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ABSTRACT

Many rare syndromes can be well described and de-
lineated from other disorders by a combination of
characteristic symptoms. These phenotypic features
are best documented with terms of the Human Phe-
notype Ontology (HPO), which are increasingly used
in electronic health records (EHRs), too. Many al-
gorithms that perform HPO-based gene prioritiza-
tion have also been developed; however, the per-
formance of many such tools suffers from an over-
representation of atypical cases in the medical lit-
erature. This is certainly the case if the algorithm
cannot handle features that occur with reduced fre-
quency in a disorder. With Cada, we built a knowledge
graph based on both case annotations and disorder
annotations. Using network representation learning,
we achieve gene prioritization by link prediction. Our
results suggest that CADA exhibits superior perfor-
mance particularly for patients that present with the
pathognomonic findings of a disease. Additionally,
information about the frequency of occurrence of a
feature can readily be incorporated, when available.
Crucial in the design of our approach is the use of the
growing amount of phenotype–genotype information
that diagnostic labs deposit in databases such as
ClinVar. By this means, CADA is an ideal reference
tool for differential diagnostics in rare disorders that
can also be updated regularly.

INTRODUCTION

Deep phenotyping of patients with suspected rare genetic
disorders by HPO terminology has become the de facto
standard and is the prerequisite for several algorithms that
prioritize potential disease genes (1–12). A general review of
the diagnosis methods for rare diseases was done by Schaaf
et al. (13). Since most of the current approaches are still
heavily based on disease annotations and not case anno-
tations, many of these tools have become a victim of their
own success if they do not take into consideration how fre-
quently a clinical feature occurs: an entry in OMIM evolves
over time and accumulates also clinical features that occur
rarely. A novel disease-gene-association for a monogenic
disorder usually requires three or more unrelated patients
with a similar phenotype and mutations in the same gene for
a publication in a peer-reviewed journal. After this initial
report, often a follow-up study is published a few months
or years later that delineates additional clinical features of
patients with a disease-causing mutation in the same gene.
Ideally, such a paper distinguishes between cardinal symp-
toms of the disorder and those that occur less frequently.
Additional case reports are usually just published for pa-
tients with an atypical presentation, while most character-
istic cases will rather be submitted to databases such as Clin-
Var (14).

In early algorithms for semantic similarity searches, such
as the Phenomizer, the specificity of a term is reflected by
its information content (IC). IC is defined as the negative
natural logarithm of the frequency a term has been used
to annotate different diseases (3). This approach, however,
results in comparable similarity scores for a disease, no mat-
ter whether a patient presents with the two pathognomonic
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findings present in almost all individuals with this disease,
or two rarely occurring features of similar IC.

From 2019, the HPO project also adds metadata to dis-
ease annotations, which includes the frequency of a clin-
ical feature within a specific disease; however, these data,
especially on the gene annotation level, is still highly in-
complete and inconsistent in its methodology. Nevertheless,
gene prioritization algorithms stand to benefit significantly
from this information and should be ready to include such
frequency data, as it is further improved in the future (15).

Shen et al. (16) showed that graph embeddings of HPO
worked well for comparing phenotypes. We extend this ap-
proach to also include Case Annotations, as well as Disease
Annotations (CADA). With this, we obtain a graph which
can be embedded to perform gene prioritization. Compared
to previous methods, this graph based approach has the ad-
vantage of being weighable with frequency information.

MATERIALS AND METHODS

Human Phenotype Ontology

The Human Phenotype Ontology (H) provides a standard-
ized and controlled vocabulary of human phenotypic ab-
normalities. In HPO, phenotypic terms are arranged in a di-
rected acyclic graph (DAG) and are related to their parent
terms by ‘is a’ relationships. In our study, we used the HPO
released on 27 March 2020, containing 14 586 human phe-
notypic terms and 18 416 hierarchical relationships between
these terms.

Genotype–phenotype annotations

The HPO team also provides an annotation file that provides
links between related genes and HPO terms. This mapping
is based on data mining of resources such as OMIM, Or-
phanet and DECIPHER. The annotations follow the true-
path rule: genes associated with a specific HPO term are also
associated with all its parent terms in HPO. In detail, 4315
disease-causing genes and 169 281 unique gene-HPO term
associations are included in our study.

ClinVar

ClinVar is a public database that archives clinical reports
about the effect of genetic variants on the human pheno-
type. A ClinVar submission consists of a variant, a condi-
tion, for which the variant was interpreted, and an assertion
of the clinical significance, as well as additional supporting
evidence. (14). An increasing number of submitters also add
HPO terms as such supporting evidence, or if the disease is
not known as associated conditions.

Clinical cases

In total, we compiled 4714 clinical cases with a molecu-
larly confirmed diagnosis representing 1350 different dis-
ease genes. Each case consists of a causal gene and pheno-
typic features, which could also easily be reformated into a
Phenopacket (15). A total of 2137 of these cases were ex-
tracted from electronic patient records of our clinical col-
laborators. A total of 2577 cases were generated from suit-

able ClinVar submissions. That is, variants that were clas-
sified as ‘pathogenic’ or ‘likely pathogenic’, and associated
with HPO terms. Additionally, since ClinVar submissions
are variant-based instead of case-based, we merged variants
in recessive genes from the same submitter that were char-
acterized by the same phenotypic features assuming com-
pound heterozygosity.

Encoding the data

Comparing nominal data is difficult as there is no mathe-
matical basis to predict similarity. For many problems in the
past, embedding the data into a vector space has proven as
a good way to allow for statistical computation on nominal
data (17). For the purpose to measure the similarity between
phenotypes and genes, we embedded the nominal data en-
coded in HPO and the associated gene for each phenotype.
There are several methods of embedding an ontology into
a vector space; however, it is worth noting that HPO only
utilizes one type of edge and therefore can also be read as a
simple graph, with edge pairs instead of triples. Shen et al.
(16) showed that this approach worked well for embedding
HPO.

As opposed to Shen et al., we also add in gene–phenotype
associations and obtain a graph G with two types of nodes.
VP, the set of phenotypes present in HPO and VG, the set
of disease-causing genes. There are two sets of edges in the
graph, phenotype to phenotype edges EPP⊆{(p1, p2)|p1, p2
∈ VP} and phenotype to gene edges EPG⊆{(p, g)|p ∈ VP,
g ∈ VG}. So the Graph encoding all relationships is G =
(VP∪VG, EPP∪EPG).

With this definition, we are now able to read in a case
C, which usually consists of a list of phenotypes PC⊂VP
and the diagnosed disease causing gene gC ∈ VG as a set of
edges EC = {(p, gC)|p ∈ PC}. Easily allowing us to extend
our graph G by the information present in the case (see Fig-
ure 1).

Embedding the data into a vector space

With the data represented as a graph, G0, we used Node2Vec
to create the vector space embedding (18). For this purpose,
Node2Vec first starts (weighted) random walks on the graph
G0 from each of the nodes. These random walks are inter-
preted as words that can be embedded into an Euclidean
space using a SkipGram neural network, which is an essen-
tial part of the Word2Vec method (17). More specifically,
we aim to maximize the probability of a node v’s context R
within a contextual window of length c:

L(v) =
∑

r∈R

|r |∑

i=1

∑

−c ≤ j ≤ c
j �= i

log p(r j | ri ) (1)

Here ri denotes the i-th word (i.e. node sequence) generated
by a random walk. p(rj|ri) is the output of the SkipGram
neural network that is defined with a softmax function

p(r j | ri ) = exp −(〈vi, vj〉)∑
−c≤ j≤c exp −(〈vi, vj〉)
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Figure 1. General workflow of encoding the data into the graphs. Panel
(A) shows the DAG structure and gene–phenotype annotations, includ-
ing those appearing due to the true-path rule, from HPO. These data were
converted into G0, represented by the nodes and gray edges in (C). The net-
work was then further extended by data from clinical cases in (B), repre-
sented by red edges. For example, patient 3 is cause for a new edge between
GeneB and HPO9.

where vi, vj are vector representations of words ri and rj in
the hidden layer. Notably, the SkipGram neural network is
trained with one-hot vector encoding of word pairs as input.
The network aims for learning the probability of observing
word rj in the context (i.e. in the ‘neighborhood’) of ri by
maximizing

∑
vL(v) over all nodes v in the graph G0. We

refer to (17) for more details about SkipGram.
To train the Node2Vec model, we split the 4714 patients

into a training, validation and test sets with the ratios 60%,
20% and 20%. Hence, the training, validation and test set
has 2828, 943 and 943 cases, respectively. Note that G0 does
not contain any case data initially. The graph is only con-
structed from the hierarchical relationships of HPO terms
and the gene–phenotype annotations in HPO. Later, ad-
ditional genotype–phenotype associations from the train-
ing cases were added gradually into G0. We will denote
with e.g. Gp that p% of the training cases were added into
the graph. The Node2Vec model was trained on G0, G25,
G75 and G100, where hyperparameter optimization was per-
formed for each of them using the validation set. The Op-
tuna (19) library was used for a Bayesian hyperparameter
optimization. A detailed list of tuned hyperparameters can
be found in the Supplementary Data.

Using Edge Confidences

In principle, each gene-to-phenotype association could be
weighted by its absolute or relative frequency of occurrence.
This can be implemented by a weighting function w: EPG →
[0, x]. If x ≤ 1, the weight represents the probability that a
certain clinical feature occurs in a patient with a certain ge-
netic disorder (relative phenotype prevalence). If x > 1, the
weight represents the number of patients with a certain ge-

netic disorder that have been observed to exhibit a certain
feature (absolute phenotype prevalence). Since relative phe-
notype prevalences for patients with a certain genetic disor-
der are typically unknown on the population level, we here
tested the later weighting scheme (i.e. counting number of
cases) (20). However, we would like to point out that our ap-
proach is flexible enough to also incorporate a relative phe-
notype prevalence scheme. Accordingly, for a given node v
the probability to reach any direct neighbor q during a one-
step random walk is then

wvq∑
r∈N(v) wvr

where N(v) denotes the neigborhood of node v and wvq the
weight of the edge (v, q).

Link prediction

Node2Vec learns a function f : V → R
d that embeds nodes

into a vector space. The problem of causal gene prioritiza-
tion can be interpreted as a link prediction task between
phenotype and gene nodes. This can be achieved by mea-
suring the similarity of putative disease genes to phenotypes
in the vector space via the dot product. Hence, for any new
case C with a set of phenotypes PC⊂VP, a ranking of genes
g can be achieved via:

∀g ∈ VG : sC(g) = 1
|C|

∑

p∈PC

v(g) · v(p)

Therefore, we can rank genes for each case and compute a
topN accuracy for the test set. TopN accuracy rates are the
most common metrics to evaluate gene prioritization tools,
which are defined by the proportion of testing cases where
the correct disease-causing gene is within the topN priori-
tized genes. Specifically, top 1, top 5, top 10, top 50 and top
100 were used in our study as the evaluation metrics.

RESULTS

Robustness of the randomized aspects

As the embedding method is based on random walks, the
graph embeddings obtained from Node2Vec will be slightly
different each time they are created. Therefore, each exper-
iment was repeated with 10 different embeddings obtained
from the same graph. Results comparing topN accuracies
are average results of these 10 embeddings and have error
margins (signified by error bars in figures) associated with
them. However, the error margins for this method were van-
ishingly small and around 1% for each topN accuracy. This
shows that the method, despite its randomization, is highly
robust.

Effects of adding case data

Even without using our weighting scheme, adding the case
data into our graph G0 before the embedding improves
topN accuracy significantly for validation cases (Figure 2).
The model from unweighted G100 achieves the best valida-
tion results. A detailed table of validation accuracy across
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Figure 2. Validation accuracy with standard errors during the graph ex-
tension. The initial graph G0 was only based on HPO-term hierarchical
relationships and gene–phenotype annotations from HPO. G25, G50, G75,
G100 indicate graph structures that include 25%, 50%, 75% and 100% of the
additional case data of the training set. The standard errors are computed
from 10 repeated embeddings per graph.

Figure 3. Performance comparison of unweighted and weighted models.
The performance of unweighted G0, G100 and weighted G100 models was
assessed on 943 testing patients by topN accuracy metrics.

five graph structure can be found in the Supplementary
Data.

Similarly, the weighted graph models were also validated
through the same approach, among which the weighted
G100 model achieves the best validation results. To test the
performance of unweighted and weighted models, we eval-
uated the G0, unweighted G100 and weighted G100 models
with the testing set of 943 patients. Figure 3 shows that all
topN accuracy rates improve around 7–10% by introduc-
ing new associations from case annotations. Moreover, by
adding the very simple weighting scheme we propose, the
results further improve 3–4%.

Generalization to independent data sets

In order to test how well CADA generalizes to before un-
seen data, we applied the model from the unweighted G100
to the largest data set (Set 4) provided by the Phen2Gene
study (4). Five cases were removed from the data set, as
their provided files do not contain any phenotype informa-
tion. Nine other cases were further removed, as the disease-
causing genes were not known to CADA, and which were
used to test Phen2Gene’s discovery capabilities. In the end,
the data set we tested on contains 142 cases with 66 unique
disease-causing genes. As seen in Figure 4, CADA has com-
parable results on this before unseen data set. Whilst a di-

Figure 4. CADA’s topN accuracy on a independent data set from
Phen2Gene test set 4.

rect comparison is not possible due to the removed cases,
CADA generally outperforms Phen2Gene on this data set
(Phen2Gene reports 32.1 and 47.4 for top 10 and top 50 ac-
curacy, respectively).

Comparison to other methods

Since the weighting scheme is purely heuristic, we used the
model trained from unweighted G100 as the final model
to compare with other gene prioritization tools on our
test data. The test set contains 943 cases with 529 unique
disease-causing genes. However, the restrictions some of the
other tools have made a direct comparison difficult. Gado
(7), for instance, can only handle a subset of the phenotypes
present in HPO. Thus, it was unable to recognize phenotypic
features for around 200 of our test cases. AMELIE requires
a pre-selected list of at most 1000 genes to prioritize, rep-
resenting less than one-fourth of the 4315 known disease-
causing genes we collected. Only Phen2Gene had directly
comparable capabilities to CADA. Therefore, we compared
our model to Phen2Gene and where phenotypes and a list
of 1000 pre-selected genes from all known disease-causing
genes in HPO were provided (Figure 5A). The target casual
gene was guaranteed to be included in the provided gene list
and the rest are selected uniformly at random. Additionally,
we compared CADA to Phen2Gene, where only phenotypes
were provided (Figure 5B).

The comparison tests show that CADA outperforms the
other tools even with the unweighted setup under both tasks
on our test cases. With further improvements when adding
in our experimental weighting scheme, the advantage of
CADA will be more noticeable. However, Phen2Gene also
has further capabilities of identifying potential new disease
causing genes. Whilst this would not affect performance in
the setup, where a list of 1000 genes was given, it will make
the prioritization task naturally harder for Phen2Gene in
the general setup without providing any candidate gene.

Performance comparison for gene frequency groups

To further study how the frequency of a gene affects its per-
formance by our model, disease-causing genes in case anno-
tations were classified into three groups based on their fre-
quencies in our case data: high-frequency (frequency ≥ 20),
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Figure 5. Performance comparison on testing patients to other prioritization tools. (A) Based on phenotypes and a pre-selected 1000 gene list, CADA was
compared with AMELIE and Phen2Gene. (B) Based on phenotypes alone, CADA was compared with Phen2Gene.

Figure 6. Introduced associations within the three frequency groups. (A) The overall distribution of introduced associations. (B) The average distribution
of introduced associations per case. (C) The average distribution of introduced associations per gene.

medium-frequency (5 ≤ frequency ≤ 19) and low-frequency
(frequency ≤ 4).

In total, the 2828 training cases cover 1033 different
disease-causing genes. The number of genes in the above-
defined three frequency groups and their corresponding
case numbers among these training cases are shown in Ta-
ble 1. For the graph extension process, Figure 6A presents
the overall distribution of introduced associations from the
training set among the three frequency groups. Divided by
the number of training cases and genes in Table 1, the over-
all distribution was converted to the average distribution of
a case (Figure 6B) and a gene (Figure 6C) within the three
frequency groups.

Table 1. The sum of genes and cases within the three frequency groups in
the training set

Gene frequency
groups

Number of
genes

Number of training
cases

High 30 725
Medium 193 988
Low 810 1115

The performance of test patients was also evaluated ac-
cordingly within the above-mentioned groups before and af-
ter the graph extension. As illustrated in Figure 7, the bars



6 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3

Figure 7. Performance improvement of the three frequency groups during
the graph extension. The bars show the accuracy of the G100 model with
white markers indicating the accuracy of the G0 model.

show the accuracy of the G100 model with white markers
indicating the one from the G0 model. The significant im-
provement for genes in the high frequency group might re-
sult from the forming of abundant new edges on them dur-
ing the process, as shown in Figure 6C.

DISCUSSION

CADA’s underlying design is highly modular. The graph
structure is created independently from its embedding strat-
egy as well as the prioritization computation. Therefore, it is
possible to improve single modules of CADA, easily improv-
ing the total performance. We will discuss in the following,
how some of these improvements might look.

As genotype–phenotype knowledge databases such as
ClinVar grow steadily, new case data can be easily and reg-
ularly incorporated into the graph. Even if the data set con-
tains a small fraction of incorrect gene–phenotype edges,
our results still show that the overall submission quality
is high enough to improve CADA’s prioritization ability.
A comparison with case data that has been curated from
the literature indicates that the distribution of the number
HPO-terms used per patient is comparable (21). Further-
more, with updates to HPO, CADA is also expected to cover
a larger range of disease-causing genes in the future.

Whilst already obtaining comparable results to current
tools without weighting the graph, the potential of weight-
ing edges with frequency information is an advantage of this
graph-based approach. Even with a very simple heuristic
weighting scheme, we were able to improve results signif-
icantly. With HPO currently working on adding frequency
information to their database and resources like Orphanet
conducting research into frequencies there is high poten-
tial for improving this method with a more sophisticated
weighting scheme.

Another promising avenue is the rapidly developing field
of graph embeddings. Node2Vec was the current most suit-
able embedding tool we used; however, this is a rapidly
evolving field, as it has many applications even far beyond
medical research. With the current setup for CADA the
graph embedding tool can easily be replaced in the future
if more promising tools are published.

Robinson, et al. recently introduced a framework for esti-
mating posttest probabilities based on likelihood ratios for
genotype–phenotype data (22). By this means, the contri-
bution of each phenotypic feature to a suggested diagnosis
can be computed, which is particularly helpful for the clini-
cal interpretation of the results. While LIRICAL is working
by default with disease prevalences as pretest probability, it
has also been suggested that other priors e.g. the output of
CADA, could be used to refine the output.

In future research we would like to extend the underly-
ing Graph used by CADA with gene–gene links to allow for
discovery capabilities similar to Phen2Gene.

The code for CADA, can be found here https://github.
com/Chengyao-Peng/CADA. This code can be used to pro-
cess a single case in seconds on a regular laptop via com-
mandline, allowing for large scale reprocessing of cases.

Furthermore, we’re making this tool available to anyone
via a web interface at https://cada.gene-talk.de/webservice/.
This version will be updated with new ClinVar cases on a
regular basis, and is therefore expected to improve over time.

DATA AVAILABILITY

The Data used in this paper can be found at https://github.
com/Chengyao-Peng/CADA.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

FUNDING

Institutionally funded.
Conflict of interest statement. None declared.

REFERENCES
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