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Functional cortical localization 
of tongue movements using 
corticokinematic coherence 
with a deep learning‑assisted 
motion capture system
Hitoshi Maezawa1*, Momoka Fujimoto2, Yutaka Hata2, Masao Matsuhashi3, 
Hiroaki Hashimoto1,4, Hideki Kashioka5, Toshio Yanagida5 & Masayuki Hirata1

Corticokinematic coherence (CKC) between magnetoencephalographic and movement signals using 
an accelerometer is useful for the functional localization of the primary sensorimotor cortex (SM1). 
However, it is difficult to determine the tongue CKC because an accelerometer yields excessive 
magnetic artifacts. Here, we introduce a novel approach for measuring the tongue CKC using a deep 
learning‑assisted motion capture system with videography, and compare it with an accelerometer 
in a control task measuring finger movement. Twelve healthy volunteers performed rhythmical 
side‑to‑side tongue movements in the whole‑head magnetoencephalographic system, which were 
simultaneously recorded using a video camera and examined using a deep learning‑assisted motion 
capture system. In the control task, right finger CKC measurements were simultaneously evaluated 
via motion capture and an accelerometer. The right finger CKC with motion capture was significant 
at the movement frequency peaks or its harmonics over the contralateral hemisphere; the motion‑
captured CKC was 84.9% similar to that with the accelerometer. The tongue CKC was significant at the 
movement frequency peaks or its harmonics over both hemispheres. The CKC sources of the tongue 
were considerably lateral and inferior to those of the finger. Thus, the CKC with deep learning‑assisted 
motion capture can evaluate the functional localization of the tongue SM1.

The tongue plays an important role in various critical human functions, including swallowing, mastication, and 
speech, and can perform sophisticated movements. The area of the primary sensorimotor cortex (SM1) repre-
senting the tongue occupies a wide distribution relative to its actual size in the  body1, suggesting the functional 
importance of the SM1 of the tongue region. However, as it is difficult to measure electromagnetic cortical signals 
during tongue movements without artifact contamination because of the short distance between the tongue and 
brain, the cortical representation of the tongue regions has rarely been examined.

Some previous studies successfully reported the cortical representation of the tongue regions using analysis 
of cortico-muscular coherence (CMC) during sustained tongue  movements2–4 and movement-related cortical 
fields during repetitive tongue  protrusion5. However, a recording time of at least 10 min was required to examine 
the cortical representation of the tongue regions using these approaches. Moreover, in these approaches, it is 
technically challenging to set the EMG electrodes on narrow and wet tongue regions because placing electrodes 
on the tongue could result in discomfort in the subjects, and there is a risk of swallowing the electrode. Thus, 
it is important to establish robust methods for evaluating the functional localization of the tongue region in a 
short recording time to reveal the central mechanisms of fine tongue movements.
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Corticokinematic coherence (CKC) is a useful approach for identifying the SM1 of fingers in healthy  adults6,7, 
 newborns8, and patients with impaired spinocortical proprioceptive pathways in Friedreich  ataxia9. Conven-
tional CKC methods quantify the coupling between magnetoencephalographic (MEG) signals and finger kin-
ematics, which are measured using an accelerometer (ACC) during repetitive, rhythmic, and voluntary finger 
 movements6,10. Previous studies have shown that the CKC mainly reflects the proprioceptive input into the 
 SM111–13; this feature is comparable to the strongest deflections observed in the cortical movement evoked 
fields (MEFs) associated with voluntary finger  movements14–16. However, it is difficult to apply this technique 
to regions of the tongue using an ACC because the ACC produces excessive magnetic artifacts, which easily 
contaminate the cortical magnetic activity due to the short distance between the tongue and MEG sensors. It is 
also technically challenging to set an ACC on narrow and wet tongue regions. Moreover, ACCs with cables have 
the disadvantage of sometimes disturbing the smooth movements of the tongue.

Motion capture through videography is a useful approach for evaluating the motor behaviors of humans and 
other species. Traditionally, motion capture has been performed by placing tracking markers on the target regions 
of the  subject17–21. However, applying this approach to tongues present technical problems because tracking mark-
ers set on wet tongue regions can easily be displaced during tasks involving tongue movements. Moreover, using 
tracking markers pose risks in patients with tongue sensorimotor impairment as they may accidentally swallow 
the tracking markers. Regarding its clinical application, while setting objects on the tongue, it is important to 
reduce the risk of infections such as COVID-19 to the experimenter via the saliva.

Recently, Mathis et al. reported significant progress with the use of “DeepLabCut”22. They implemented a 
systematic method to estimate the tracks of markerless movements. They successfully demonstrated that a small 
number of training images (~ 200) was sufficient to train this network with human-level labeling accuracy. This is 
possible because of transfer learning; the feature detectors are based on extremely deep neural networks, which 
were pretrained on ImageNet. Thus, this method involves the use of transfer learning techniques with deep neural 
networks, and yields outstanding results with minimal training data. This deep learning-assisted motion tracking 
system with DeepLabCut is useful for the application of tongue CKC because it does not use any recording device 
or tracking marker on the tongue, thereby eliminating the previously mentioned disadvantages of magnetic 
device noise, marker displacement, and additional risks of accidental aspiration and infection.

Herein, we introduce a novel approach that utilizes the CKC between the MEG and movement signals of the 
tongue during rhythmic tongue movements based on a deep learning-assisted motion capture system. Our main 
hypothesis is that the source locations for the tongue CKC differs from those of the finger CKC using the deep 
learning-assisted motion tracking system. In addition, to confirm the hypothesis that the CKC using the deep 
learning-assisted motion tracking system is reliable, we validate this CKC approach by comparing the CKC of 
fingers using motion capture with the CKC using ACC.

Methods
Subjects. Twelve healthy volunteers (10 men, 2 women; aged 21–35 years; mean age = 25.0 years) were exam-
ined. The participants were right-handed, as determined by the Edinburgh Handedness  Inventory23. None of the 
subjects had a history of neurological or psychiatric disorders. All the participants provided written informed 
consent before attending the study. The study was approved by the local ethics and safety committees at Osaka 
University Hospital (No. 16469-2) and the Center for Information and Neural Networks (CiNet) at the National 
Institute of Information and Communications Technology (No. 1910280040). The study was conducted in 
accordance with the Declaration of Helsinki.

Movement tasks of tongue and fingers. The subjects were asked to perform constant, rhythmic side-
to-side tongue movements with a slightly opened mouth for at least 3 min in two or three sessions (60–90 s 
each), separated by 30-s rest periods. They were asked to avoid drastic tongue movements to reduce the effects 
of touch sensations from the orofacial regions during tongue movement. They were also requested to relax the 
other orofacial parts during these tasks.

In the control task, the subjects were asked to make constant, rhythmic up-and-down movements of the right 
index finger over a table for at least 3 min in two sessions (90 s each), separated by a resting period of 30 s. During 
the resting periods, subjects were permitted to relax their orofacial muscles and swallow the saliva.

We attempted to observe the rhythmic movements of the right index finger in all twelve subjects (right finger 
condition). Four subjects (Subject 2, 3, 6, 12) performed rhythmical movements for both conditions (right and 
bilateral finger conditions) in a randomized order. The subjects were asked not to touch the table or other fingers 
during the finger movement tasks.

During the tongue and finger movement tasks, the participants were directed to fixate their gaze at a point on 
the wall in a magnetically shielded room to avoid any effects of eye movement or visual perception.

Recordings. MEG and ACC recording. Cortical activity was recorded by CiNet using a whole-head MEG 
system with 360 channels (204 planar gradiometers, 102 magnetometers, and 54 axial gradiometers)  (Neuromag® 
360, Elekta, Helsinki, Finland). Planar gradiometers with 204 channels were used for the analysis. The position of 
the subject’s head inside the MEG helmet was continuously monitored by supplying a current to four coils fixed 
to the scalp for tracking head movements. An electromagnetic tracker was used to fix the coils according to the 
anatomical fiducials (Fastrak, Polhemus, Colchester, VT). The participants were seated in an upright position in 
the magnetically shielded room. To monitor the movements of the right index finger, a three-axis ACC (KXM52-
1050, Kionix, Ithaca, NY, USA) was attached to the nail of the right index finger. The ACC cables were fixed to 
the hand and table using tape to prevent the generation of noise. The MEG and ACC signals were recorded with 
a passband at 0.03–330 Hz, and the signals were sampled at 1 kHz.
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Video and MRI recording. The movements of each target region (the tongue and index fingers) were video-
recorded simultaneously throughout the MEG recording at 120 frames per second (FPS) with a resolution of 
1280 × 720 pixels, using a camera (DMC-FZ200, Panasonic, Osaka, Japan). To obtain a frontal view of each target 
region, the camera was positioned in front of the MEG gantry at a distance of 1.5 m. To record the finger and 
tongue movements, the zoom function of the camera was used to record the images of both hands—including 
the index fingers—and the lower part of the orofacial region (from neck to nasion). To match the onset time 
between the MEG and movement signals with motion capture analysis, the MEG system included a light-emit-
ting diode (LED) that was strobed five times at 1 Hz before and after each movement task and was captured in 
the video images. To determine the brain anatomy of each subject, three-dimensional T1 magnetic resonance 
images (MRIs) were acquired using a 3 T MRI scanner (Siemens MAGNETOM Trio or Vida, Siemens, Munich, 
Germany).

Data analysis. Movement signals with the motion capture system. The movements of the tongue and fin-
gers were analyzed offline via deep learning-assisted motion capture with videography using the open-source 
toolbox,  DeepLabCut22 (https:// github. com/ AlexE MG/ DeepL abCut). DeepLabCut 2.0.6 with CUDA Toolkit 
10.1 and Tensorflow 1.12.0 was used to perform markerless position estimation. The “batch size” of the deep 
neural network (DNN) model was set to one. The image resolution was changed to 960 × 540 pixels. We cropped 
the frames such that the target regions were clearly visible and manually labeled the tip of the tongue/finger in 
each extracted frame. For motion tracking, we trained a general model of movements based on ResNet-50 by 
labeling 100–150 frames selected from the videos for each movement task using k-means  clustering24. The sys-
tem was then trained using a DNN architecture to predict the target regions based on the corresponding images. 
Subsequently, various networks were trained for each target region in 100,000–200,000 iterations as the loss rela-
tively  flattened22,24. The trained networks could track the locations of the target regions in the full sets of video 
segments (Supplementary Videos 1, 2). The labeled x-axis (i.e. left–right) and y-axis (i.e. bottom-top) positions 
of the pixels in each frame were stored and exported in CSV format for subsequent analysis using MATLAB (The 
MathWorks, Natick, Massachusetts, USA). The Euclidian norm of the two orthogonal (x- and y-axes) signals 
with baseline correction was used as the movement signal for motion capture.

Coherence between MEG and movement signals. The raw MEG signals were spatially filtered offline with the 
temporal extension of the signal space separation  method25,26 using MaxFilter (version 2.2.12, Elekta Neuromag, 
Finland). The MEG and ACC signals were adjusted by down-sampling to 500 Hz. The movement signals were 
adjusted by up-sampling with the motion capture system to match the MEG signals at 500 Hz. LED flashes were 
applied to the images for correction between the MEG and movement signals with motion capture.

The coherence spectra between the MEG and rectified movement signals with motion capture were calculated 
using the method proposed by  Welch27 for the estimation of spectral density, where half-overlapping samples, a 
frequency resolution of 0.5 Hz, and a Hanning window were used. The following equation was used to determine 
the coherence (Cohxy).

where fxx(λ) and fyy(λ) respectively denote the values of the auto-spectra of the MEG signals and rectified move-
ment signals with motion capture for a given frequency, λ, and fxy(λ) represents the cross-spectrum between 
fxx(λ) and fyy(λ). We used the position data as movement signals for the CKC analysis with capture motion since 
the mean CKC value is within 5% error among approaches using position, velocity, and acceleration (Supplemen-
tary Table 1). The coherence spectra between the MEG and Euclidian norm of the three orthogonal ACC signals 
(x-axis (i.e. left–right), y-axis (i.e. bottom-top), z-axis (i.e. near-far)) from right index finger were also calculated.

We checked the epochs comprising artifacts related to unintended orofacial muscle movements such as cough-
ing, which were distinguished through visual inspection. 96.83 ± 1.79 (mean ± standard error of the mean (SEM)) 
(ranging from 88 to 107 (n = 12)) samples were obtained for the tongue CKC. The epochs for the finger CKC 
included 96.42 ± 1.52 (ranging from 87 to 106 (n = 12)) samples for the right finger condition and 105.00 ± 3.24 
(ranging from 98 to 111 (n = 4)) samples for the bilateral finger condition. According to the method proposed by 
Rosenberg et al.28, all coherence values above Z were considered to be significant at p < 0.01, where Z = 1–0.01(1/L−1) 
and L denotes the total number of samples for the auto- and cross-spectrum analyses.

The cross-correlogram in the time domain was calculated by applying an inverse Fourier transformation to 
the averaged cross-spectra for the tongue CKC and right finger CKC with motion capture. The cross-correlogram 
underwent bandpass filtering at 1–45 Hz. Isocontour maps were constructed at the time points at which the peaks 
of the cross-correlogram were observed. The sources of the oscillatory MEG signals were modeled as equivalent 
current dipoles (ECDs). To estimate the ECD locations, the spherical head model was adopted; the center of this 
model was consistent with the local curvature of the brain surface of an individual, as determined by the  MRI29. 
Only the ECDs with a goodness-of-fit value of at least 85% were accepted. One subject (Subject 11) was excluded 
from the ECD analysis of the tongue CKC due to an insufficient goodness-of-fit criterion.

Statistical analysis. The data are expressed as the mean ± SEM. An arc hyperbolic tangent transformation was 
used to normalize the values of the coherence to ensure that the variance was  stabilized30. The values of the 
CKC of the tongue were analyzed between the left and right hemispheres using paired t-tests. The statistical 
significance level was set to p < 0.05. The ECD locations over the left hemisphere along each axis (x-, y-, and 
z-axes) were analyzed between the tongue CKC and right finger CKC using paired t-tests with Bonferroni cor-
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rection. The corrected p value with Bonferroni correction was set to p < 0.0167 (0.05/3). The x-axis intersected 
the preauricular points from left to right; the y-axis intersected the nasion; the z-axis was perpendicular to the 
plane determined by the x- and y-axes.

Ethics approval statement. The study was approved by the local ethics and safety committees at Osaka 
University Hospital (No. 16469-2) and the Center for Information and Neural Networks (CiNet) at the National 
Institute of Information and Communications Technology (No. 1910280040). All the participants provided 
written informed consent in accordance with the ethical standards stated in the Declaration of Helsinki.

Results
Figure 1A,B depict representative raw data and power spectra of the movement signals with motion capture 
and the ACC, respectively, for the right finger condition of Subject 2. Cyclic rhythms were observed at a specific 
frequency band of the finger movements for both motion capture and the ACC (Fig. 1A). The peak of the power 
spectra of movement signals with both motion capture and the ACC exhibited the same frequency band of 
movement rhythms, at 3.3 Hz (indicated by arrows) (Fig. 1B). The peak CKC of the right finger was observed 
over the contralateral hemisphere at 7.0 Hz with both motion capture (CKC value = 0.61) and the ACC (CKC 
value = 0.60), around the harmonic frequency band of finger movements (Fig. 1C). The peak CKC of the tongue 
was observed over the left hemisphere (CKC value: 0.43) and right hemisphere (CKC value: 0.46) at 3.3 Hz, 
around the harmonic frequency band of tongue movements (Fig. 2A[1,2]).

For the right finger condition, the peak frequencies of the power spectrum of the movement signals were the 
same, at 1.8–3.8 Hz for both motion capture and the ACC (Table 1). The coherence spectra exhibited significant 

Figure 1.  (A) Raw data of movement signals obtained through motion capture and an accelerometer (ACC), 
and magnetoencephalographic (MEG) signal from the contralateral (left) Rolandic sensor for the right finger 
movement condition of a single participant (Subject 2). Cyclical rhythms are observed at a specific frequency 
band of finger movements using both the motion capture and ACC. (B) Power spectra of movement signals 
obtained through motion capture and the ACC for the right finger movement condition of a single participant 
(Subject 2). The scale of the x-axis is 10 Hz. Note that the peak frequency occurs in the same frequency band 
of finger movement, i.e., at 3.3 Hz, in both the motion capture and ACC results (indicated by arrows). (C) 
Corticokinematic coherence (CKC) waveform from a representative channel over the contralateral hemisphere 
for the right finger movement condition of a single participant (Subject 2) using motion capture and the ACC. 
The scale of the x-axis is 10 Hz. The horizontal dashed line indicates a significance level of 99%. The CKC peak 
is observed at 7.0 Hz in the motion capture (CKC value: 0.61) and ACC (CKC value: 0.60) results around the 
harmonic frequency band of the finger movements.
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peaks (p < 0.01) over the contralateral hemisphere at 2.0–7.0 Hz and 2.0–7.0 Hz with motion capture and the 
ACC, respectively, corresponding to the frequencies of finger movements or their harmonics in all 12 subjects 

Figure 2.  (A)[1,2] Corticokinematic coherence (CKC) waveform for the tongue from a representative channel 
over the left [1] and right [2] hemispheres of a single participant (subject 1). The scale of the x-axis is 10 Hz. 
The horizontal dashed line indicates a significance level of 99%. The CKC peak is observed at 3.3 Hz in the left 
hemisphere (CKC value: 0.43) and right hemisphere (CKC value: 0.46). [3–5] Spatial distribution of the 1-s-long 
cross-correlogram for the tongue of a single participant (subject 1). The largest peaks of the cross-correlogram 
occurred in the Rolandic sensors of the left [4] and right [5] hemispheres for the tongue CKC. B. Isocontour 
maps and dipole locations for the tongue (B) and finger (C) of Subject 1. The time points that showed the cross-
correlation peaks were used to obtain the contour map. The incoming and outgoing magnetic fluxes are denoted 
by the blue and red lines, respectively (B[1],C[1]). The green arrows denote the directions and locations of the 
equivalent current dipoles (ECDs), which were projected onto the surface of the skull. The arrowheads indicate 
the negative poles of the ECDs. The ECDs (blue dots) of the tongue (B[2]) and finger (C(2]) are superimposed 
on magnetic resonance image slices of the participant. The directions of the blue lines represent the negative 
poles of the ECDs. Both ECDs are located at the central sulcus (B[2],C[2]). The locations of the ECDs of the 
tongue are estimated to be more lateral, anterior, and inferior to those of the finger. Lt left side.
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(Table 1). The CKC value with motion capture (mean, 0.433) was compared with that of CKC with the ACC 
(mean, 0.510), achieving a similarity of 84.9% (Table 1). For the bilateral finger condition, the CKC also exhibited 
peaks for each side of the finger in all 4 subjects (Table 2).

For the tongue movements, the peak frequencies of the power spectrum of the movement signals were 
detected at 1.3–3.3 Hz (Table 3). The CKC spectra for the tongue showed significant peaks (p < 0.01) at 2.5–5.3 Hz 
over the left hemisphere and at 2.5–6.0 Hz over the right hemisphere in all subjects, corresponding to the 
frequency of tongue movements or their harmonics (Table 3). The CKC values were not significantly different 
between the left (mean, 0.203) and right (mean, 0.188) hemispheres (p = 0.499) (Table 3).

The spatial distributions of the cross-correlogram of the finger and tongue CKC showed peaks over the con-
tralateral and bilateral hemispheres (Fig. 2A[3–5]), respectively. Dipolar field patterns, which were centered on 
the Rolandic sensors, were observed at the principal peaks of the cross-correlogram (Fig. 2B[1]). The sources for 
the tongue CKC were estimated to be over the left and right SM1 in 11 subjects, respectively (Fig. 2B[2]). For the 
right finger CKC, the isofield contour maps also showed a clear dipolar pattern (Fig. 2C[1]). The sources for the 
right finger CKC were located in the SM1 over the contralateral hemisphere in all of the 12 subjects (Fig. 2C[2]). 
The results of the paired t-test implied that the locations of the ECDs of the tongue were considerably lateral 
(mean = 13.99 mm; p < 0.001; paired t-test with Bonferroni correction) and inferior (mean = 20.78 mm; p < 0.001), 
but not anterior (mean = 5.15 mm; p = 0.029) to those of the finger (Fig. 3).

Table 1.  Peak frequency and values of CKC of the fingers—right finger conditions. ACC  accelerometer, Ave 
average, CKC corticokinematic coherence, Max maximum, Min minimum, Movement signal power spectrum 
of the movement signal, SEM standard error of the mean, Sub subject number.

Sub

Peak frequency (Hz)

CKC valueMovement signal CKC

ACC Motion capture ACC Motion capture ACC Motion capture

1 1.8 1.8 3.3 3.3 0.80 0.69

2 3.3 3.3 7.0 7.0 0.60 0.61

3 2.0 2.0 4.0 4.0 0.47 0.44

4 3.8 3.8 3.3 3.3 0.41 0.32

5 2.0 2.0 4.0 3.5 0.44 0.55

6 1.8 1.8 3.3 3.3 0.65 0.49

7 1.8 1.8 3.8 3.8 0.35 0.32

8 2.8 2.8 3.0 5.5 0.33 0.34

9 2.0 2.0 4.0 3.8 0.56 0.47

10 2.0 2.0 2.0 2.0 0.66 0.55

11 2.5 2.5 5.0 5.3 0.55 0.26

12 2 2 2 2 0.29 0.19

Ave 2.32 2.32 3.56 3.49 0.510 0.433

Min 1.8 1.8 2.0 2.0 0.29 0.19

Max 3.8 3.8 7.0 7.0 0.80 0.69

SEM 0.19 0.19 0.41 0.43 0.044 0.043

Table 2.  Peak frequency and values of CKC of the fingers—bilateral finger conditions. ACC  accelerometer, 
CKC corticokinematic coherence, Lt left finger, Movement signal power spectrum of the movement signal, Rt 
right finger, Sub subject number.

Sub

Peak frequency (Hz)

CKC valueMovement signal CKC

ACC 
Motion 
capture ACC 

Motion 
capture ACC 

Motion 
capture

Rt Rt Lt Rt Rt Lt Rt Rt Lt

2 3.0 3.0 3.0 6.0 6.0 3.3 0.48 0.22 0.22

3 2.3 2.3 2.3 2.3 2.3 2.3 0.69 0.49 0.38

6 2.0 2.0 2.0 2.0 2.0 4.3 0.36 0.26 0.20

12 2.5 2.5 2.5 5.0 2.5 2.8 0.36 0.24 0.22
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Discussion
Significant coherence between MEG and tongue movement signals was detected over the bilateral hemispheres 
using deep learning-assisted motion capture with videography. The sources of the coherence activity were 
detected in the bilateral SM1 of the tongue region, which were found to be considerably lateral and inferior to 
the finger SM1, corresponding to the classical homunculus. These results suggest that the use of deep learning-
assisted motion capture in CKC is a robust and useful approach for evaluating the functional localization of the 
tongue SM1.

The reliability of measuring CKC using motion capture is comparable to that of the conventional ACC-based 
CKC  method6,31, as evidenced by the fact that the finger CKC value obtained using motion capture achieved 
a similarity of 84.9% when compared with the CKC value obtained using the ACC and the finger CKC value 
obtained using ACC. In addition, the power spectrum of movement signals and CKC showed the same peak 

Table 3.  Peak frequency and values of CKC of the tongue. Ave average, CKC corticokinematic coherence, Lt 
hemis left hemisphere, Max maximum, Min minimum, Movement signal power spectrum of the movement 
signal, Rt hemis right hemisphere, SEM standard error of the mean, Sub subject number.

Sub

Peak frequency (Hz)

CKC value

Movement signal

CKC

Lt hemis. Rt hemis. Lt hemis. Rt hemis.

1 1.8 3.3 3.3 0.43 0.46

2 2.5 5.3 5.3 0.26 0.25

3 2.5 3.5 3.3 0.34 0.16

4 2.8 5.0 6.0 0.19 0.21

5 1.5 2.8 3.0 0.14 0.09

6 2.3 4.3 4.3 0.17 0.10

7 1.5 2.8 2.5 0.14 0.11

8 3.0 3.0 2.5 0.14 0.19

9 1.3 2.5 2.5 0.18 0.29

10 1.5 3.0 3.3 0.13 0.17

11 3.3 3.3 3.3 0.14 0.12

12 1.8 4.0 4.0 0.18 0.11

Ave 2.15 3.57 3.61 0.203 0.188

Min 1.3 2.5 2.5 0.13 0.09

Max 3.3 5.3 6.0 0.43 0.46

SEM 0.19 0.26 0.32 0.027 0.031

Figure 3.  Average locations of the ECDs of the tongue and finger CKCs on the x-, y-, and z-axes, considering 
all participants. The data points represent the means ± SEM values. The locations of the ECDs of the tongue are 
considerably lateral and inferior to those of the finger. The x-axis intersects the preauricular points from left to 
right; the y-axis passes through the nasion; the z-axis is perpendicular to the plane determined by the x- and 
y-axes. Asterisks indicate statistically significant differences (p < 0.0167).
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frequency bands between the motion capture and ACC for all subjects during the finger movement tasks. Moreo-
ver, because the finger SM1 region is similar for conventional ACC-based CKC and CKC with deep learning-
assisted motion capture (Supplementary Fig. 1), the determination of CKC with deep learning-assisted motion 
capture has been proven to be reliable.

Previous studies involving non-human primates have revealed that several movement parameters, such as 
position, rotation, direction, and movement velocity, are encoded in the SM1, as determined using the recordings 
of a single neuron, local field potential, and multi-unit  activity32–37. MEG studies involving humans have also 
revealed the significance of the SM1 cortex oscillations for encoding the parameters of voluntary movements, 
such as  velocity38 and  acceleration6,31. When studying CKC with motion capture, we evaluated the movement 
parameters of the target positions of pixels in each image with videography by using a deep learning-assisted 
motion capture system, since the CKC value with motion capture is not significantly different among approaches 
using position, velocity, and acceleration (Supplementary Table 1).

Recently, Bourguignon et al.7 reported that using two different approaches showed interactions between 
central and peripheral body parts during motor executions; i.e. CKC and CMC occurs by different mechanisms. 
CKC, which is coherent with the movement frequency and its harmonics, is mainly related to proprioceptive 
afferent signals. CMC, which mainly occurs at beta frequency bands during weak muscle contraction, is mainly 
driven by mu-rhythm-specific neural modulations in efferent signals. Bourguignon et al.7 also reported that the 
values of CKC during rhythmic finger movements were substantially higher and easier to detect than those of 
CMC during isometric finger  movements39–46. Because a recording time of at least 10 min was required for the 
CMC of the tongue in previous  studies2–4, the proposed motion capture approach offers the advantage of a short 
recording time—approximately 3 min for the CKC of the tongue. The CKC of the tongue with motion capture 
also has a technical advantage of enabling free movement because no objects, such as an ACC, electromyography 
(EMG) electrodes, or tracking markers, are placed on the tongue. When objects are placed on the tongue, they 
disturb the execution of smooth movement tasks. For example, for the tongue CMC recording, it is sometimes 
technically challenging to set the EMG electrodes on narrow and wet tongue regions because placing electrodes 
on the tongue can induce uncomfortable feelings in subjects, resulting in a vomiting reflex. Moreover, because 
no objects are used on the tongue in this CKC method, the risk of an object being swallowed during a tongue 
movement task is eliminated. In clinical applications for patients with sensorimotor disorders of the tongue, 
patients sometimes face difficulties performing smooth tongue movements and are easily fatigued by move-
ment tasks. Therefore, the short recording time of the tongue CKC technique provides an advantage over the 
conventional CKC and CMC methods that use ACC devices or EMG electrodes. In a recent clinical setting, 
Marty et al.9 reported that utilization of the finger CKC is a useful approach for patients with impairment of 
spinocortical proprioceptive pathways in Friedreich ataxia. As oropharyngeal dysphagia and/or speech disorders 
are also commonly present in individuals with Friedreich ataxia and worsens with disease duration and severity, 
the CKC approach of the tongue might provide electrophysiological evidence for proprioceptive impairment of 
corticobulbar proprioceptive pathways.

Damage to the cortical areas representing sensorimotor function of the extremities and language function 
causes severe dysfunction and seriously decreases the quality of life. Thus, cortical localization of these functions 
has received much attention for the presurgical evaluation of neurosurgical procedures. In contrast, cortical 
localization of functions relating to the tongue and other orofacial regions has been relatively undervalued. 
This is because the cortical representation of orofacial motor function is bilateral, and thus damage to the oro-
facial SM1 does not apparently induce severe dysfunctions unless the damage is bilateral as  well47,48. However, 
dysfunctions in critical orofacial motor functions may still result from damage to the orofacial SM1, severely 
reducing the quality of life. For example, dysfunctions in critical tongue motor functions can cause dysphagia 
and silent aspiration. In addition, damage to the orofacial SM1 may cause a cosmetically conspicuous imbalance 
of facial expression between the left and right sides of the  face48. Because this unbalanced facial expression is 
easily recognized in daily communication, the problem should be considered as a target for improvement. Thus, 
more attention should be paid to preserving motor functions of the tongue and other orofacial regions during 
neurosurgical operations. Here, the CKC technique may be helpful in evaluating SM1 localization of the orofacial 
regions in patients with brain lesions observed around the central sulcus.

Previous studies have shown that the finger CKC mainly reflects the proprioceptive input into the contralat-
eral  SM112,49, which corresponds to the timing of the strongest deflection of the cortical MEFs associated with 
self-paced finger  movements15. Thus, it is likely that the cortical mechanisms of the CKC and MEFs are closely 
related; therefore, it is reasonable that the tongue CKC was detected over both SM1s without hemispheric domi-
nance—similar to the MEF results obtained in the bilateral SM1 associated with self-paced tongue protrusion 
tasks with intervals of approximately 10  s5.

Previous studies have reported that the CMC for the tongue was detected at 2–10 Hz, which may have been 
driven by proprioceptive afferents from the tongue muscles to the cortex—as well as the beta frequency band—
during sustained tongue protrusion  tasks2,3. Because human tongue muscles are rich in muscle  spindles50, it is 
reasonable that the tongue CKC may be related to the proprioceptive afferents from the tongue muscles associ-
ated with rhythmic tongue movements. A recent study reported that subtle postural tremors during sustained 
isometric contraction of the finger at low frequency bands between 5 and 11 Hz can be detected by CKC using 
ACC  signals51. The presence of physiological tremors may contribute to CMC at low frequency bands during 
sustained tongue protrusion. The tongue muscles fundamentally move freely; therefore, slight involuntary trem-
ors are observed in the tongues of subjects in tasks involving isometric tongue protrusion. When these subtle 
movements can be accurately detected using deep learning capture motion systems, the tongue CKC can be 
examined during persistent tongue movements.

Ruspantini et al.52 reported that low oscillatory frequency, which is related to the proprioceptive afferent 
feedback obtained from the mouth muscles, might be necessary to generate the fine oral movements required to 
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produce speech. Therefore, sensory feedback obtained by muscle spindles of the orofacial regions may contribute 
to excellent oral motor functions, including swallowing, speech, and mastication. CKC with motion capture has 
the advantage of being able to track the motions of multiple body parts, as the finger CKC for bilateral finger 
movements can be evaluated simultaneously. Thus, in the future, CKC with motion capture might be useful for 
elucidating the cortical mechanisms that enable swallowing and speech through evaluation of the synchroniza-
tion of signals between the MEG and movements of multiple orofacial regions.

In our data of CKC of the right finger, peaks were observed at the first harmonic of the movement frequency 
in eight and nine subjects for ACC and deep learning-assisted capture motion system, respectively. Previous 
studies reported that when the movement is regular, CKC mainly peaks at the movement frequency and its first 
 harmonic6,7,49. Moreover,  Parkinsonian53 and essential  tremors54 induce CMC at the tremor frequency and its 
first harmonic. The same tendency was observed in the tongue CKC with deep learning-assisted motion capture.

The occurrence of synchronous head movements corresponding to rhythmic tongue movements may yield 
coherent artifacts in the cross-correlogram. This feature represents a potential limitation of the tongue CKC 
during repetitive tongue movements, similar to the limitations related to the finger CKC mentioned in previous 
 studies6,7. In clinical applications of the tongue CKC, the appearance of artifacts related to head movements 
must be addressed in patients who struggle to perform repetitive movements. Another potential limitation is the 
effect of touch sensations from the tongue and other orofacial regions, such as the buccal and lip, during tongue 
movement tasks. Because CKC appears to be primarily driven by proprioceptive feedback with no significant 
evidence of any effect due to cutaneous  input49,55, touch sensations might not have been a severe problem in 
the present study. Further studies are required to analyze the effects of touch sensations from orofacial regions 
on the tongue CKC during tongue movement tasks. We applied single dipole fitting analysis for the source 
localization for clinical application, as dipole fitting is useful for evaluating the somatotopic localization in a 
pre-neurosurgical situation. However, it is also useful to reveal the distribution of cortical activity based on the 
distributed source modelling from the systematic and physiological point of view. Further studies are needed 
to reveal the cortical mechanisms of tongue movements using distributed source modelling analysis. Owing to 
the latest advancements, human motion capture technologies can be realized using numerous alternatives, such 
as acoustic, mechanical, optical, and magnetic systems. It is important to evaluate the CKC reliability in future 
with additional motion tracking systems in comparison to the conventional CKC with ACC and CKC with deep 
learning-assisted motion capture system.

In conclusion, the use of CKC together with deep learning-assisted motion capture is a robust and use-
ful approach for evaluating the functional localization of the SM1 of the tongue; it is a magnetic, noise-free, 
movement-free, and risk-free approach because no recording devices are placed on the tongue.

Data availability
The movements of the tongue and fingers were analyzed with deep learning-assisted motion capture using the 
open-source toolbox DeepLabCut (https:// github. com/ AlexE MG/ DeepL abCut). We also used custom-made 
 MATLAB® (MathWorks, Natick, MA, United States) scripts, created by Prof. Masao Matsuhashi (Kyoto univer-
sity), for MEG data preprocessing. The custom MATLAB toolbox is available from the corresponding authors 
upon reasonable request, subject to a formal code sharing agreement with Prof. Masao Matsuhashi. Data pre-
sented in this study will be made available upon reasonable request and with permission of the study participants 
and a formal data sharing agreement.
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