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Abstract: In order to accomplish their primary goal, mammalian spermatozoa must undergo a series
of physiological, biochemical, and functional changes crucial for the acquisition of fertilization ability.
Spermatozoa are highly polarized cells, which must swiftly respond to ionic changes on their passage
through the female reproductive tract, and which are necessary for male gametes to acquire their
functional competence. This review summarizes the current knowledge about specific ion channels
and transporters located in the mammalian sperm plasma membrane, which are intricately involved
in the initiation of changes within the ionic milieu of the sperm cell, leading to variations in the sperm
membrane potential, membrane depolarization and hyperpolarization, changes in sperm motility
and capacitation to further lead to the acrosome reaction and sperm–egg fusion. We also discuss the
functionality of selected ion channels in male reproductive health and/or disease since these may
become promising targets for clinical management of infertility in the future.
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1. Introduction

Ion channels play a significant role in the regulation of membrane potential by main-
taining intracellular pH (pHi), osmotic balance as well as sperm physiological responses
associated with fertilization such as hyperactivated motility, capacitation, chemotaxis, and
acrosome reaction. An increase in pHi and alkalization of sperm cytosol is essential for
hyperpolarization of the plasmatic membrane and later hyperactivation of sperm motility
via a Ca2+-dependent pathway. Membrane potential (Em) or resting membrane potential
(Emr) reflects different concentrations of ions (mmol/L) between intra- and extra-cellular
spaces [1–3]. During capacitation, sperm cells change membrane potential by the pro-
cess called hyperpolarization, which increases a negative charge of membrane through
to reduced permeability for Na+ and increased permeability for K+. In non-capacitated
mammalian spermatozoa, the value of Em varies from −35 to −45 mV while the Em of
capacitated cells is around −65 mV [4,5].

Sperm ion channels are pore-forming proteins which can be found in the whole surface
of the cell including principal piece or midpiece of flagellum and head (Figure 1). They
are classified based on their opening or closing into voltage-gated and ligand-gated ion
channels [6]. The regulation of voltage-gated ion channels depends on the voltage gradient
across the plasmatic membrane, charge (cation/anion) or species of ions (Na+, Ca2+, H+,
Cl−, K+). On the other hand, the activity of ligand-gated channels is managed through to the
specific bind of primary signaling transmitters such as cyclic nucleotides [7,8]. The ability
of spermatozoa to undergo capacitation depends on numerous factors like membrane
potential, pH homeostasis and balanced ion environment. Mutual cooperation between
ion channels, pumps and transporters is required for proper sperm motility. From all ions,
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Ca2+ is one of the most crucial because its higher concentrations (100–300 nM) start the
hyperactivation of spermatozoa. In mammals, Ca2+ participate in the activation of the
signaling pathways of capacitation as a secondary messenger. Before capacitation itself,
sperm cells received specific signals from environment in the female genital tract. It all
starts with the increase in intracellular pH and uptake of bicarbonate, which stimulate the
sAC/cAMP/PKA pathway as we mention below. From the point of view of ion channel
activity, intracellular alkalinization managed the activity of CatSper and KSper channels,
which is required for capacitation [9,10]. In this paper, we provide an overview of the
most important ion channels occurring in spermatozoa and analyze their involvement in
sperm activation following their entry into the female reproductive system, including the
process of capacitation, hyperactivation and acrosome reaction. The review methodology
is available in Supplementary Material.

Figure 1. Ion channels of spermatozoa. Created with BioRender.com (Toronto, ON, Canada, https://app.
biorender.com/).

2. Bicarbonate Transporters

Bicarbonate transporters or acid extruders (Table 1) can maintain the intracellular pH
homeostasis by transporting HCO3

−, which induce phosphorylation of functional flagellar
proteins in serine, threonine, and tyrosine residues through to the sAC/cAMP/PKA path-
way. Soluble adenylate cyclase (sAC) catalyzes the synthesis of cAMP, which is sensitive
for higher concentration of HCO3

−. In general, HCO3
− ions are responsible for (1) the initi-

ation of sperm motility right after ejaculation and (2) the activation of sperm capacitation in
the female reproductive tract. The range of pH in the seminal fluid is between 7.2 and 8.4;
it is believed that seminal fluid works as a buffer which controls the acidic environment
of the vagina. Bicarbonate membrane transporters are represented by two major protein
groups, solute carrier 4 (SLC4) and solute carrier 26 (SLC26) [11–13].

The principal group of the SLC4 family can be divided based on affinity to
Na+-independent and Na+-dependent HCO3

− exchangers (Na+/HCO3
− cotransporters—

NBCs). Na+-independent transporters maintain electroneutral exchange of Cl− into
HCO3

−, which is ensured by three anion exchangers (AE) SLC4A1 (AE1), SLC4A2 (AE2),
SLC4A3 (AE3) and two Na+-coupled exchangers SLCA48 (NDCBE), SLCA49 (AE4). The
subfamily of Na+-dependent HCO3

− exchangers includes two electrogenic SLC4A4 (NBCe1),

https://app.biorender.com/
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SLC4A5 (NBCe2) and two electroneutral SLC4A7 (NBCn1), SLC4A10 (NCBE) exchangers.
The functionality of electroneutral transporters depends on the chemical gradient between
intra- and extra-cellular space compared to electrogenic transporters, which depends on
the negative electrical potential of the membrane [14–16]. The main core of the SLC4
channel is made from 14 loop-connected transmembrane α-helices (TM1–14) and amphi-
pathic helices (H1–6) which form the core domain (TM1–4/TM8–11) and the gate domain
(TM5–7/TM12–14). The active site of SLC4 is localized on the N-terminus of half-helices
TM3 and TM10 while the blocker of the active side takes place at segment TM8 [17]. Several
sources confirm that NBC channels, especially electrogenic ones, play an essential part in
sperm capacitation, hyperactivated motility and membrane hyperpolarization through the
initial fast increase in bicarbonate, which is necessary for cAMP/PKA pathway activation
and later redistribution of cholesterol [3,18].

A group of SLC26 contains 11 electrogenic anion channels, but only 5 of them are able
to transport HCO3

−, represented by SLC26A3, SLC26A4, SLC26A6, SLC26A7 and SLC26A9.
Like their cousins, the SLC26 channels are made from 14 transmembrane α-helices con-
nected by loops, which occasionally contain amphipathic helices (H). The active site is also
in the N-termini of TM3 and TM10 half-helices, but the C-termini region contains STAS
(sulphate transporter anti-sigma factor antagonist domain) or the dimerization domain,
involved in the expression and protein interaction, which can interact with the regulatory
R-domain of the CFTR (cystic fibrosis transmembrane conductance regulator) channel.
TM1–4 together with TM8–11 helices form the core domain, while TM5–7 and TM12–14
represent the gate [19,20]. The functional interaction between SLC26 and CFTR channels
in capacitated spermatozoa regulates and maintains the high bicarbonate entrance, the
sAC/PKA pathway and acrosomal exocytosis together with the ions of Ca2+. On the other
hand, the inhibition of SLC26, especially SLC26A3 and SLC26A6 localized in the midpiece
of the flagellum, can cause a decrease in the Cl− influx and a blockage of intracellular
alkalization and membrane hyperpolarization [21,22].

Table 1. Bicarbonate transporters.

Channel Species Localization Functionality References

SLCA26A3/A6 human, mice,
guinea pig

sperm plasma
membrane, acrosomal
region of sperm head

HCO3
− transport, pHi alkalinization,

protein phosphorylation, hyperactivation,
CFTR channel interactions

[19,23,24]

SLCA26A8 human, mice equatorial segment of
sperm

regulation of sperm motility and
acrosome exocytosis during capacitation,

CFTR channel interactions
[25]

SLC4A1 human, mice sperm head and
flagellum

actin depolymerization and regulation of
acrosome reaction [26]

3. Sodium Channels

Overall, spermatozoa are exposed to high sodium concentrations in the female repro-
ductive tract, which directly regulate sperm membrane potential and electrogenic Na+/K+

ATPase gradient pump. An increased Na+ influx has a great influence on membrane polar-
ization and improves linear sperm motility. The presence of voltage-gated Na+ channels
(VGNCs) was confirmed in the human and bovine sperm cells (Table 2). Their activation
depends on the depolarization of the sperm plasma membrane and the conduction of
sodium ions into the cell, which directly supports the action potential [27,28].

Based on the structure, the core of the VGNC channel includes a big α subunit
made from four repeat homologous domains (RD1–RD4) with six transmembrane he-
lices (TM1–TM6) as well as one or more auxiliary β subunits (β1–β4), each consisting
of a big extracellular N-terminal domain and an intracellular tail depending on the iso-
form. Furthermore, TM4, known as a positively charged sensor, manages the channel ion
permeability by moving into the extracellular space and Na+ is transported via the pore
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P-loop between TM5 and TM6. Repeat domains play an important role in the PKA/PKC
protein phosphorylation due to the connection with long intracytoplasmic loops. The level
of protein phosphorylation of RD loops regulates the inactivation of the channel. The
members of the VGNC family were localized particularly in the sperm flagellum (NaV1.2,
NaV1.6, NaV1.8 and NaX) and the connecting piece (NaV1.4, NaV1.7 and NaV1.9) due to the
immunostaining of human spermatozoa. In the case of NaV1.8, its presence was confirmed
in bull and ram sperm. These channels have the ability to maintain progressive motility
rather than hyperactivation or acrosome reaction [29–31].

The electrogenic transport of Na+ as well as membrane potential in spermatozoa can
be also regulated by heteromultimeric epithelial sodium selective channels (ENaCs). They
come from a superfamily of non-voltage-gated and amiloride-sensitive DEG/ENaC ion
channels [32]. The channel itself is formed from four subunits (α, β, γ and δ), where α
and δ are characterized as pore forming subunits which can be found in the midpiece or
the principal piece of the sperm flagellum (ENaC-α) and the acrosome region (ENaC-δ).
The activity of ENaC is controlled by intracellular pH, Ca2+, Cl−, phosphorylation or
amiloride. Previous findings support the involvement of this channel in sperm move-
ment and regulation of sperm resting potential, which becomes more negative during
capacitation-associated hyperpolarization [33–35].

Table 2. Sodium channels.

Channel Species Localization Functionality References

VGNC, Nav human, bull sperm connecting
piece and flagellum

maintaining of progressive motility, tyrosine
phosphorylation [27,28]

ENaC human
central region of
sperm flagellum,

acrosome

regulation of sperm motility and sperm resting
potential during capacitation, activator of CFTR

channel, membrane hyperpolarization
[33]

4. Calcium Channels

As secondary intracellular messengers of capacitation, ions of calcium (Ca2+) partici-
pate in acrosome reaction, tyrosine phosphorylation, modulation of the cAMP-dependent
pathway and maintenance of functionality of mitochondria as well as synthesis of ATP,
which is necessary for hyperactivated motility [7]. The concentration of Ca2+ can be regu-
lated by alcium channels (Table 3), transporters, or exchangers like CatSper (cation channel
of sperm), VGCCs (voltage-gated Ca2+ channels), TRPVs (transient receptor potential
vanilloids), SOCCs (store-operated Ca2+ channels) and CNGs (cyclic nucleotide-gated
channels) [36]. Intracellular Ca2+ levels are also regulated by Ca2+ pumps of the plasma
and outer acrosomal membranes, as well as mitochondrial transporters.

In general, the heterotetrameric complex of the CatSper channel is composed from
four main pore-forming alpha subunits (CatSper 1–4) and six minor ancillary subunits
CatSper β (beta), γ (gamma), δ (delta), ε (epsilon), ζ (zeta) and EFCAB9 (calcium-binding
domain-containing protein 9). The activity of these channels is related to hyperactivation,
sperm chemotaxis and thermotaxis as well as acrosome reaction. Every α subunit is
made from six transmembrane domains (TM 1–6), which form a voltage-sensing domain
(TM1–4) containing voltage sensors and a pore-forming region (TM 5–6), which particularly
coordinate the Ca2+ influx. The CatSper channel can be found in the principal piece of
the sperm flagellum in the form of four-sided longitudinal nanodomains responsible for
sperm motility [37]. However, the principal piece of flagellum is missing organelles, so
there is the theory that the CatSper complex is part of the membrane in the principal piece,
and it is involved in the regulation of flagellar movement [38]. The pH sensible small
voltage-gated CatSper channel is primary activated by the intracellular alkalization and
the pH is regulated via a special histidine-rich region of the N-terminus part of CatSper1,
but its activity can be also controlled by cyclic nucleotides, phosphorylation, progesterone,
prostaglandins, glycoproteins of zona pellucida or bovine serum albumin as part of the
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oviductal fluid [39,40]. According to Hwang et al. [41], the cytoplasm complex CatSper
ζ together with the EFCAB9 subunit work as gatekeepers and activity modulators of the
other CatSper domains. The genes, which coded the functions of CatSper channels, are
expressed in the testis during spermatogenesis.

Another major functional subclass of Ca2+ permeable channels are voltage-gated Ca2+

channels (VGCC’s) or voltage-sensitive Ca2+ channels (CaV), which can be divided into
high- and low-voltage-activated (HVA/LVA) channels localized in the sperm tail. Their
activation depends on the changes in membrane potential and strong/low depolarization.
Regulatory mechanisms of CaV channels could be activated by protein kinases (protein
kinases A/C, Ca2+/calmodulin (CaM)-dependent protein kinase II) or ions of Ca2+ itself.
Similar to CatSper channels, VGCCs contain four main transmembrane domains (1–4), but
every central pore is surrounded by six transmembrane α helixes (S1–6). The α1 subunit
of the central pore is encoded at least 10 genes from three subfamilies CaV1–3. Based on
their different physiological properties, several types of VGCCs were identified in the
spermatozoa, including the L-type (CaV1.1–1.4), T-type (CaV3.1–3.3), R-type (CaV2.3), and
P/Q-type (CaV2.1), which are involved in motility hyperactivation, capacitation, acrosome
reaction as well as phosphorylation of the cAMP-dependent protein kinase A [42,43].

Transient receptor potential vanilloid channels (TRPVs) belong to a big branch of cation
polymodal voltage-gated and Ca2+ permeable cellular channels (TRPV1–6), which are acti-
vated by the increased intracellular Ca2+ concentration via acrosomal inositol triphosphate
(IP3) receptors or phospholipase C through receptor-mediated messenger phosphatidyli-
nositol 4,5-bisphosphate (PIP2). These channels are responsible for the regulation of sperm
functionality at different levels like basal and hyperactivated motility, thermotaxis, or
acrosome reaction [44,45]. Interestingly, TRPV channels work as modulators of the Ca2+

signaling pathway of other Ca2+-permeable channels, which include regulations of the
cytosolic cation flux and electrical activity because of the unique gate mechanisms and
a wide range of ion selectiveness. Based on their structure, TRPV channels consist of six
transmembrane segments (S1–6) and a pore-creating intracellular loop between the S5 and
6 segments [46,47].

Non-voltage-dependent store-operated Ca2+ channels (SOCCs) can operate under a
negative membrane potential when VGCCs stay inactive. Their basal structure is formed
by ORAI proteins (ORAI1–3) found in the sperm head and flagellum where each protein
contains four TMs which create a pore (between TM2 and TM3)- and Ca2+-binding domain
(CBD) localized in the center of the pore. This domain basically regulates the activity of
the channel by binding Ca2+ or CaM, which inactivate the channel. The main role of the
SOCC channel is to bind and store the extracellular Ca2+ in sperm mitochondria as well
as regulate the motility and the acrosome reaction [48–50]. SOCC is activated when the
intraacrosomal Ca2+ levels are reduced due to Ca2+ efflux from the acrosome via the inositol
trisphosphate receptor (IP3-R). The activity of SOCCs can be inhibited with the induction
of AMPK (5′ AMP-activated protein kinase) phosphorylation, which leads into reduction
in the asymmetrical flagellar beating necessary for chemotaxis [51].

Cyclic nucleotide-gated cation channels (CNGs) are ligand voltage-gated channels,
which use the free binding energy of second messengers like cAMP (cyclic adenosine
monophosphate) or cGMP (cyclic guanosine monophosphate) for the regulation of pore
opening [8,52]. Their structure is made from a heterotetrameric complex including homolo-
gous A (CNGA1–4) subunits, which defines principal channel properties and B (CNGB1/3)
subunits necessary for gating kinetics. Similar to other voltage-gated ion channels, A
as well as B subunits contain six transmembrane α helices (S1–6) and an ion-selective
pore loop between S5 and S6. A cyclic nucleotide-binding domain (CNDB) formed at the
cytosolic C-terminus of a channel is responsible for its activation [53]. In mammalian sper-
matozoa, CNG channels are important modulators of motility, capacitation, and acrosome
reaction because of high permeability to Ca2+ and cGMP. The activity of these channels
can be inhibited by Mg2+ or Ca2+ itself by binding to calmodulin, which also acts as a
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voltage-dependent blocker of permeability for monovalent cations including Na+ and
K+ [54].

Table 3. Calcium channels.

Channel Species Localization Functionality References

CatSper mice, human, boar,
bull, sea urchin principal piece

promotion of hyperactivated motility, sperm
chemotaxis and thermotaxis, late acrosome

reaction, Ca2+ uptake, alkalinization
[55–57]

VGCC, Cav

newt, marine fish,
equine, mice, bull,

human
sperm neck and tail

regulation of total and progressive motility,
hyperactivation, capacitation, phosphorylation of

protein kinase A, acrosome reaction
[58–61]

TRPV vertebrates whole surface of
spermatozoa

activation of basic and hyperactivated motility,
capacitation, membrane depolarization, opening

of other channels (CatSper, Hv1)
[45,62,63]

SOOC mice, chicken,
ascidian

sperm head and
flagellum

regulation of sperm motility and acrosome
reaction, induction of 5′ AMP-activated protein

kinase (AMPK) phosphorylation
[50,51,64]

CNG mammals, sea
urchin

flagellum of
spermatozoa

effectors for CNG induced Ca2+ response, sperm
hyperactivation

[65]

5. Proton Channels

A specific group of channels involved in carrier-mediated proton transport are com-
bined membrane sodium–hydrogen exchangers/antiporters (NHE’s) and the Hv1 voltage-
gated ion channel. NHEs are membrane proteins encoded by the solute carrier 9 (SLC9)
gene family which transport Na+ into the cell and H+ out of the cell across the lipid
bilayer accompanied with the maintenance of intracellular pHi and Na+ homeostasis
(Table 4). Several members of NHEs were identified, especially in spermatozoa. NHE1 and
NHE10/sNHE (sperm-specific NHE isoform with a binding site for cAMP) expressed in
the principal piece of the sperm flagellum are important for normal sperm motility and
capacitation, while NHE8 ensures the formation of the acrosome. Knock-out of any of these
NHEs results in male infertility characterized by a lower expression of sAC and intracellu-
lar cAMP, which confirms the mutual relationship with the cAMP signal pathway [66,67].
NHEs are formed from 12 TM helices connected together with six extracellular (EL1–6)
and five intracellular loops (IL1–5). The channel also contains cytosolic N- and C-terminal
domini with an extracellular N-linked glycosylation site [68].

The Hv1 pH-sensitive channel is co-localized together with other flagellar channels
like CatSper and KSper in the principal piece, and it is activated by membrane depolariza-
tion, alkaline changes in the extracellular environment or the removal of zinc, which works
as a potential blocker of Hv1 activity. Based on their similar subcellular location, proton
exchange through Hv1 promotes intraflagellar alkalinization and stimulates CatSper chan-
nels in human or bovine spermatozoa compared to murine spermatozoa, which lacks the
presence of Hv1; its role in pH regulation is replaced by an Na+-dependent Cl−/HCO3

−

exchanger or sNHE. The synergy pathway between the Hv1/CatSper channels elevates
intracellular pH (5.5–6.5) as well as the Ca2+ uptake, which is necessary for the activation
of pH-dependent axonemal proteins and the maintenance of sperm motility, chemotaxis,
capacitation, and later acrosome reaction [61,69,70]. The architecture of an Hv1 dimeric
channel complex resembles voltage-gated channels, with the presence of voltage sensor
domain (VSD) but missing a separate pore domain. Instead of that, the Hv1 channel
contains internal selective proton transfer water wire located in the center of VSD [71].
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Table 4. Proton channels.

Channel Species Localization Functionality References

NHE1 human, ram,
mice, rat, boar

mid- and principal
piece of sperm

flagellum

activation of sperm motility upon ejaculation,
co-activation of Ca2+ and SLO channels [72–74]

NHE10/sNHE human, mice principal piece of
flagellum

regulation of cAMP signal pathway,
hyperactivated motility, sAC regulation [66,75]

Hv1 human, bull,
boar

principal and
terminal part of

sperm tail close to
CatSper

promotion of fast intracellular alkalinization
via pHi regulation, synergic pathway with

CatSper channels for the regulation of
capacitation and late acrosome reaction

[3,61,76]

6. Potassium Channels

The primary role of potassium (K+) channels (Table 5) in male gametes is the hyperpo-
larization of the plasma membrane during the capacitation process, which is a crucial step
for the sperm motility hyperactivation [7]. The opening of K+ channels leads to changes in
the membrane potential in the capacitated sperm [4], resulting in membrane hyperpolariza-
tion, whilst the closure of these channels causes its depolarization. The first indication of
their existence was reported by Arnoult et al. [77], who observed that membrane hyperpo-
larization that accompanies sperm capacitation is affected by the external K+ concentration
and K+-channel blockers, assuming that the hyperpolarization process can be executed by
the opening of these channels.

Four major classes of K+ channels are currently recognized, specifically (1) voltage-
gated K+ channels which open or close depending on fluctuations of the membrane po-
tential; (2) ion-activated K+ channels that are stimulated by the presence of Ca2+ or other
intracellular signaling molecules; (3) inwardly rectifying K+ channels that transfer K+ more
easily into the cell than out of it; (4) tandem pore domain K+ channels which may be
constitutively open [78]. At the same time, voltage-gated and ion-activated K+ channels
may share overlapping properties. Evidence gathered from previous studies supports the
presence of several K+ channels in spermatogenic cells as well as in spermatozoa [79–85].

The calcium-activated potassium channel (SLO1) and the potassium channel subfam-
ily U member 1 (SLO3) are the most frequently described K+ channels in male gametes and
are considered as primary regulating channels of K+ currents. They share characteristics of
voltage-gated and ion-activated K+ channels since they may be triggered by membrane
depolarization, Ca2+ and Mg2+ [86,87]. Besides the K+ current regulation, SLO channels
are involved in the regulation of osmolality and membrane potential of the plasma mem-
brane [88]. The structure of both consists of four pore-forming α subunits and several
auxiliary subunits [86,89]. SLO1 channels are present in all multicellular, mitochondrial
eukaryotes, primarily in muscle and neural cells, while SLO3 is exclusive to mammalian
testes and spermatozoa [83,86,90], although its isoforms may be found in the kidneys, brain,
and eyes [91]. Although both channels are primarily defined as voltage gated, SLO1 is also
activated by Ca2+ [92], while SLO3 is triggered by intracellular alkalinization [86,93].

SLO3 is the principal K+ channel in mammalian spermatozoa [88,94] and is localized in
the principal piece of the sperm flagellum [95]. SLO3 channels are responsible for K+ efflux,
and subsequent membrane hyperpolarization, which then affect other voltage-sensitive ion
channels such as CatSper and voltage-gated calcium channels (VGCCs) [96]. Additionally, it
has been speculated that SLO3 may participate in volume control and the ability of sperma-
tozoa to respond to osmotic challenges during their transit within the female reproductive
tract [97]. Because of rapid evolution, the channel presents with high structural divergence
and various functional properties amongst mammals, resulting in different voltage ranges
for the activation, sensitivity to pH, Ca2+ or phosphatidylinositol 4,5-bisphosphate and
subsequent dynamics of SLO3 in different mammalian species [95,98,99].
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Male SLO3 knockout mice produce spermatozoa with a reduced motility and abnor-
mal morphology, most likely due to a lack of membrane hyperpolarization, activation of
other voltage-gated channels and subsequent disturbance of osmotic homeostasis, since
apparently no other channels can compensate for the loss of SLO3 [94]. Although an
SLO3 mutant sperm can, to some degree, undergo spontaneous AR, it fails to undergo this
exocytotic event when exposed to solubilized zona pellucida (ZP). This result supports the
hypothesis that membrane hyperpolarization during capacitation is a key factor required
for the induction of the AR [100]. As such, these animals are neither capable of producing
offspring even during extended mating periods nor achieve fertilization in vitro [101].

Since K+ concentrations vary significantly in aquatic environments [102], the pri-
mary channels responsible for K+ transport and subsequent sperm plasma membrane
hyperpolarization in aquatic animals are the cyclic nucleotide-gated K+ channels (CNGKs).
Depending on the species, these tetrameric channels may be located at the head [103] or
flagellum [104] and are activated by oocyte-derived chemoattractants [7]. The presence
of a chemoattractant leads to an increase in cGMP [105], which opens CNGK channels, to
trigger membrane hyperpolarization, followed by a continued depolarization [104,105].
Furthermore, CNGK channels play a pivotal role in the induction of sperm motility, as their
activation leads to Ca2+ influx carried out by voltage-sensitive Ca2+ channels [103–105].

Inward rectifier K+ channels conduct larger inward currents at membrane voltages
negative to the K+ equilibrium potential than outward currents at positive voltages, which
enables them to be active at negative voltages [106,107]. Two types of inward rectifiers
have been identified in male reproductive cells, specifically K+ channels with strong in-
ward rectification and weakly rectifying K+ channels. K+ channels with strong inward
rectification are highly selective to K+ and may be inhibited by intracellular acidification
and Ba2+, which is a known inhibitor of sperm capacitation and acrosome reaction [108].
Weakly rectifying K+ channels sensitive to ATP (KATP channels) comprise Kir 6.1, Kir 6.2
(subunits of the KATP channel), SUR1 and SUR2 (sulfonylurea receptor) channels which
were detected in both spermatogenic cells and mature spermatozoa, specifically in the
flagellum principal piece (SUR2) and midpiece (Kir 6.1, Kir 6.2, SUR1, SUR2) as well as in
the postacrosomal region of the sperm head (Kir 6.2, SUR1) [79,109]. These channels are
particularly sensitive to the KATP channel blockers, tolbutamide and glibeclamide, and the
loss of glucose leading to the reduction in ATP [79].

Delayed outward voltage-dependent K+ channels are a family of K+ channels that
enable a sustained K+ efflux with a delay following membrane depolarization, which
leads to a rapid membrane repolarization. There are two types of delayed rectifiers in
spermatogenic cells depending on their sensitivity to tetraethyl ammonium (TEA). The most
prominent TEA-sensitive channel found in spermatogenic cells and mature spermatozoa
is KV3.1, whilst the predominant delayed rectifier less sensitive to TEA is hypothesized
to correspond to the SLO3 K+ channels which have been discussed previously. Other less
prominent delayed rectifiers identified in male reproductive cells are KV1.1, KV1.2, and G
protein-coupled inwardly rectifying potassium (GIRK1) channels [80].

Table 5. Potassium channels.

Channel Species Localization Functionality References

SLO1/3 mammals including
human, reptiles, birds, fish

principal piece of
sperm flagellum

regulation of K+ efflux,
osmolality and membrane

potential—hyperpolarization
[86,90,94]

GNGK’s sea urchin, zebrafish sperm head and
flagellum

induction of sperm motility,
mediators of voltage sensitive

Ca2+ channels
[103,106]
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Table 5. Cont.

Channel Species Localization Functionality References

KATP mice, rat

postacrosomal region
of sperm head,

midpiece and principal
piece of sperm tail

capacitation-associated
hyperpolarization [78,79]

KV
mice (Kv1.1, Kv1.2 and

Kv1.3), bull (Kv1.1)
equatorial segment of

spermatozoa

membrane hyperpolarization,
capacitation and acrosome

reaction, maintaining of sperm
osmotic resistance

[34,110]

7. Chloride Channels

In comparison to previously discussed ion channels and transporters, information on
chloride (Cl−) channels is relatively sparse (Table 6). Nevertheless, it has been previously
reported that sperm capacitation, hyperactivation and fertilization is blocked in media
lacking Cl− channels, which supports the hypothesis that regulation of Cl− homeostasis is
necessary for a proper membrane hyperpolarization, tyrosine phosphorylation and cytoso-
lic alkalization [7,111,112]. According to Santi [78], Cl− transporters may be divided into
two categories: (1) Cl− channels located in the plasma membrane with four structural fami-
lies, specifically γ-aminobutyric (GABA)-gated and related glycine-gated neurotransmitter
receptors, cystic fibrosis transmembrane conductance regulator (CFTR), Ca2+-activated Cl−

channels (CaCCs) and ClC-3 channels; and (2) Cl− transporters which enable Cl− passage
with another ion in either the same or the opposite direction (symporters, cotransporters
or antiporters). The most prominent Cl− transporters include the electroneutral cation-Cl
cotransporters such as the Na+/Cl− cotransporter, the Na+/K+/2Cl− cotransporter or the
Na+-independent K+/Cl− cotransporter.

Gamma-aminobutyric acid (GABA) receptors are Cl− channels that are most known
to mediate inhibitory neurotransmission in the central nervous system. In spermatozoa,
GABA receptors have been shown to be involved in the induction of acrosome reaction [113],
regulation of sperm motility and hyperactivation [114,115], as well as modulation of the
response of male gametes to progesterone [114–117].

The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique mem-
ber of the ATP-binding cassette (ABC) transporter family that acts as an ion channel
modulated by cAMP/PKA and ATP [118]. The channel is in charge of Cl− and HCO3

−

transport in an electrochemical gradient contrary to other members of the ABC family
that transport substrates against their chemical gradients [119]. Structurally, CFTR con-
tains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs),
and one regulatory (R) domain. MSDs constitute the channel pore; phosphorylation of
the R domain determines the activity of CFTR and ATP hydrolysis by NBDs affects the
channel-gating properties [120]. CFTRs have been localized in the midpiece of mammalian
spermatozoa [23,111,121] where they are involved in the regulation of sperm motility,
cAMP production and membrane hyperpolarization [121]; their specific roles depend on
the species. In humans, CFTRs seem to be involved in Cl− removal from spermatozoa
upon capacitation [33], whilst in mice and guinea pigs, CFTRs are suggested to transport
Cl− to spermatozoa [21,23]. In addition to its role as an Cl− channel, CFTR is also known
to interact with, cooperate with and regulate other ion channels such as chloride anion
exchanger SLC26A3, a HCO3

− transporter of the SLC26 family, or epithelial Na+ channels
(ENaC) [122–124].

Ca2+-activated Cl− channels (CaCCs) are stimulated by increases in intracellular Ca2+

levels caused either by its influx through the plasma membrane or release from intracellular
stores. These are anionic channels belonging to the anoctamin family (ANO/TMEM16).
Depending on the species, CaCCs may be found in the sperm head (humans), the apical
part of the acrosome or the middle piece of the flagella (guinea pigs) [125,126]. Evidence
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gathered from currently available reports suggests that CaCCs play an important role in
the process of capacitation and acrosome reaction, as well as in the regulation of sperm
motion, particularly in the acquisition of hyperactivated motility [7,127].

Chloride channels (ClCs) are an evolutionary conserved voltage-gated channel family
of nine members found in prokaryotic as well as eukaryotic organisms [128,129]. Out of
these, ClC-3, an intracellular voltage-dependent electrogenic 2Cl−/H+-exchanger [130,131],
has been detected in the sperm flagellum (humans, rhesus monkeys) [90,94], as well as in the
acrosome and midpiece (bulls) [132,133]. Chloride channel-3 (ClC-3) regulates outwardly
rectifying Cl− currents that are inhibited by protein kinase C (PKC) activation [134], chloride
channels thus playing important roles in the regulation of sperm volume and motility [135].
At the same time, ClC-3 can bind protein phosphatase PP1γ2, which is crucial for sperm
maturation and motility [132]. Accordingly, spermatozoa from asthenozoospermic patients
present with a lower cell volume and mobility, which correlates with lower expression
levels of ClC-3 [135].

Table 6. Chloride channels.

Channel Species Localization Functionality References

CFTR mice, guinea
pig, human

equatorial segment of
spermatozoa

transportation of Cl− to (rodents) and out (humans)
of spermatozoa, intracellular alkalinization, cAMP

synthesis, membrane hyperpolarization,
cooperation with SLC26 channels

[21,23,112]

CaCC human,
guinea pig

sperm head, apical part of
the acrosome, middle piece

of sperm tail

regulation of sperm movement and acquisition of
hyperactivation [125,126]

ClC human,
monkey, bull sperm flagella, acrosome regulation of cell volume, capacity and mobility [131,132,135]

Previous research has unraveled that CFTR inhibitors affect the plasma membrane
hyperpolarization without compromising other aspects of capacitation (such as tyrosine
phosphorylation), suggesting the presence of other Cl− transporters in spermatozoa. Cl−

may enter the cell with the help of electroneutral carriers; specifically, the sodium–chloride
symporter and the sodium–potassium–chloride carriers transport Cl− into the cell, while
potassium–chloride cotransporters (KCCs) transport Cl− out of the cell under physiological
conditions [136]. Cl− levels have been shown to be increased during capacitation [111,137],
indicating that NCC and NKCC may be involved in the regulation of Cl− homeostasis
during sperm activation and preparation for the physiologically induced acrosome reaction.
Further research has revealed the presence of NKCC1 in spermatids, and null mutants of
this protein present with a defective spermatogenesis and infertility [138].

Cl− may be carried through the plasma membrane with the help of molecules that
exchange Cl− for HCO3

− in either direction. The role of HCO3
− in the activation of cAMP

synthesis via soluble adenylyl cyclase is undeniable [139,140]; specific HCO3
− carriers

have not yet been fully defined. Whilst previous research has identified that Na+/HCO3
−

cotransporters are responsible for initial HCO3
− influx into the sperm cell [141], Cl−/HCO3

−

exchangers have been suggested to be involved in the regulation of HCO3
− homeostasis.

In addition, through their contribution to the Cl− gradient, they are important players in
the regulation of cell volume, intracellular pH, and membrane potential. The most relevant
Cl−/HCO3

− exchangers include two evolutionary independent gene superfamilies, SLC4
and SLC26, with specific patterns of anion selectivity and tissue distribution. From the SLC4
superfamily, only AE2 is found in testicular germ cells with suggested roles either in the
spermatogenic process or later in sperm function. With respect to the SLC26 superfamily,
recent studies have identified SLC26A3 and SLC26A6 in the sperm midpiece [21,23,78].
Accordingly, a SLC26A3-specific inhibitor blocked the capacitation-associated membrane
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hyperpolarization and the ZP-induced acrosome reaction, without affecting the cAMP
pathway or tyrosine phosphorylation [78].

8. Aquaporins

Aquaporins (AQPs) are a ubiquitous transmembrane protein family (Table 7) playing
pivotal roles in cellular fluid homeostasis, facilitating bidirectional water diffusion across
the membrane [142,143]. Structurally, AQPs are formed by four monomers, each with
their own permeable pore and with one central pore inside the tetramer whose function is
currently unknown [144]. Thirteen AQPs are currently known with different permeability
properties, structural features, and localization [145]:

1. Classical or orthodox AQPs present with the smallest channel size and hydrophilic
nature. Orthodox AQPs are located in the plasma membrane and are considered
primarily selective to water (with the exception of AQP6 present in the membranes
of cellular organelles that acts as a selective anion channel). This group comprises
AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8, considered primarily selective
to water [144,146,147].

2. Aquaglyceroporins (GLPs) present with larger pore size and lower hydrophilicity.
As such, these proteins are able to permeate glycerol (preferably), arsenite, urea,
polyols, purines, or pyrimidines. AQP3, AQP7, AQP9, and AQP10 belong to this
group [142,148,149].

3. Nonorthodox AQPs or superaquaporins (superAQPs) include AQP11 and AQP12.
These are expressed in intracellular membranes, primarily in the endoplasmatic
reticulum. While it has been reported that superAQPs are involved in the trans-
port of water and glycerol, their specific pore selectivity and function are currently
unknown [142,150].

All AQPs, except for AQP6 and AQP12, have been found in different locations of the
male reproductive system as well as in spermatozoa, out of which AQP3, AQP7, AQP8 and
AQP11 are the most prominent ones [144,151]. Their specific location by and large differs
among species. AQP3 is present in the sperm mid-piece in bulls and boars [152,153], while
in human and murine sperm, the principal piece is its prime location [154,155]. AQP7 is
present in the tail of ejaculated spermatozoa in bulls, stallions, boars, mice, and rats, as
well as in certain regions of the sperm head of men [153,156–160]. AQP8 has been detected
in the tail of human, mouse, and rat spermatozoa, additionally to the mitochondria from
the mid-piece in men [159,161]. Finally, AQP11 is present in the intracellular tail structures
of human, boar, stallion, mouse, and rat spermatozoa. In the meantime, its presence was
also confirmed in the sperm head of humans and the terminal piece of the sperm tail in
rats [157,162–164].

The most important role of AQPs in male gametes is related to osmoregulation to
counteract hypoosmotic stress that spermatozoa must withstand upon entering the female
reproductive tract [142]. The resulting hypoosmotic shock causes spermatozoa to uptake
excessive amounts of water, leading to swelling, membrane ruptures and the loss of proper
movement of the sperm tail [143]. Under physiological conditions, hypoosmotic stress
triggers an osmolyte efflux that drives a rapid water trafficking via AQPs and restores cell
volume [76]. Nevertheless, osmotic changes that occur in response to the hypotonic shock
that spermatozoa experience are crucial to initiate the capacitation process. Changes in the
sperm volume trigger the opening of calcium channels which enable calcium influx, which
is the first event occurring during capacitation [144]. At the same time, acrosomal swelling
is an essential prerequisite for a physiological acrosome reaction [145]. In the meantime,
evidence from recent years points to the necessity of strictly regulated hydrogen peroxide
(H2O2) levels, which are essential for sperm capacitation, hyperactivation and acrosome
reaction [146]. Since some AQPs (particularly AQP8) have been suggested to be involved in
the diffusion of H2O2, their possible involvement in ROS-mediated sperm activation seems
plausible. Accordingly, experimental blockade of AQPs has been reported to impede ROS
detoxification, leading to excessive intracellular ROS accumulation with an inhibitory effect
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on the sperm capacitation accompanied by plasma membrane ruptures, low membrane
hyperpolarization and premature acrosome exocytosis. Finally, the permeability of AQPs
to glycerol has been revealed to be important for the use of this molecule in metabolic
pathways and as a source of energy [147].

Table 7. Aquaporins.

Channel Species Localization Functionality References

AQP3 bulls, boars,
human, murine

midpiece and principal
piece of sperm tail

osmotic balance as a
defense to hypoosmotic
stress, restoring of cell

volume for Ca2+ influx and
triggering of capacitation

process, diffusion of H2O2

[153,156–158,160,161,163–170]

AQP7 bulls, stallions, boars,
mice, rats, human

sperm flagella and
head (human)

AQP8 boars, stallions, mice,
rats, human spermatozoa tail

AQP11 boars, stallions,
rodents, human

intracellular tail
structure, terminal

piece (rats) and sperm
head (human)

9. Ion Channels Relevant to the Sperm Redundant Nuclear Envelope (RNE)

The redundant nuclear envelope (RNE) is defined as a residual nuclear membrane
that accumulates at the sperm neck due to nuclear condensation. This membrane is
considered as a continuum of the membrane covering the endoplasmic reticulum of the
sperm cell before entering spermiogenesis, and occasionally RNE carries the remains of a
functional endoplasmic membrane [171]. From a functional point of view, RNE has been
proposed to contribute to the generation of Ca2+ signals necessary for sperm activation [172].
Accordingly, Ho and Suarez [171] unraveled the presence of a receptor-operated Ca2+

channel (IP3R) as well as a Ca2+-binding and storage protein called calreticulin in the region
occupied by RNE. Subsequent functional experiments have revealed that IP3R mobilizes
Ca2+ in the sperm neck, leading to an efflux of Ca2+ from RNE to trigger hyperactivated
motility [173,174]. Moreover, Naaby-Hansen et al. [175] localized IP3R and calreticulin in
the equatorial segment of the acrosome, in vesicles in the sperm neck close to the nucleus
and in the cytoplasmic droplet.

10. Ion Channels Relevant to the Sperm Mitochondria

The integrity of mitochondrial membranes is a crucial prerequisite for proper mi-
tochondrial function. Accordingly, mitochondrial ion channels present in the outer as
well as inner mitochondrial membrane are recognized as essential regulators of mitochon-
drial function [176,177] and may be divided into two major types. Channels of the first
type, including most K+ channels, present with properties similar to those located in the
plasma membrane. Channels of the second type are exclusive for mitochondria, such as
mitochondrial calcium channels [155] or mitochondrial porins [178,179].

Mitochondrial porins are voltage-dependent anion channels (VDACs) located in the
outer mitochondrial membrane whose primary function is to regulate the exchange of
ATP/ADP, Ca2+, and other metabolites and/or ions between the cytoplasm and mitochon-
dria [180]. Two isomers, specifically VDAC2 and VDAC3, have been identified in the head,
acrosome, and outer dense fibers of the flagellum in bovine spermatozoa [181] where they
control the cross-talk between mitochondria and the rest of the cell. Their crucial involve-
ment in the regulation of the sperm fertilization ability is furthermore evidenced by Kwon
et al. who observed that locking VDAC significantly decreases motility, viability, acrosome
reaction, capacitation, tyrosine phosphorylation, fertilization, and embryo development,
regardless of Ca2+ levels [182].
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Mitochondria enable a rapid uptake of Ca2+ into the matrix and thus are involved in
the regulation of cytosolic Ca2+ signals [183]. The molecular machinery underlying Ca2+

uptake into energized mitochondria is driven through the mitochondrial calcium uniporter
(mCU) complex (mCUC). It is a highly selective ion channel, mediating the Ca2+ influx
across the inner mitochondrial membrane driven by negative mitochondrial membrane
potential (∆Ψm) [184]. Experimental studies have revealed that a proper mCUC function is
a prerequisite for a desirable sperm viability, motility, and ATP levels while sustaining a
proper ∆Ψm and ROS production [185].

Potassium is a crucial element for the mitochondrial integrity as its cycle regulates the
mitochondrial volume and homeostasis [186]. The K+ influx into mitochondria is driven
by a negative ∆Ψm, accompanied by anion and water flux, which leads to mitochondrial
swelling. The first K+ selective mitochondrial channel to be described is mitoKATP, driven
by ATP and localized in the inner mitochondrial membrane [187]. The channel shows
similarities with channels regulated by ATP present in the plasma membrane [188]. In the
meantime, the most known mitochondrial Ca2+-activated K+ channels include the small
conductance K+ (mitoSKCa) channel [189], the intermediate-conductance Ca2+-activated
K+ channel (mitoIKCa) [190] and the large-conductance Ca2+-activated K+ channel (mito-
BKCa) [191]. The latter has received increased attention for its wide occurrence in various
cell types and suggested participation in cytoprotection [192]. Activation of the channel
leads to an influx of K+ into the mitochondrial matrix, followed by membrane depolariza-
tion, and a decrease in ROS production [193]. Among voltage-gated potassium channels,
the inner mitochondrial membrane holds (a) the mitochondrial 1.3 voltage-gated potassium
(mitoKv1.3) channel [192]; (b) the mitochondrial 1.5 voltage-gated potassium (mitoKv1.5)
channel; and (c) the mitochondrial 7.4 voltage-gated potassium (mitoKv7.4) channel [194].
In isolated mitochondria, modulation of both mitoKv1.3 and mitoKv7.4 leads to changes
in ∆Ψm and ROS levels, suggesting that both channels are open under physiological
conditions [192]. The closure of mitoKv1.3 by either inhibitors or apoptotic regulators
leads to excessive ROS release, most likely due to interactions between mitoKv1.3 and the
respiratory complex I [195].

Besides cation-selective channels, the inner mitochondrial membrane also contains
anion-selective transport systems [196], such as the inner membrane anion channel IMAC,
also called the mitochondrial Centum picoSiemens (mCS), which is involved in the regu-
lation of the mitochondrial volume homeostasis [197]. More information is available on
channels belonging to chloride intracellular channel proteins (CLIC), specifically CLIC4
and CLIC5, which were recently detected in mitochondrial membranes [198] and are likely
to play significant roles in sperm function [199].

Since mitochondria are able to uptake large amounts of Ca2+, a fast pathway for
Ca2+ release is associated with mitochondrial permeability transition pore (MPTP), which
contributes to cellular homeostasis and prevents mitochondria from Ca2+ overload [200].
MPTP is a multiprotein complex whose opening triggers a massive increase in the inner
mitochondrial membrane permeability to solutes of up to 1.5 kDa [201]. According to
existing evidence, several proteins present in both mitochondrial membranes and the
matrix have been associated with MPTP, including the VDA channels, BCL-2 proteins,
adenine nucleotide translocator (ANT) or hexokinase [202–204]. In the meantime, the
opening of the pore is accelerated by the loss of the inner ∆Ψm [205]; the alkalinization of
the mitochondrial matrix [206]; and the increase in Ca2+ levels [207]. A transient MPTP
opening in intact and healthy cells contributes to cellular homeostasis since it provides
a fast release of ions or toxic compounds accumulated in the mitochondrial matrix [208].
Moreover, an MPTP opening may also regulate the activity of some mitochondrial Ca2+-
dependent enzymes [209].

11. Ion Channels Relevant to the Sperm Acrosome

The acrosome is a membrane-derived organelle that covers the sperm head of numer-
ous species. Functional acrosomal structures are a critical component of the sperm–egg
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fusion that is triggered by physiological inducers released from the female gamete or by
exposure to specific pharmacological stimuli. Acrosome reaction is defined by a strictly
regulated and irreversible process during which the acrosomal contents including Ca2+ and
enzymes are released to the extracellular medium [210]. The activation of the acrosome re-
action relies on the concurrence of several transduction pathways, most notably ion perme-
ability changes leading to increased intracellular pH, Ca2+ and cAMP, G protein activation,
changes to the membrane lipids and protein phosphorylation. Since several ion channel
blockers inhibit the progress of acrosome reaction, the role of membrane transporters in
these secretory events is indisputable [43,211]. Hence, this section briefly discusses the
most important ion channels that are relevant for a proper acrosome functionality.

Voltage-gated Ca2+ channels (VGCCs) have been found in the sperm acrosome of a
broad range of species including fish [58], newts [57], and mammals [60,212]. Several types
of VGCCs have been identified in spermatozoa, specifically the “long-lasting” L-type that
is activated by high voltage and is resistant to ω-conotoxin and ω-agatoxin [58,60,212];
the “transient” T-type channel operated by low voltage [212,213]; and the “Purkinje”
P/Q-type that is activated by high voltage, is resistant toω-conotoxin and blocked byω-
agatoxin [212]. Both the L- and T-type channels have been reported to participate in human
sperm acrosome reactions [60] by activating membrane depolarization and mediating Ca2+

influx in response to changes in the action potential and depolarizing signals [214].
Transient receptor potential vanilloids (TRPVs) consist of six subtypes divided into

two groups depending on their Ca2+ permeability and sensitivity to temperature, specifi-
cally TRPV1/TRPV2/TRPV3/TRPV4 and TRPV5/TRPV6 [215]. All six TRPV subtypes
have been found in the spermatozoa of vertebrates, even though TRPV1 and TRPV4 seem
to be present more frequently. TRPV1 is a voltage/heat/lipid/pH-modulated channel
localized in the sperm head and the acrosome [45,216,217] which is desensitized by internal
Ca2+; however, the channel is not activated by Ca2+-store reduction [215]. The intensity of
the TRPV1 current rises with increasingly acidic pH and is regulated by intracellular phos-
phatidylinositol 4,5-bisphosphate [215]. In the meantime, the TRPV4 channel activation
depends on the extracellular osmolality, pH, lipids, and mechanical triggers, such as shear
stress or membrane stretching [215,218].

Store-operated Ca2+ channels (SOCCs) are inward rectifiers, and their primary role
is to supply the cellular compartments with Ca2+ from extracellular environment after
Ca2+ is released and pumped out across the plasma membrane [43]. Since SOCCs are not
voltage-dependent channels, they are functional even at negative membrane potentials
at which depolarization-sensitive channels (such as VGCCs) are not engaged in action.
SOCCs are assembled by ORAI1–3 proteins, where one channel is created by one ORAI
protein. The channel is inactivated by Ca2+ binding [48]. SOCs have been suggested to play
an important role in the regulation of sperm physiology as the channel inhibition reduces
sperm motility and acrosome reaction [51,219]. This phenomenon is most likely regulated
through the induction of 5′ AMP-activated protein kinase phosphorylation [51].

Similar to the sperm plasma membrane, CatSper channels are the most studied sperm
Ca2+ channels in the acrosome structures because of their sperm specificity and crucial
roles in sperm–egg chemotaxis, capacitation, and acrosome reaction [38]. Besides Ca2+,
CatSper also facilitates the entry of monovalent (Na+ and Cs+) and bivalent cations (Ba2+)
to spermatozoa if extracellular Ca2+ is absent. The channel is pH-sensitive and triggered
by alkaline pH [38]. Its activity is furthermore regulated by cyclic nucleotides, membrane
voltage, phosphorylation, biomolecules (such as prostaglandin, BSA and progesterone) and
zona pellucida glycoproteins [38,220].

A Ca2+-activated Cl− channel (CaCC) opening is stimulated by increases in intracel-
lular Ca2+ levels resulting from its influx through the plasma membrane channels or its
release from intracellular stores. CaCCs have been reported to be present in the heads
of mature human spermatozoa where they may contribute to Ca2+-dependent Cl− cur-
rents necessary for a proper acrosome reaction [130]. In the meantime, chloride channels
(ClCs), specifically ClC-3, have been detected in the acrosome and midpiece of bovine
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spermatozoa [133], playing important roles in the regulation of sperm volume, motility,
and fertilization ability [135].

The main role of a voltage-gated H+ channel (VGHC) is to extrude H+ from the
cell, leading to an increase in intracellular pH [221]. These channels exhibit a highly se-
lective H+-conductance, opening with membrane depolarization, high extracellular pH
and decreased intracellular pH [221]. Besides in humans [76,222,223], VGHCs have also
been found in macaque [224], boar [225], and bull spermatozoa [61]. VGHC activation
leads to intracellular alkalinization, which is accompanied by CatSper activation, Ca2+

influx and the induction of hypermotility and acrosome activation [213,222,226]. As such,
VGHC has been shown to be involved in the induction of capacitation, progressive motility,
and acrosome reaction through induced NADPH oxidase 5 activation and ROS genera-
tion [69,222,227]. Correspondingly, their inhibition leads to a reduced sperm motility and
progesterone-induced acrosome reaction [225,226].

12. Conclusions

Regulation machinery behind the whole capacitation process is still not fully un-
derstood. However, what we can say for sure is that ion channels of the sperm plasma
membrane are responsible for the maintenance of various biological and biochemical
changes such as alkalinization, hyperpolarization, hyperactivation as well as capacitation.
These channels and transporters supported the adaptation of sperm cells to a constantly
changing environment during their fertilization journey in the female genital tract. Ac-
cordingly, since their dysfunction has been frequently correlated with sub- or infertility, a
more profound understanding of their involvement in the regulation of sperm behavior
in future studies may contribute to the evolution of new strategies for the management of
male reproductive dysfunction.
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