare variants may help to identify disease-associated
molecular mechanisms by enriching the genetic signal [33]. In rare variant association tests,
the hypothesis of burden tests is that all rare variants in the target region have influences
on the phenotype in the same direction and of similar magnitude [34]. Burden tests can
have stronger power if a high proportion of the rare variants in a region are truly causal and
affect the phenotype in the same direction [35]. All non-benign coding variants including
the frameshift variant, non-frameshift variant, non-synonymous, start-loss, stop-loss, and
stop-gain were included in the gene-based burden test [28].
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2.7. Polygenic Risk Scores Calculation for Habitual Coffee Consumption

A total of 14 SNPs were first obtained from a recent large GWAS of habitual coffee
consumption, which consisted of approximately half a million participants of European
ancestry from UK Biobank [36]. The variants with a kinship coefficient > 0.0442, minor
allele frequency < 0.001, or low imputation quality score ≤ 0.3 were removed based on
heterozygosity and missingness. Details of genotyping, imputation, quality control, and
statistical analysis were available in the published study [36]. Briefly, we used PRsice-2
software to calculate PRS for habitual coffee consumption [37]. Based on a previous study,
we set the clustering algorithm to identify SNPs within 500kb in LD with an r2 > 0.2, and
used age, sex, and 1–10 principle components of population structure (PC) as covariates.
The best model was derived by testing SNP inclusion with a range of p values (5 × 10−8 to
1 interval of 0.05) in the dataset, to test which threshold gave the maximum Nagelkerke R2
value for each participant to generate PRS. We determined that the p value threshold of
5 × 10−8 for habitual coffee consumption (Nagelkerke R2max = 0.34%) was the optimal
inclusion threshold for in this study.

2.8. Gene-Based Association Analyses

The exome data of binary PLINK format were loaded into SKAT R-package to con-
duct a gene-based burden test, examining the aggregate effect of variants within a region
defined by gene annotations [38]. The gene-based burden and robust test were performed
by using the “SKATBinary.SSD.All” and the “SKATBinary_Robust.SSD.All” function, re-
spectively [39,40]. According to the previous study, the minimum parameter of aggregated
alleles for a gene-based test was set at 10 [41]. Only genes with at least two eligible variants
were included in the analysis. The strict Bonferroni correction was performed for multiple
testing, according to the total number of tests done for the genes. Age, sex, smoking history,
alcohol intake, energy, BMI, TDI, 1–10 PCs, and coffee intake PRS were used as covariates
in our SKAT analysis. The strict Bonferroni adjusted p value was used to define statistical
significance (PBonf < 5 × 10−5).

2.9. Verification for Gene-Based Association Analyses Results

A large-scale GWAS summary data of coffee intake (ukb-b-5237) from the MRC-IEU
consortium was used to validate the reliability of an exome-wide association study of habitual
coffee consumption (accessed on 15 June 2022). Briefly, a GWAS was performed based on
428,860 individuals with European ancestry. Detailed descriptions of this data set are available
here (https://gwas.mrcieu.ac.uk/datasets/ukb-b-5237/ accessed on 17 September 2022).

3. Results
3.1. Population Characteristic of Habitual Coffee Consumption

In this study, a total of 20,566 participants of habitual coffee consumption (mean age,
56.55 years; 45% male) were included after quality control. The detailed basic characteristics
of habitual coffee consumption individuals recruited in this study are presented in Table 1.

Table 1. Basic characteristics of study participants.

n = 20,566 Mean ± SD Range

Age, years 56.55 ± 7.94 40–70
Coffee intake, cups/day 2.14 ± 2.10 0–10

Coffee intake, PRS 0.01 ± 0.01 −0.02–0.04
Smoking, frequency/day 5.47 ± 9.64 0–80

Alcohol use, frequency/week 8.76 ± 9.44 0–235
Energy 8861.30 ± 3066.13 1009.84–41,830.10

BMI 27.04 ± 4.56 15.2–63.4
TDI −1.62 ± 2.68 −6.26–9.64

Notes: Coffee intake 0 cups/day indicates no coffee intake over the last year. Energy indicates the estimated total
energy intake, based on food and beverage consumption yesterday, excluding any supplements. PRS, polygenic
risk score; BMI, body mass index; TDI, Townsend deprivation index.

https://gwas.mrcieu.ac.uk/datasets/ukb-b-5237/
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3.2. Annotation of Identified Variants

After excluding SNVs with MAF > 0.01 and missing call rates < 0.1, a total of
64,901 variants were annotated, including 335 non-frameshift variant, 148 frameshift
variant, 33,758 non-synonymous, 29,772 synonymous, 393 stop-gain, 91 start-loss,
36 stop-loss, and 368 unknown variants. We removed the benign coding variants, including
29,772 synonymous and 368 unknown variants, leaving 34,761 eligible variants in the
subsequent gene-based burden test.

3.3. Gene-Based Burden Test Result

A total of 12,122 genes with at least two variants were included in gene-based analysis.
The gene-based burden and robust test of the exonic variants detected 4 and 7 exome-wide sig-
nificant associations, respectively. For example, OR2G2 (PSKAT Bonferroni adjust = 1.88 × 10−9,
PSKAT Robust Bonferroni adjust = 2.91 × 10−17), VEZT1 (PSKAT Bonferroni adjust = 3.72 × 10−7,
PSKAT Robust Bonferroni adjust = 1.41 × 10−7), IRGC (PSKAT Bonferroni adjust = 2.92 × 10−5,
PSKAT Robust Bonferroni adjust = 1.07 × 10−7), and RNASE2 (PSKAT Bonferroni adjust = 4.85 × 10−5,
PSKAT Robust Bonferroni adjust = 1.29 × 10−7) were associated with habitual coffee consumption.
Detailed information about the significant genes are presented in Figure 1 and Table 2. The
detailed results of gene-based burden and robust test are summarized in Tables S1 and S2.

Nutrients 2022, 14, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 1. Manhattan plots of the exome-wide association results of rare habitual coffee consump-
tion-related variants. (A) The exome-wide association results for gene-based burden tests. (B) The 
exome-wide association results for gene-based robust tests. The plots show the gene-based Bon-
ferroni adjusted p values against their genomic position for association with habitual coffee con-
sumption. Each dot on the x-axis represents a gene, and the association strength on the y-axis rep-
resents the −log10 (Bonferroni adjusted p value) from SKAT burden test or SKAT robust burden 
test aggregating rare variants (MAF < 0.01) by gene. Chr, chromosome. 

Table 2. Gene-based association analysis results of habitual coffee consumption. 

Gene No. of Marker Test PSKAT Bonferroni adjust PSKAT Robust Bonferroni adjust 
OR2G2 5 1.88 × 10−9 2.91 × 10−17 
VEZT 3 3.72 × 10−7 1.41 × 10−7 
IRGC 6 2.92 × 10−5 1.07 × 10−7 

RNASE2 2 4.85 × 10−5 1.29 × 10−7 
SNCAIP 6 / 2.72 × 10−7 
MFHAS1 2 / 2.32 × 10−6 
TRIM32 5 / 2.42 × 10−6 

3.4. Verification for Gene-Based Association Analyses Results 
The genes identified in the gene-based association analyses for habitual coffee con-

sumption were verified in a coffee intake cohort from the MRC-IEU consortium. We ob-
served six candidate SNPs corresponding to OR2G2, VEZT, IRGC, and SNCAIP in the 
GWAS datasets (p < 0.05). For example, rs12737801 (p = 0.002) and rs1151687 (p = 0.002) 
were verified within the OR2G2 region, and rs34439296 (p = 0.008) and rs346049 (p = 
0.011) were verified within the IRGC region (Table 3). 

Table 3. Verification of gene-based association analyses results in gene region. 

SNP Gene Chromosome REF ALT GWAS P 
rs12737801 OR2G2 1 C G 0.002 
rs1151687 OR2G2 1 G C 0.002 

Figure 1. Manhattan plots of the exome-wide association results of rare habitual coffee consumption-
related variants. (A) The exome-wide association results for gene-based burden tests. (B) The exome-
wide association results for gene-based robust tests. The plots show the gene-based Bonferroni
adjusted p values against their genomic position for association with habitual coffee consumption.
Each dot on the x-axis represents a gene, and the association strength on the y-axis represents the
−log10 (Bonferroni adjusted p value) from SKAT burden test or SKAT robust burden test aggregating
rare variants (MAF < 0.01) by gene. Chr, chromosome.
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Table 2. Gene-based association analysis results of habitual coffee consumption.

Gene No. of Marker Test PSKAT Bonferroni adjust PSKAT Robust Bonferroni adjust

OR2G2 5 1.88 × 10−9 2.91 × 10−17

VEZT 3 3.72 × 10−7 1.41 × 10−7

IRGC 6 2.92 × 10−5 1.07 × 10−7

RNASE2 2 4.85 × 10−5 1.29 × 10−7

SNCAIP 6 / 2.72 × 10−7

MFHAS1 2 / 2.32 × 10−6

TRIM32 5 / 2.42 × 10−6

3.4. Verification for Gene-Based Association Analyses Results

The genes identified in the gene-based association analyses for habitual coffee con-
sumption were verified in a coffee intake cohort from the MRC-IEU consortium. We
observed six candidate SNPs corresponding to OR2G2, VEZT, IRGC, and SNCAIP in the
GWAS datasets (p < 0.05). For example, rs12737801 (p = 0.002) and rs1151687 (p = 0.002)
were verified within the OR2G2 region, and rs34439296 (p = 0.008) and rs346049 (p = 0.011)
were verified within the IRGC region (Table 3).

Table 3. Verification of gene-based association analyses results in gene region.

SNP Gene Chromosome REF ALT GWAS P

rs12737801 OR2G2 1 C G 0.002
rs1151687 OR2G2 1 G C 0.002

rs201317857 VEZT 12 C A 0.020
rs34439296 IRGC 19 C T 0.008

rs346049 IRGC 19 C T 0.011
rs55712196 SNCAIP 5 G C 0.028

4. Discussion

In this study, our aim was to detect rare pathogenic variants in individuals with
habitual coffee consumption to broaden our knowledge and understanding of the genetic
characteristics of coffee addiction. We performed a gene-based exome-wide association
study by using a large-scale exome dataset from the UK Biobank, and detected seven novel
candidate genes for habitual coffee consumption, after excluding the effect of coffee-related
common polygenic risk.

Our results highlight a vital role of the olfactory receptor underlying a genetic propen-
sity to coffee consumption. OR2G2 (Olfactory receptor family 2 subfamily G member 2),
also known as OR1-32, is related to olfactory receptor activity. Olfactory receptors interact
with odorant molecules in the human nose to initiate neuronal responses that trigger the
sense of smell [42]. Olfactory receptors span a seven-transmembrane domain, with many
neurotransmitters responsible for the recognition of odorant signals [43]. Malnic et al.
determined the chromosomal position of each intact olfactory receptor gene and olfactory
receptor pseudogene, and identified OR2G2 loci distributed in the 1q44 chromosome [44].
Chromosome 1q44 is the key genetic region related to a variety of neurological disorders
in human [45]. Deletions in the 1q44 region have been confirmed in several abnormal
developments of the brain, including agenesis of the corpus callosum (ACC) [46] and
seizures [47]. OR2G2 was identified as a candidate gene for habitual coffee consumption in
our study, which has been confirmed to be associated with olfactory receptors by previous
studies. Future investigation is needed to explore its potential molecular mechanisms in
habitual coffee consumption.

SNCAIP (Synphilin-1) encodes a protein interacting with alpha-synuclein in neuronal
tissue, which may influence the onset of neurodegeneration [48]. Shishido et al. suggested
that SNCAIP might play a neuroprotective role in dopaminergic cells by maintaining mito-
chondrial function and restraining early steps in the apoptotic pathway [49]. Recent studies
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have indicated that SNCAIP is involved in hyperphagia in animal models. For example, the
AMPK signaling pathway in Drosophila neurons played a vital role in SNCAIP-induced
hyperphagia [50]. Li et al. characterized a human SNCAIP transgenic mouse by assessing
SNCAIP expression, food ingestion, and spontaneous activity to confirm main behavioral
changes and outcomes. They identified a novel feature of SNCAIP in controlling food in-
take [51]. Although these findings are encouraging for ongoing efforts, they also highlight
the need for future studies to explore pathways of genes.

TRIM32 variants have been associated with olfactory performance and neurodevelop-
ment. In the mouse brain, TRIM32 knockout provided sufficient support for neurogenesis
damage caused by the loss of the cell fate determinant. TRIM32 has been shown to cause de-
clines in olfactory performance and deregulation of metabolomic pathways associated with
mood disorders [52]. In the adult mammalian brain, neural stem cells in the subventricular
region constantly produce new neurons for the olfactory bulb (OB) [53]. Hillje et al. demon-
strated that TRIM32 was necessary to induce differentiation of adult neural stem cells into
OB neurons, and highlighted the role of the cell fate-determinant TRIM32 for balanced
activity during neurogenesis [53]. Genome-wide studies have found rare copy number
variants (CNVs) interfering with the TRIM32 gene at the 9q33.1 locus in some individuals
with neurodevelopmental disorders. Common phenotypes observed in these individuals
included autism spectrum disorder, anxiety, speech delay, attention-deficit/hyperactivity
disorder, and obsessive compulsive disorder [54]. Previous studies found that regulation
of TRIM32 was also related to the recovery of neurological function [55], migration and
differentiation of Schwann cells [56], synaptic downscaling [57], declined concentration of
neurofilaments, and a reduction in myelinated motor axon diameters [58]. Based on the
above research, TRIM32 identified in our study was functionally associated with neurode-
velopmental traits. Further mechanism studies are needed to investigate their underlying
roles in the development of habitual coffee consumption.

Using the GWAS summary data of coffee intake, we verified association signals of
several SNPs in the region of the target genes. The power for GWAS testing for individual
rare variants may usually be low [59], resulting in weak association signals in GWAS
data for SNPs corresponding to genes detected in gene-based exome-WAS. Our study is
a vital process in understanding the genetics of habitual coffee consumption. Genome
exome sequencing technology facilitates the discovery of low-frequency rare variants
of complex traits. Besides, using PRS to correct the influence of common risk loci for
coffee intake could identify coffee-related rare variants without reducing the sample size.
Caffeine is a widely used psychoactive drug worldwide, and coffee is the most common
form of caffeine consumption. Thus, our findings have implications for understanding
individual differences in habitual coffee consumption. Other studies have investigated
interactions among long-term coffee consumption, common variants, and disease risk, and
our results could inform future research in these areas. There are three limitations in our
study. First, the participants with coffee intake phenotypes in this study did not define
how many participants used decaffeinated coffee. Our results may not be applicable for
caffeine-related studies. Second, the participants who consumed coffee, but not on a daily
basis, were not distinguished in the touchscreen question of coffee intake. Third, both
exome sequencing samples and PRS data samples were from UKB; this potential overlap of
samples may slightly affect the results of the analysis.

Caffeine-seeking behavior may explain the continual consumption of coffee despite its
bitter taste [60]. Besides, the taste of coffee can be manipulated by the addition of sweetener
and milk. Our recent study confirmed the potential effect of bitter or sweet beverage
perception on brain function and identified several coffee-related genes [61]. Ong et al. also
revealed bitter perception was causally related to intake of coffee, suggesting a role of bitter
taste in the development of bitter beverage consumption [62]. Marilyn C et al. found that
caffeine sensitivity was more strongly correlated with coffee taste preference than with bitter
perception, and the interaction of taste preferences and physiological effects of caffeine
may reflect conditioned taste preferences [63]. Thus, coffee consumption depends on the
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perception of taste, as well as environmental and genetic factors. Further exploration of
coffee taste preference would be important for understanding coffee consumption behavior.

5. Conclusions

Overall, we calculated PRS for habitual coffee consumption and identified novel rare
pathogenic variations in habitual coffee consumption using whole exome sequencing data
from UK Biobank. The genes identified in this study were associated with the olfactory
receptor, hyperphagia, and the nervous system. The results of this study may help under-
stand the biological mechanism of rare mutations in the development of habitual coffee
consumption and provide novel insights into the etiology of coffee addiction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu14204330/s1, Table S1: The results of gene-based burden test by
using SKAT R-package; Table S2: The results of gene-based robust test by using SKAT R-package.
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19. Karabegović, I.; Portilla-Fernandez, E.; Li, Y.; Ma, J.; Maas, S.C.E.; Sun, D.; Hu, E.A.; Kühnel, B.; Zhang, Y. Epigenome-wide
association meta-analysis of DNA methylation with coffee and tea consumption. Nat. Commun. 2021, 12, 2830. [CrossRef]

20. Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five years of gwas discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [CrossRef]
21. Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 years of gwas discovery: Biology,

function, and translation. Am. J. Hum. Genet. 2017, 101, 5–22. [CrossRef]
22. Michailidou, K.; Lindström, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemaçon, A.; Soucy, P.; Glubb, D.; Rostamianfar, A.; et al.

Association analysis identifies 65 new breast cancer risk loci. Nature 2017, 551, 92–94. [CrossRef] [PubMed]
23. Liu, C.; Kraja, A.T.; Smith, J.A. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping

with metabolic trait loci. Nat. Genet. 2016, 48, 1162–1170. [CrossRef] [PubMed]
24. Consortium, I.M.S.G. Low-frequency and rare-coding variation contributes to multiple sclerosis risk. Cell 2018, 175, 1679–1687.e1677.
25. Park, J.; Lucas, A.M.; Zhang, X. Exome-wide evaluation of rare coding variants using electronic health records identifies new

gene-phenotype associations. Nat. Med. 2021, 27, 66–72. [CrossRef] [PubMed]
26. Lu, T.; Zhou, S.; Wu, H.; Forgetta, V.; Greenwood, C.M.T.; Richards, J.B. Individuals with common diseases but with a low

polygenic risk score could be prioritized for rare variant screening. Genet. Med. 2021, 23, 508–515. [CrossRef] [PubMed]
27. Esplin, E.D.; Oei, L.; Snyder, M.P. Personalized sequencing and the future of medicine: Discovery, diagnosis and defeat of disease.

Pharmacogenomics 2014, 15, 1771–1790. [CrossRef]
28. Cheng, S.; Cheng, B.; Liu, L. Exome-wide screening identifies novel rare risk variants for major depression disorder. Mol.

Psychiatry 2022, 27, 3069–3074. [CrossRef]
29. Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al.

The UK biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [CrossRef]
30. Szustakowski, J.D.; Balasubramanian, S.; Kvikstad, E. Advancing human genetics research and drug discovery through exome

sequencing of the uk biobank. Nat. Genet. 2021, 53, 942–948. [CrossRef]
31. Wang, K.; Li, M.; Hakonarson, H. Annovar: Functional annotation of genetic variants from high-throughput sequencing data.

Nucleic. Acids Res. 2010, 38, e164. [CrossRef] [PubMed]
32. Cirulli, E.T.; White, S. Genome-wide rare variant analysis for thousands of phenotypes in over 70,000 exomes from two cohorts.

Nat. Commun. 2020, 11, 542. [CrossRef]
33. Sun, Y.V.; Sung, Y.J.; Tintle, N.; Ziegler, A. Identification of genetic association of multiple rare variants using collapsing methods.

Genet. Epidemiol. 2011, 35 (Suppl. S1), S101–S106. [CrossRef]
34. Lee, S.; Wu, M.C.; Lin, X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 2012, 13, 762–775.

[CrossRef] [PubMed]
35. Basu, S.; Pan, W. Comparison of statistical tests for disease association with rare variants. Genet. Epidemiol. 2011, 35, 606–619.

[CrossRef]
36. Zhong, V.W.; Kuang, A.; Danning, R.D.; Kraft, P.; van Dam, R.M.; Chasman, D.I.; Cornelis, M.C. A genome-wide association

study of bitter and sweet beverage consumption. Hum. Mol. Genet. 2019, 28, 2449–2457. [CrossRef] [PubMed]
37. Euesden, J.; Lewis, C.M.; O’Reilly, P.F. Prsice: Polygenic risk score software. Bioinformatics 2015, 31, 1466–1468. [CrossRef]

[PubMed]
38. Lee, S.; Fuchsberger, C.; Kim, S.; Scott, L. An efficient resampling method for calibrating single and gene-based rare variant

association analysis in case-control studies. Biostatistics 2016, 17, 1–15. [CrossRef]
39. Lee, S.; Emond, M.J.; Bamshad, M.J.; Barnes, K.C.; Rieder, M.J.; Nickerson, D.A.; Christiani, D.C.; Wurfel, M.M.; Lin, X. Optimal

unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing
studies. Am. J. Hum. Genet. 2012, 91, 224–237. [CrossRef]

40. Zhao, Z.; Bi, W.; Zhou, W.; VandeHaar, P.; Fritsche, L.G.; Lee, S. Uk biobank whole-exome sequence binary phenome analysis
with robust region-based rare-variant test. Am. J. Hum. Genet. 2020, 106, 3–12. [CrossRef] [PubMed]

http://doi.org/10.1375/twin.12.2.127
http://www.ncbi.nlm.nih.gov/pubmed/19335181
http://doi.org/10.1111/j.1360-0443.2008.02375.x
http://www.ncbi.nlm.nih.gov/pubmed/19469749
http://doi.org/10.1007/s10519-019-09989-0
http://doi.org/10.1097/00008571-200208000-00008
http://doi.org/10.1093/ajcn/86.1.240
http://doi.org/10.1038/mp.2011.101
http://doi.org/10.1371/journal.pgen.1002033
http://doi.org/10.1038/s41467-021-22752-6
http://doi.org/10.1016/j.ajhg.2011.11.029
http://doi.org/10.1016/j.ajhg.2017.06.005
http://doi.org/10.1038/nature24284
http://www.ncbi.nlm.nih.gov/pubmed/29059683
http://doi.org/10.1038/ng.3660
http://www.ncbi.nlm.nih.gov/pubmed/27618448
http://doi.org/10.1038/s41591-020-1133-8
http://www.ncbi.nlm.nih.gov/pubmed/33432171
http://doi.org/10.1038/s41436-020-01007-7
http://www.ncbi.nlm.nih.gov/pubmed/33110269
http://doi.org/10.2217/pgs.14.117
http://doi.org/10.1038/s41380-022-01536-4
http://doi.org/10.1038/s41586-018-0579-z
http://doi.org/10.1038/s41588-021-00885-0
http://doi.org/10.1093/nar/gkq603
http://www.ncbi.nlm.nih.gov/pubmed/20601685
http://doi.org/10.1038/s41467-020-14288-y
http://doi.org/10.1002/gepi.20658
http://doi.org/10.1093/biostatistics/kxs014
http://www.ncbi.nlm.nih.gov/pubmed/22699862
http://doi.org/10.1002/gepi.20609
http://doi.org/10.1093/hmg/ddz061
http://www.ncbi.nlm.nih.gov/pubmed/31046077
http://doi.org/10.1093/bioinformatics/btu848
http://www.ncbi.nlm.nih.gov/pubmed/25550326
http://doi.org/10.1093/biostatistics/kxv033
http://doi.org/10.1016/j.ajhg.2012.06.007
http://doi.org/10.1016/j.ajhg.2019.11.012
http://www.ncbi.nlm.nih.gov/pubmed/31866045


Nutrients 2022, 14, 4330 10 of 10

41. Bis, J.C.; Jian, X.; Kunkle, B.W.; Chen, Y. Whole exome sequencing study identifies novel rare and common alzheimer’s-associated
variants involved in immune response and transcriptional regulation. Mol. Psychiatry 2020, 25, 1859–1875. [CrossRef]

42. Glezer, I.; Malnic, B. Olfactory receptor function. Handb. Clin. Neurol. 2019, 164, 67–78.
43. Hiroi, M.; Tanimura, T.; Marion-Poll, F. Hedonic taste in drosophila revealed by olfactory receptors expressed in taste neurons.

PLoS ONE 2008, 3, e2610. [CrossRef]
44. Malnic, B.; Godfrey, P.A.; Buck, L.B. The human olfactory receptor gene family. Proc. Natl. Acad. Sci. USA 2004, 101, 2584–2589.

[CrossRef]
45. Meng, G.; Inazawa, J.; Ishida, R.; Tokura, K.; Nakahara, K.; Aoki, K.; Kasai, M. Structural analysis of the gene encoding rp58, a

sequence-specific transrepressor associated with heterochromatin. Gene 2000, 242, 59–64. [CrossRef]
46. Boland, E.; Clayton-Smith, J.; Woo, V.G.; McKee, S.; Manson, F.D.; Medne, L.; Zackai, E.; Swanson, E.A.; Fitzpatrick, D.; Millen,

K.J.; et al. Mapping of deletion and translocation breakpoints in 1q44 implicates the serine/threonine kinase akt3 in postnatal
microcephaly and agenesis of the corpus callosum. Am. J. Hum. Genet. 2007, 81, 292–303. [CrossRef]

47. Bramswig, N.C.; Lüdecke, H.J.; Hamdan, F.F.; Altmüller, J.; Beleggia, F.; Elcioglu, N.H.; Freyer, C.; Gerkes, E.H.; Demirkol, Y.K.;
Knupp, K.G.; et al. Heterozygous hnrnpu variants cause early onset epilepsy and severe intellectual disability. Hum. Genet. 2017,
136, 821–834. [CrossRef]

48. Liu, J.; Li, T.; Thomas, J.M.; Pei, Z.; Jiang, H.; Engelender, S.; Ross, C.A.; Smith, W.W. Synphilin-1 attenuates mutant lrrk2-induced
neurodegeneration in parkinson’s disease models. Hum. Mol. Genet. 2016, 25, 672–680. [CrossRef]

49. Shishido, T.; Nagano, Y.; Araki, M.; Kurashige, T.; Obayashi, H.; Nakamura, T.; Takahashi, T.; Matsumoto, M.; Maruyama, H.
Synphilin-1 has neuroprotective effects on mpp(+)-induced parkinson’s disease model cells by inhibiting ros production and
apoptosis. Neurosci. Lett. 2019, 690, 145–150. [CrossRef] [PubMed]

50. Liu, J.; Wang, X.; Ma, R. Ampk signaling mediates synphilin-1-induced hyperphagia and obesity in drosophila. J. Cell Sci. 2021,
134, jcs247742. [CrossRef]

51. Li, X.; Tamashiro, K.L.; Liu, Z.; Bello, N.T.; Wang, X.; Aja, S.; Bi, S.; Ladenheim, E.E.; Ross, C.A.; Moran, T.H.; et al. A novel obesity
model: Synphilin-1-induced hyperphagia and obesity in mice. Int. J. Obes. 2012, 36, 1215–1221. [CrossRef]

52. Hillje, A.L.; Beckmann, E.; Pavlou, M.A.; Jaeger, C.; Pacheco, M.P.; Sauter, T.; Schwamborn, J.C.; Lewejohann, L. The neural stem
cell fate determinant trim32 regulates complex behavioral traits. Front. Cell. Neurosci. 2015, 9, 75. [CrossRef] [PubMed]

53. Hillje, A.L.; Pavlou, M.A.; Beckmann, E.; Worlitzer, M.M.; Bahnassawy, L.; Lewejohann, L.; Palm, T.; Schwamborn, J.C. Trim32-
dependent transcription in adult neural progenitor cells regulates neuronal differentiation. Cell Death Dis. 2013, 4, e976. [CrossRef]

54. Lionel, A.C.; Tammimies, K.; Vaags, A.K.; Rosenfeld, J.A.; Ahn, J.W.; Merico, D.; Noor, A.; Runke, C.K.; Pillalamarri, V.K.; Carter,
M.T.; et al. Disruption of the astn2/trim32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, adhd and other
neurodevelopmental phenotypes. Hum. Mol. Genet. 2014, 23, 2752–2768. [CrossRef]

55. Zhang, Z.B.; Xiong, L.L.; Lu, B.T.; Zhang, H.X.; Zhang, P.; Wang, T.H. Suppression of trim32 enhances motor function repair after
traumatic brain injury associated with antiapoptosis. Cell Transplant. 2017, 26, 1276–1285. [CrossRef]

56. Liu, Y.; Wu, W.; Yang, H.; Zhou, Z.; Zhu, X.; Sun, C.; Liu, Y.; Yu, Z.; Chen, Y.; Wang, Y. Upregulated expression of trim32 is
involved in schwann cell differentiation, migration and neurite outgrowth after sciatic nerve crush. Neurochem. Res. 2017,
42, 1084–1095. [CrossRef]

57. Srinivasan, B.; Samaddar, S.; Mylavarapu, S.V.S.; Clement, J.P.; Banerjee, S. Homeostatic scaling is driven by a translation-
dependent degradation axis that recruits mirisc remodeling. PLoS Biol. 2021, 19, e3001432. [CrossRef]

58. Kudryashova, E.; Wu, J.; Havton, L.A.; Spencer, M.J. Deficiency of the e3 ubiquitin ligase trim32 in mice leads to a myopathy with
a neurogenic component. Hum. Mol. Genet. 2009, 18, 1353–1367. [CrossRef]

59. Derkach, A.; Zhang, H.; Chatterjee, N. Power analysis for genetic association test (pageant) provides insights to challenges for
rare variant association studies. Bioinformatics 2018, 34, 1506–1513. [CrossRef]

60. Lipchock, S.V.; Spielman, A.I.; Mennella, J.A.; Mansfield, C.J.; Hwang, L.D.; Douglas, J.E.; Reed, D.R. Caffeine Bitterness is Related
to Daily Caffeine Intake and Bitter Receptor mRNA Abundance in Human Taste Tissue. Perception 2017, 46, 245–256. [CrossRef]

61. Wei, W.; Cheng, B.; He, D.; Zhao, Y.; Qin, X.; Cai, Q.; Zhang, N.; Chu, X.; Shi, S.; Zhang, F. Identification of Human Brain Proteins
for Bitter-Sweet Taste Perception: A Joint Proteome-Wide and Transcriptome-Wide Association Study. Nutrients 2022, 14, 2177.
[CrossRef] [PubMed]

62. Ong, J.S.; Hwang, L.D.; Zhong, V.W.; An, J.; Gharahkhani, P.; Breslin, P.A.S.; Wright, M.J.; Lawlor, D.A.; Whitfield, J.;
MacGregor, S.; et al. Understanding the role of bitter taste perception in coffee, tea and alcohol consumption through Mendelian
randomization. Sci. Rep. 2018, 8, 16414. [CrossRef] [PubMed]

63. Cornelis, M.C.; van Dam, R.M. Genetic determinants of liking and intake of coffee and other bitter foods and beverages. Sci. Rep.
2021, 11, 23845. [CrossRef] [PubMed]

http://doi.org/10.1038/s41380-018-0112-7
http://doi.org/10.1371/journal.pone.0002610
http://doi.org/10.1073/pnas.0307882100
http://doi.org/10.1016/S0378-1119(99)00477-1
http://doi.org/10.1086/519999
http://doi.org/10.1007/s00439-017-1795-6
http://doi.org/10.1093/hmg/ddv504
http://doi.org/10.1016/j.neulet.2018.10.020
http://www.ncbi.nlm.nih.gov/pubmed/30316984
http://doi.org/10.1242/jcs.247742
http://doi.org/10.1038/ijo.2011.235
http://doi.org/10.3389/fncel.2015.00075
http://www.ncbi.nlm.nih.gov/pubmed/25852471
http://doi.org/10.1038/cddis.2013.487
http://doi.org/10.1093/hmg/ddt669
http://doi.org/10.1177/0963689717716510
http://doi.org/10.1007/s11064-016-2142-3
http://doi.org/10.1371/journal.pbio.3001432
http://doi.org/10.1093/hmg/ddp036
http://doi.org/10.1093/bioinformatics/btx770
http://doi.org/10.1177/0301006616686098
http://doi.org/10.3390/nu14102177
http://www.ncbi.nlm.nih.gov/pubmed/35631318
http://doi.org/10.1038/s41598-018-34713-z
http://www.ncbi.nlm.nih.gov/pubmed/30442986
http://doi.org/10.1038/s41598-021-03153-7
http://www.ncbi.nlm.nih.gov/pubmed/34903748

	Introduction 
	Materials and Methods 
	Ethic Statement 
	Study Participants from UK Biobank 
	UK Biobank Genotyping and Imputation for PRS Calculation 
	Exome Sequencing, Genotype Calling, and Data Processing in UK Biobank 
	Habitual Coffee Consumption Definition 
	Filtering and Annotation of Genetic Variants 
	Polygenic Risk Scores Calculation for Habitual Coffee Consumption 
	Gene-Based Association Analyses 
	Verification for Gene-Based Association Analyses Results 

	Results 
	Population Characteristic of Habitual Coffee Consumption 
	Annotation of Identified Variants 
	Gene-Based Burden Test Result 
	Verification for Gene-Based Association Analyses Results 

	Discussion 
	Conclusions 
	References

