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Digital assessments enable objective measurements of ataxia severity and provide

informative features that expand upon the information obtained during a clinical

examination. In this study, we demonstrate the feasibility of using finger tapping videos

to distinguish participants with Ataxia (N = 169) from participants with parkinsonism

(N= 78) and from controls (N= 58), and predict their upper extremity and overall disease

severity. Features were extracted from the time series representing the distance between

the index and thumb and its derivatives. Classification models in ataxia archived areas

under the receiver-operating curve of around 0.91, and regression models estimating

disease severity obtained correlation coefficients around r = 0.64. Classification and

prediction model coefficients were examined and they not only were in accordance, but

were in line with clinical observations of ataxia phenotypes where rate and rhythm are

altered during upper extremity motor movement.

Keywords: ataxia, Parkinson’s, machine learning, finger tapping, motor assessment, neurodegeneration, digital

health

INTRODUCTION

Cerebellar ataxia is a neurological phenotype caused by a wide range of diseases that affect the
function of the cerebellum and lead to deficits in coordinated limb movements, gait and balance,
speech, and eyemovements. Clinical assessment of ataxia is typically conducted by visual inspection
of the neurological exam and assigned a severity score using clinical rating scales such as the Brief
Ataxia Rating Scale [BARS, (1)] and the Scale for the Assessment and Rating of Ataxia [SARA,
(2)]. Leveraging technology to provide quantitative motor and cognitive assessments can be of
great value for early diagnosis, tracking disease progression, and feature characterization of the
disease (53). Although very useful, clinical rating scales rely on subjective human assessments that
depend on the experience and perspective of the clinician and, by design, are relatively imprecise
as evidenced by poor test-retest and interrater reliability (3–5). Digital assessments offer the ability
to expand upon the information obtained by a clinician’s examination. For example, quantitative
assessments in pre-symptomatic or very early disease stages in neurodegenerative diseases can
be sensitive in detecting early characteristics of the disease (6–9). Rather than discrete ordinal
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clinical scales that are performed during infrequent in-person
clinical visits, digital assessments may provide much more
frequent and precise measurements. This can result in greater
statistical sensitivity and allow detection of smaller changes over
time, leading the way toward improved outcome measures that
can reduce the size and duration of clinical trials (10–14).

Previous studies in ataxia have used wearable sensors to
quantify rhythmic finger tapping (15), limb movements such
as Finger-to-Nose-Finger and Heel to Shin Test (16–18), free-
living movement (19), and gait (20, 21). Other previously
used instruments included smartphones to assess fine motor
coordination skills (22) and computer mouse movement during
web-based target clicking tasks (23) and free-viewing web
searches (24) to assess upper-limb movements. Currently only
one study applied computer vision and signal processing
techniques on videos of arm movement assessments in ataxia
to predict symptom severity (25). In parkinsonism, several
studies have used video assessments for bradykinesia prediction
(26), gait (27–29), and finger tapping (30, 31). See (32) for a
comprehensive review.

In this study we used video recordings of a finger tapping task
to assess the performance in classifying Ataxia or parkinsonism
and in estimating the disease severity, as well as investigating
the discriminative power of the features used in the models.
Quantitative assessments based on video data have the advantage
of scalability because cameras in phones and laptops could
potentially be used to record the assessment, without requiring
specialized or expensive equipment. Videos have the added
advantage of directly capturing the position of body landmarks,
whereas computing position from accelerometers in wearable
sensors requires a double integration step that accumulates noise
over time. In addition, video data can provide information about
finger movement, which is more challenging using wearable
sensors, which would require specialized sensors attached to
the fingers or a glove embedded with sensors. We used the
tapping signal obtained by the distance of the index and
thumb fingers and computed its derivatives up to the 3rd
order (i.e., jerk), as these kinematic features capture relevant
aspects of the ataxia phenotype (33, 34). From the tapping
and derivative signals, features were extracted based on clinical
relevance such as the tapping period, variability of the tap
period and amplitude, and the temporal slope of the tap
amplitude (35–38). Features were grouped in five categories
representing different aspects of the tapping behavior and
Principal Component Analysis (PCA) was used to extract
principal components of the feature types. Then, using the
features extracted after processing the data, models were trained
to predict the group class, either Ataxia, parkinsonism or
controls (CTR), or to estimate symptom severity in Ataxia
or parkinsonism.

METHODS

The study was approved by the Institutional Review Board at
Massachusetts General Hospital and all the subjects provided
written informed consent or assent. Individuals with ataxia

and parkinsonism were recruited from Massachusetts General
Hospital Ataxia Center and Movement Disorders Unit,
and children with ataxia-telangiectasia were recruited in
collaboration with the Ataxia-Telangiectasia Children’s Project.
Healthy control participants consisted of siblings of children
with ataxia-telangiectasia and individuals recruited from Rally
for Partners. A total of 301 videos from 191 unique participants
performing finger tapping were assessed. These involved 169
videos from participants diagnosed with ataxia (128 participants
with 41 repeated sessions), 74 videos from patients with
parkinsonism or Parkinson’s disease (61 participants and 13
repeated visits), and 58 videos from healthy control participants
(50 participants and 8 repeated visits). Dataset demographics can
be viewed in Table 1.

Clinical Assessment
All neurologic examinations were videotaped. Ataxia patients
were scored on the Brief Ataxia Rating Scale (BARS) (range
0–30). Patients with parkinsonism were assessed with the
Unified Parkinson’s Disease Rating Scale (UPDRS) Part III
Motor Examination (range 0–108) (39). Video data collection
on the finger tapping task occurred immediately before or after
the UPDRS was performed, ensuring that both the clinical
assessment and task performance reflected the same state of
the individual. Individuals took their prescribed medications
as usual and no alterations were made for participation in
the study.

For regression analysis, to allow comparison between Ataxia
and parkinsonism patients, arm scores and total scores were
normalized. For Ataxia, the common arm score was the BARS
arm score, which is based on the finger to nose task, scaled in
the unit range. A common arm severity score was calculated for
the parkinsonism group by combining UPDRS tests involving

TABLE 1 | Dataset demographics.

Ataxia Parkinsonism CTR

N videos (female) 169 (80) 74 (22) 58 (26)

age: mean, std (range) 49 ± 22.4 (5–82) 67 ± 7.7 (45–85) 30 ± 20.2 (4–86)

Handness R/L count 152/17 70/4 52/6

bars arm R: mean, std

(range)

1.15 ± 0.88 (0–3.5) - 0

bars arm L: mean, std

(range)

1.32 ± 0.89 (0–3.5) - 0

bars_total: mean, std

(range)

11.2 ± 0.5.6 (0–24) - 0

UPDRS arm total L:

mean, std (range)

- 3.68 ± 3 (0–12) 0

UPDRS arm total R:

mean, std (range)

- 3.62 ± 2.94 (0–16) 0

UPDRS total: mean,

std (range)

- 15.69 ± 9.69 (1–51) 0

Common arm score L:

mean, std

0.33 ± 0.22 0.15 ± 0.13 0

Common arm score R :

mean, std

0.29 ± 0.22 0.15 ± 0.12 0
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the arms. The tasks used for this purpose included bradykinesia
on three tasks. These subscores were summated to form a
composite severity score (range 0–12) and scaled to unit range.
CTR participants were assigned zero values for the common
arm scores.

Experimental Setup
Participants were seated in front of a tablet, which provided a
video demonstration along with audio instructions for how to
perform the task. The instructions were to perform finger tapping
by touching the tip of the thumb with the tip of the finger as fast
and fully as possible for 15 s, first using the dominant hand and
then, once instructed, with the non-dominant hand. Participants
were instructed to maintain a constant position of the hand
during the finger tapping. If substantial movement was observed
the participant was asked to repeat the task. Figure 1 illustrates
the Finger Tapping task.

Landmark Extraction
To extract landmarks of interest a residual convolutional
network, namely, a ResNet152 (40), was used to identify
the landmarks across frames. A model pre-trained on the
MPII dataset to extract body landmarks was used (41) to
leverage transfer learning and achieve faster training and higher
performance (42, 43). The inputs to the model were frames of
960 x 540 pixels in batches of 1. Three landmarks of interest
were extracted for each arm: the tip of the index, the tip of the
thumb and the lateral side of the wrist. The DeepLabCut (DLC),
(44, 45) toolbox was used in combination with in-house scripts
(DeepNMA, https://github.com/neuropheno-org/DeepNMA).

The pipeline was as follows.

1. First, 80 videos were selected randomly and for each video,
20 frames were selected for manual labeling using a k-
means clustering, as provided in DLC. The k-means clustering
provided 20 frames that were the most different between each
other. These frames were manually labeled.

2. The ResNet152 model was trained on the subset of frames to
learn to identify the three hand landmarks. The training set
was 80% of the data and the rest was used as a validation set
to obtain the best performing model with the lowest mean
absolute error (MAE).

3. After ∼1.3M iterations, the retrained model was used to
extract hand landmarks from the remainder of frames,

generating a three-dimensional (thumb, index, lateral side of
wrist) landmark time series for each hand-side.

4. Next, an iterative procedure was performed using DeepNMA
to visualize and correct mislabeled landmark locations
(further explained in the next section).

5. Once all the videos were inspected, the deep learning model
was retrained with the relabeled data, and the landmark time
series were re-inspected.

6. This procedure was repeated three times until the landmarks
were correctly localized. A representative training and
validation loss is presented in Supplementary Figure 1.

DeepNMA
This package was created to visualize the landmark location
time series, in the x and y directions, and its corresponding
image frames, to preprocess the data and to classify groups and
regress symptom severity. For quality control, DeepNMA was
used to select the start and end of the finger tapping task for each
arm. Outlier detection was performed using a process involving
removing one sample at a time and re-estimating it with a cubic
interpolation. The difference between the original value and the
re-estimated value was used as a measure of outlier deviance.
Missing samples, for amaximum consecutive period of 0.5 s, were
interpolated with a cubic model. Then time series were visually
inspected and, if necessary, time points were selected to plot the
labeled video frame. In case of inaccurate labelings, the labels
were corrected manually.

Signal Preprocessing
Some videos were recorded at 60Hz and others at 30Hz. Videos
at the higher sampling rate were downsampled to 30Hz. Then,
the finger tapping amplitude time series (TS) was calculated
by measuring the distance between the index and the thumb
for each time point, creating a one-dimensional time series.
To reduce possible high frequency noise resulting from frame-
to-frame prediction jitter while preserving slower activity from
finger movements, the TS was low pass filtered at 10Hz using a
FIR filter. Finally, given that amplitude of the finger tapping is
dependent on the distance to the camera, signals were z-scored
with a zero mean and unit variance to remove the effects of the
camera distance.

Feature Extraction
A peak detection algorithm was used on the finger tapping
amplitude time series (TS) to automatically detect peaks and

FIGURE 1 | Finger tapping task. Participants were indicated to perform finger taping by extending the index finger from the thumb. The arrows indicate the distance

between the index and thumb, and was used as a time series from which features were derived. The colored circles indicate the tip of the thumb (red) and index (blue)

and the wrist (green).
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FIGURE 2 | Finger tapping signals in ataxia, control (CTR), and parkinsonism (P) example subjects. (A) The finger tapping, measured as the normalized distance

between the tip of the index and the thumb. The peaks (red) and troughs (black) are marked with dots, and the slope for the peaks and troughs are drawn in blue and

orange, respectively. (B,C) First and second derivatives of the FT signal are shown. (D) The normalized quadratic modeling of the finger tapping is plotted for each tap.

(E) The power spectrum density of the FT.

TABLE 2 | Group classification performance between ataxia, controls (CTR) and

parkinsonism.

N N % AUC Sens Spec

Ataxia vs. CTR 169, 58 0.75/0.25 0.92

(0.83–1.00)

0.89

(0.80–0.98)

0.81

(0.66–0.95)

Ataxia vs.

parkinsonism

169, 74 0.66/0.33 0.91

(0.86–0.96)

0.94

(0.90–0.97)

0.72

(0.52–0.93)

parkinsonism vs.

CTR

74, 58 0.66/0.33 0.68

(0.55–0.81)

0.69

(0.56–0.83)

0.64

(0.48–0.81)

Mild Ataxia vs.

CTR

58, 58 0.50/0.50 0.76

(0.64–0.88)

0.70

(0.56–0.85)

0.83

(0.70–0.96)

Ataxia vs. CTR

age < 45

56, 45 0.55/0.45 0.93

(0.83–1.00)

0.88

(0.79–0.99)

0.85

(0.72–0.95)

Ataxia vs.

parkinsonism age

> 45

108, 73 0.60/0.40 0.84

(0.73–0.93)

0.79

(0.69–0.89

0.74

(0.66–0.95)

The columns indicate the number of participants per group (N), the group ratio (N %),

receiving operant area under the curve (AUC), sensitivity (Sens) and Specificity (Spec). For

each measure the mean across cross-validation runs and the 95th confidence intervals

are provided.

troughs (46). Features were grouped in five categories: amplitude
time series (TS) features, peak (Pk) and trough (Th) features
with measures describing properties of the peaks and troughs
separately, peak-to-trough (PkTh) representing the distance and
amplitude between a peak and subsequent trough, and troughs-
to-troughs (Th-Th) capturing the period between troughs. These
categories represent meaningful components that capture the
entire trajectory of TS—states where the index finger is tapping
on the thumb (Th) and when the index finger is maximally
extended (Pk), the trajectory to transition between states (PkTh),
and the cycle from one tap to the other (Th-Th).

The measures captured by each feature group were as follows:
TS: The first three time derivatives (corresponding to

velocity, acceleration, and jerk) were computed from
TS. Using TS and each of the three derivatives, 11
measures were computed: mean, absolute mean, maximum,
minimum, standard deviation, median, 10th and 90th
percentile, range (maximum—minimum), interquartile range
and entropy.

Pk and Th: Time series were generated by using the
amplitude of peaks or troughs and computing their derivatives
up to the 3rd order. The same 11 measures as for the TS
features were extracted. In addition, the slope of a linear
model, representing change over time of the peaks or troughs,
was computed.

PkTh: The time and, separately the amplitude, between a peak
and its subsequent trough was calculated and treated as a time
series. Themean, standard deviation (std) andmedian of the time
and the amplitude differences were extracted.

Th-Th: for each cycle from the trough to the next trough, the
trajectory was parameterized with a quadratic model. The mean,
std and median of the curvature coefficients of the quadratic
models were extracted.

To reduce the dimensionality from 256 to 10, the Principal
Component Analysis (PCA) was calculated for each of the
five feature types and the first two Principal Components
(PCs) were used as features for group classification and
severity estimation.

Classification
The first 2 PCs of the five feature types were used to classify ataxia
vs. parkinsonism, ataxia vs. control (CTR), and parkinsonism
vs. CTR. To address age differences in the groups, classification
performance was assessed on ataxia vs. CTR under 45 years old,
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FIGURE 3 | Classification probabilities and age distribution between pairs of groups. (A) Subjects’ probability of the true class as plotted a function of age (incorrect

predictions are below the dotted line). (B) Age distribution of each group. (C) Subjects’ classification probability plotted as a function of symptom severity for the

Ataxia and parkinsonism (P) groups.

and ataxia vs. parkinsonism above 45 years old. In addition, to
estimate the sensitivity in classifying mild ataxia, a mild-ataxia
group was selected with a BARS arm score on the dominant arm
<= 0.5 and classified against the CTR group. In Figure 2 some
features are plotted from subjects representing their group.

Logistic regression with L1 or L2 penalty using the scikit
package (47) was used and the model performance was tested
with a 10-fold cross validation. To avoid overfitting, participants
with repeated visits were always in the same fold when cross
validation was performed. The regularization parameter was
estimated in a non-nested 10-fold cross validation (48).

Regression
As in the classification, the first 2 PCs of the five feature types
were used to predict behavioral scores. Three different models
were employed to predict severity. One model was trained using
the combination of all three groups together (ataxia, CTR, and
PD), the second model was trained on only ataxia and CTR
data and the third was trained on parkinsonism and CTR.
Measures that we aimed to predict included common arm score

from dominant and non-dominant sides, and Total BARS (for
ataxia participants) and UPDRS (for parkinsonism participants).
Ridge regression was used for prediction, and cross validation
and hyperparameter tuning was performed as explained in the
classification section.

RESULTS

Disease Classification
Binary classification results between groups are shown in
Table 2. Classification performance was high for ataxia vs.
CTR (AUC 0.92) and ataxia vs. parkinsonism (AUC 0.91), but
lower for parkinsonism vs. CTR (AUC 0.68). To assess the
performance with mild-ataxia only participants, a model was
trained against controls. The model performed well with an
AUC of 0.72. As expected, performance decreased as differences
with control participants would be smaller. In order to account
for age differences, two models were trained: one including
ataxia participants with age below 45 years vs. controls, and
another including ataxia participants older than 45 against PD.
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FIGURE 4 | Feature characterization across ataxia, controls and parkinsonism (P). The first and second Principal Components (PCs) used as features for classification

and symptom severity prediction are plotted as boxplots in the first and second row. The third row illustrates the 2d representation of the first two PCs per group.

Performance of the first models (ataxia age< 45 vs. controls) had
AUC of 0.93 while the second model (ataxia age > 45 vs. PD)
AUC was 0.84.

To further evaluate how age and disease severity may
affect model performance, correlation between classification
probability were calculated. Only Ataxia’s classification
probability significantly correlated with age and common
arm score. In the Ataxia vs. CTR, it correlated mildly with
age (r = −0.18, p-value < 0.05) and with severity (r = 0.45,
p-value < 0.001), similarly, in Ataxia vs. PD, age correlated
significantly (r = −0.36, p-value < 0.05) as well as common
arm score (r = 0.50, p-value < 0.001). The correlation between
age and severity in the Ataxia group was r = −0.37, p-value >

0.001, thus severity might contribute to the age and classification
probability correlation. In Figure 3, scatter plots represent the
relationship between group classification probabilities and age
and common arm score. Figure 3B shows the distributions of
age within groups, likely contributing to the correlation between
classification probabilities and age. In Supplementary Figure 2

the age distribution and scatter plots with classification
probabilities and age or severity are plotted for the extended
analysis with the mild-ataxia and for ataxia with bounded
age ranges.

In order to understand the general feature categories that
contributed to model performance, on Figure 4 first two rows
feature group box plots for the first and second PC representing
the mean and quartiles of their distributions. Although the
models are multivariate, individual visual inspection of the
groups provide a sense of their discriminative power. This can
be noted with the first PC of the Th-Th where the mean of the
ataxia group is lower compared to the other groups. On Figure 4

row 3, the first two principal components are represented in
a scatter plot. The separation between groups becomes more
evident, with the ataxia group being spatiallymore separated than
parkinsonism and controls, and explains the higher performance
of the models in detecting ataxia.

To investigate the importance of individual features in
separating group classes, the model weights representing the
first two principal component contributions were multiplied by
the PCA weights of the individual features, which indicate the
features’ contribution to the principal components. In Figure 5,
the individual feature contributions to the model are represented
for each group pair. The trough-to-trough (Th-Th) and peak
(Pk) features contributed the most to discrimination between
Ataxia vs. CTR. This can also be noted in Figure 3. Specifically,
in the Th-Th, the average and std of the curvature coefficient
(Th-Th acc) were larger in the ataxia group, indicating longer
and more variable periods from tap to tap. With respect to the
PK features, higher mean and std of velocity and acceleration
(indicating higher peaks that change more over time), lower
minimum values and 10th percentile were the most useful
for correct classification of ataxia patients and controls. In
contrast, classification of Ataxia against parkinsonism relied
mostly on the TS features, with ataxia patients having larger
10th percentile and lower std. This indicated higher kurtosis
for the Ataxia compared to parkinsonism but lower values
compared to CTR, where the TS features distribution was less
represented in the tails compared to the center. As can be
seen, features with higher discriminatory power in one group
might not be in another. In Supplementary Table 1, the T-scores
of the most different measures between groups are reported
for reference.
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FIGURE 5 | Model weights for group classification in ataxia, control and parkinsonism (P). For each pair of groups, a bar plot indicates the contribution of individual

features in discriminating group classes. The bar plot values reflect the model weights of the PC features *individual weight of the PC. Positive weights denote higher

feature values in the first group and vice versa. Only the largest 2% of the features are plotted. Due to the L1 penalty, some features were assigned zero weights and

not plotted, hence for the Ataxia vs. parkinsonism the number of features are smaller than the other group pairs. vel, velocity; acc, acceleration; avg, average; tavg,

total or absolute average; amp, amplitude; med, median; pth10, 10th percentile; pth90, 90th percentile.

TABLE 3 | Model performance in predicting symptom severity with different

groups.

Common arm

score D

Common arm

score ND

BARS/UPDRS Total

r r2 r r2 r r2

Ataxia + CTR 0.64 0.41 0.67 0.44 0.64 0.41

Parkinsonism 0.41 0.17 0.29 0.08 0.43 0.18

+ CTR

Ataxia 0.55 0.31 0.56 0.33 0.53 0.28

Parkinsonism 0.21 0.04 0.25 0.06 0.42 0.18

The target measure is the estimated common arm score in the dominant (D) or non-

dominant (N), and the BARS total in the Ataxia or UPDRS total in the Parkinsonism.

As a performance measure, the correlation coefficient (r) and the coefficient of

determination (r2).

Clinical Scores Prediction
Using the first two principal components of the five feature
types, models were trained to predict arm scores and total BARS
or UPDRS. As shown in Table 3, the best performance was
seen for the models trained on Ataxia and CTR data, with the
non-dominant/dominant arm models achieving a correlation
coefficient between predicted and actual scores of r = 0.67/0.64
and r2 explained variance of 44/41%. The score prediction
performance with the Ataxia group only was considerably

lower, with the non-dominant arm score r = 0.56, and r2
explained variance of 33%. The correlations between empirical
and predicted scores can be seen in Figure 6. Performance of
predicting parkinsonism scores was low, with the dominant arm
score achieving the highest performance of r= 0.41 and r2= 0.17
in the parkinsonism and CTR groups and r = 0.21 and r2= 0.04
for the parkinsonism group only.

To assess the contribution of individual features to the models
explaining Ataxia severity scores, the product of the models
weights and the PC weights were computed. Figure 7 illustrates
the individual features contribution. As expected, the features
with the highest representation in models trained to estimate
common arm score dominant and non-dominant were similar.
As in the classification between Ataxia and CTR, the Th-Th
was the most contributing feature set. It represents the period
from one trough to the other, i.e. from one index tap on the
thumb to the next. The mean and std of the curvature parameter
captured by the acceleration coefficient predicted Ataxia severity
the most. In Figure 2 the FT curvatures from a representative
subject for each group are illustrated. Higher mean indicates
less concave curvature, i.e. flatter inverted U shape, and the std
indicates that the period from trough to trough is more variable.
The next feature type of most relevance was the TS. Especially,
the total average and std of the TS velocity and acceleration.
In Supplementary Table 2, the correlation of these features with
Ataxia scores are reported.
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FIGURE 6 | Score prediction with respect to the true clinical score for the

Ataxia and CTR group. The scatter plot represents the estimated score vs. the

real one, the shadow around the fitted line represents the bootstrapping 95th

confidence intervals.

DISCUSSION

Features extracted from video recordings during a finger
tapping task can provide an objective measurement of
upper extremity motor severity in Ataxia. In this study
we demonstrate its effectiveness in classifying the ataxia
phenotype against control and parkinsonism populations
with an AUC > 0.90, and in quantifying motor function
severity with a correlation of r > 0.6 between the predicted
and true clinical scores. This approach can be useful
for frequent and remote assessments and for tracking
disease progression, as this type of video assessment
is cost effective and can be performed at any desired

frequency. This observer-independent analysis from
features extracted after preprocessing converges on the
clinical understanding, providing mutual support for the
conclusion, and further evidence in support of the success
of the method described: a single discrete movement
as a reflection of the larger motor ataxia assessment and
severity determination.

Sensitivity in detecting ataxia was above 0.90 with respect to
controls and parkinsonism participants. As expected, sensitivity
in detecting ataxia increased as ataxia severity increased
(Figure 3C). There were substantial age differences between the
three groups, however models performed well after restricting
the age range to better age-match the groups (Table 3). The
first principal component (PC) of the trough-to-trough (Th-
Th) and peak (Pk) features was the most important for
classifying Ataxia against controls. The time series (TS) features
had the most contribution in discriminating Ataxia against
parkinsonism participants. Based on the model’s weights, the
curvature of the quadratic model parametrizing the trough-
to-trough (Th-Th) trajectories (plotted in Figure 2D), is
wider and more variable in Ataxia compared to CTR. As
reported in Supplementary Table 2, the median of the quadratic
coefficients of the Th-Th was larger in Ataxia compared to
CTR (t = 9, p-value > 0.001). The PK features capture
position changes of the index finger when maximally extended
before going back to tap the thumb. In Ataxia, compared
to CTR, the mean and std of PK velocity and acceleration
were higher, likely reflecting that the end positions of the
index finger were more variable and erratic over time. When
measuring statistical differences of individual features, reported
in Supplementary Table 3, the individual PK features were not
the most significant in the group of feature types. Instead,
the power spectrum peak frequency was the most prominent,
with ataxia having a lower peak frequency. Overall, the
results are in accordance with clinical manifestations of ataxia
characterized by impairment of rate, rhythm and force, and
aligned with previous studies indicating higher spatiotemporal
variability and slower finger tapping in individuals with ataxia
(38, 49–52).

Performance in predicting severity scores in Ataxia was high,
especially considering that finger tapping is only one of several
tasks used by clinicians to assess upper extremity dysfunction.
Models achieved good performance with correlation coefficients
ranging 0.64–0.67, explaining 41–44% of the variance. BARS
arm scores are discretized in relatively coarse intervals, whereas
Total BARS is more continuous as it is an aggregation of
multiple scores from the five BARS tasks. Model performance in
predicting Total BARS and dominant arm scores were similar,
indicating that discretization did not hinder performance and
that the finger tapping features were capable of substantially
predicting both arm and overall Ataxia severity. The main
feature types that contributed in predicting severity scores
were similar to the classification models, namely, the Th-
Th and the TS features. This provides supporting evidence
of the importance of these features for Ataxia diagnosis and
severity estimation.

Frontiers in Neurology | www.frontiersin.org 8 February 2022 | Volume 12 | Article 795258

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Nunes et al. Ataxia Classification and Prediction

FIGURE 7 | Model weights for clinical scores prediction. The bar plots indicate the magnitude and the sign of each feature contribution to predict the clinical scores.

vel, velocity; acc, acceleration; avg, average; tavg, total or absolute average; med, median; pth10, 10th percentile.

The video data in this study did not contain depth
measurements, thus only two-dimensional landmarks were
obtained. The absence of depth measurements in our study is
a limitation. If during finger tapping participants moved the
hand toward or away from the camera, in our 2D frame, it
would represent a change of amplitude in the distance between
the index and the thumb. The changes in amplitude of the
tapping, thus, could be influenced by changes in the distance
between the hand and the camera. That being said, participants
were instructed to hold the hand in one position and not to
move during the finger tapping assessment and if substantial
movement was observed the participant was asked to repeat
the task.

The approach employed in using video recordings to
train machine learning models to detect ataxia and quantify
the severity could help in tracking disease progression and
make motor assessments more accessible to remote or
resource-limited communities. The results indicate that
this approach can accurately discriminate Ataxia from
healthy individuals and from individuals with parkinsonism
and can quantify upper limb and total disease severity.
Future studies could benefit from combining video-
based assessments across several motor tasks, which
likely would lead to a more comprehensive phenotypic
characterization with increased accuracy of classification and
severity estimation.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this
article will be made available by the authors, without
undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board at Massachusetts
General Hospital. Written informed consent to participate in this
study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

AN, SK, and AG contributed to the conception, design of the
study, drafting the text and figures. CS, JS, and AG contributed
to the acquisition of the data. AN, NK, SK, and AG contributed
to the analysis of the data. All authors revised the manuscript for
intellectual content.

FUNDING

This work was supported by U.S. Department of Health &
Human Services | NIH | Center for Scientific Review (NIH
Center for Scientific Review) - 1R01EB0009048 [SK], DH | NIHR
| Health Technology Assessment Programme (NIHR Health
Technology Assessment Programme) - R01 NS117826 [AG]
Ataxia-Telangiectasia Children’s Project, Biogen Inc., [AG]. The
authors declare that this study received funding fromBiogen. The
funder was not involved in the study design, collection, analysis,
interpretation of data, the writing of this article or the decision to
submit it for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2021.795258/full#supplementary-material

Frontiers in Neurology | www.frontiersin.org 9 February 2022 | Volume 12 | Article 795258

https://www.frontiersin.org/articles/10.3389/fneur.2021.795258/full#supplementary-material
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Nunes et al. Ataxia Classification and Prediction

REFERENCES

1. Schmahmann JD, Gardner R, MacMore J, Vangel MG. Development of a brief
ataxia rating scale (BARS) based on a modified form of the ICARS. Mov

Disord. (2009) 24:1820–8. doi: 10.1002/mds.22681
2. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S,

Depondt C, et al. Scale for the assessment and rating of ataxia:
development of a new clinical scale. Neurology. (2006) 66:1717–20.
doi: 10.1212/01.wnl.0000219042.60538.92

3. Richards M, Marder K, Cote L, Mayeux R. Interrater reliability of the Unified
Parkinson’s Disease Rating Scale motor examination. Mov Disord. (1994)
9:89–91. doi: 10.1002/mds.870090114

4. Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, et al.
Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale.
Neurology. (2005) 64:1261–2. doi: 10.1212/01.WNL.0000156802.15466.79

5. Schuh LA, London Z, Neel R, Brock C, Kissela BM, Schultz L, et al.
Education research: bias and poor interrater reliability in evaluating
the neurology clinical skills examination. Neurology. (2009) 73:904–8.
doi: 10.1212/WNL.0b013e3181b35212

6. Blekher T, Johnson SA, Marshall J, White K, Hui S, Weaver M, et al. Saccades
in presymptomatic and early stages of Huntington disease. Neurology. (2006)
67:394–9. doi: 10.1212/01.wnl.0000227890.87398.c1

7. Christova P, Anderson JH, Gomez CM. Impaired eye movements in
presymptomatic spinocerebellar ataxia type 6. Arch Neurol. (2008) 65:530–6.
doi: 10.1001/archneur.65.4.530

8. Rao AK, Gordon AM, Marder KS. Coordination of fingertip forces during
precision grip in premanifest Huntington’s disease. Mov Disord. (2011)
26:862–9. doi: 10.1002/mds.23606

9. Ilg W, Fleszar Z, Schatton C, Hengel H, Harmuth F, Bauer P, et al. Individual
changes in preclinical spinocerebellar ataxia identified via increased motor
complexity.Mov Disord. (2016) 31:1891–900. doi: 10.1002/mds.26835

10. Rentz DM, Parra Rodriguez MA, Amariglio R, Stern Y, Sperling R, Ferris S.
Promising developments in neuropsychological approaches for the detection
of preclinical Alzheimer’s disease: a selective review. Alzheimer’s Res Ther.

(2013) 5:58. doi: 10.1186/alzrt222
11. Bove R, White CC, Giovannoni G, Glanz B, Golubchikov V, Hujol J, et al.

Evaluating more naturalistic outcome measures. Neurology. (2015) 2:e162.
doi: 10.1212/NXI.0000000000000162

12. Dodge HH, Zhu J, Mattek NC, Austin D, Kornfeld J, Kaye JA. Use
of High-Frequency In-Home Monitoring Data May Reduce Sample
Sizes Needed in Clinical Trials. PLoS ONE. (2015) 10:e0138095.
doi: 10.1371/journal.pone.0138095

13. Mentiplay BF, Tan D, Williams G, Adair B, Pua Y-H, Bower KJ,
et al. Assessment of isometric muscle strength and rate of torque
development with hand-held dynamometry: Test-retest reliability and
relationship with gait velocity after stroke. J Biomech. (2018) 75:171–5.
doi: 10.1016/j.jbiomech.2018.04.032

14. Rutkove SB, Narayanaswami P, Berisha V, Liss J, Hahn S, Shelton K, et al.
Improved ALS clinical trials through frequent at-home self-assessment:
a proof of concept study. Ann Clin Transl Neurol. (2020) 7:1148–57.
doi: 10.1002/acn3.51096

15. Nguyen KD, Pathirana PN, Horne M, Power L, Szmulewicz DJ. Entropy-
based analysis of rhythmic tapping for the quantitative assessment
of cerebellar ataxia. Biomed Signal Process Control. (2020) 59:101916.
doi: 10.1016/j.bspc.2020.101916

16. Martinez-Manzanera O, Lawerman TF, Blok HJ, Lunsing RJ, Brandsma R,
Sival DA, et al. Instrumented finger-to-nose test classification in children with
ataxia or developmental coordination disorder and controls. Clin Biomech.

(2018) 60:51–9. doi: 10.1016/j.clinbiomech.2018.10.007
17. Krishna R, Pathirana PN, Horne M, Power L, Szmulewicz DJ. Quantitative

assessment of cerebellar ataxia, through automated limb functional
tests. J Neuroeng Rehabil. (2019) 16:31. doi: 10.1186/s12984-019-0
490-3

18. Oubre B, Daneault J-F, Whritenour K, Khan NC, Stephen CD,
Schmahmann JD, et al. Decomposition of Reaching Movements Enables
Detection and Measurement of Ataxia. Cerebellum. (2021) 20:811−22.
doi: 10.1007/s12311-021-01247-6

19. Khan NC, Pandey V, Gajos KZ, Gupta AS. Free-living motor
activity monitoring in Ataxia-Telangiectasia. Cerebellum. (2021) 1–12.
doi: 10.1007/s12311-021-01306-y. [Epub ahead of print].

20. LeMoyne R, Heerinckx F, Aranca T, De Jager R, Zesiewicz T, Saal HJ.Wearable
body and wireless inertial sensors for machine learning classification of gait
for people with Friedreich’s ataxia. In: BSN 2016 - 13th Annual Body Sensor

Networks Conference. Piscataway, NJ (2016). doi: 10.1109/BSN.2016.7516249
21. Ilg W, Seemann J, Giese M, Traschütz A, Schöls L, Timmann D,

et al. Real-life gait assessment in degenerative cerebellar ataxia:
Toward ecologically valid biomarkers. Neurology. (2020) 95:e1199–210.
doi: 10.1212/WNL.0000000000010176

22. Arcuria G, Marcotulli C, Galasso C, Pierelli F, Casali C. 15-White Dots
APP-Coo-Test: a reliable touch-screen application for assessing upper limb
movement impairment in patients with cerebellar ataxias. J Neurol. (2019)
266:1611–22. doi: 10.1007/s00415-019-09299-9

23. Gajos KZ, Reinecke K, Donovan M, Stephen CD, Hung AY, Schmahmann
JD, et al. Computer Mouse Use Captures Ataxia and Parkinsonism,
Enabling AccurateMeasurement andDetection.MovDisord. (2020) 35:354–8.
doi: 10.1002/mds.27915

24. White RW, Murali Doraiswamy P, Horvitz E. Detecting neurodegenerative
disorders from web search signals. npj Digital Medicine. (2018) 1:8.
doi: 10.1038/s41746-018-0016-6

25. Jaroensri R, Zhao A, Balakrishnan G, Lo D, Schmahmann JD, Durand F, et al.
A Video-Based Method for Automatically Rating Ataxia. In: Proceedings of
the 2nd Machine Learning for Healthcare Conference Proceedings of Machine

Learning Research. Boston, Massachusetts (2017). p. 204–216.
26. Wong DC, Relton SD, Fang H, Qhawaji R, Graham CD, Alty J, et al.

Supervised classification of Bradykinesia for Parkinson’s disease diagnosis
from smartphone videos. In: 2019 IEEE 32nd International Symposium

on Computer-Based Medical Systems (CBMS). Cordoba (2019). 32–37.
doi: 10.1109/CBMS.2019.00017

27. Li T, Chen J, Hu C, Ma Y, Wu Z, Wan W, et al. Automatic timed up-and-
go sub-task segmentation for Parkinson’s disease patients using video-based
activity classification. IEEE Trans Neural Syst Rehabil Eng. (2018) 26:2189–99.
doi: 10.1109/TNSRE.2018.2875738

28. Khan T, ZeeshanA, DoughertyM. A novel method for automatic classification
of Parkinson gait severity using front-view video analysis. Technol Health
Care. (2020) 29:643–53. doi: 10.3233/THC-191960

29. Sabo A,Mehdizadeh S, Ng K-D, Iaboni A, Taati B. Assessment of Parkinsonian
gait in older adults with dementia via human pose tracking in video data. J
Neuroeng Rehabil. (2020) 17:97. doi: 10.1186/s12984-020-00728-9

30. Khan T, Nyholm D, Westin J, Dougherty M. A computer vision framework
for finger-tapping evaluation in Parkinson’s disease. Artif Intell Med. (2014)
60:27–40. doi: 10.1016/j.artmed.2013.11.004

31. Williams S, Zhao Z, Hafeez A, Wong DC, Relton SD, Fang H, et al. The
discerning eye of computer vision: Can it measure Parkinson’s finger tap
bradykinesia? J Neuol Sci. (2020) 416:117003. doi: 10.1016/j.jns.2020.117003
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