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ABSTRACT

Motivation: At the heart of many important bioinformatics problems,
such as gene finding and function prediction, is the classification of
biological sequences. Frequently the most accurate classifiers are
obtained by training support vector machines (SVMs) with complex
sequence kernels. However, a cumbersome shortcoming of SVMs
is that their learned decision rules are very hard to understand for
humans and cannot easily be related to biological facts.
Results: To make SVM-based sequence classifiers more accessible
and profitable, we introduce the concept of positional oligomer
importance matrices (POIMs) and propose an efficient algorithm for
their computation. In contrast to the raw SVM feature weighting,
POIMs take the underlying correlation structure of k-mer features
induced by overlaps of related k-mers into account. POIMs can be
seen as a powerful generalization of sequence logos: they allow to
capture and visualize sequence patterns that are relevant for the
investigated biological phenomena.
Availability: All source code, datasets, tables and figures
are available at http://www.fml.tuebingen.mpg.de/raetsch/projects/
POIM.
Contact: Soeren.Sonnenburg@first.fraunhofer.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
For many sequence classification problems, support vector machines
(SVMs) (Schölkopf and Smola, 2002; Vapnik, 1995) with the right
choice of sequence kernels perform better than other state-of-the-
art methods, as exemplified in Table 1. While this success can
in part be attributed to the SVM algorithm and the statistical
learning theory that underlies it (Vapnik, 1995), it is essential to
use appropriate kernels and features. In order to achieve the best
prediction results, it typically pays off to rather include many,
potentially weak features than to manually pre-select a small set
of discriminative features. For instance, the SVM-based translation
initiation start (TIS) signal detector Startscan (Saeys et al.,
2007), which relies on a relatively small set of carefully designed
features, shows a considerably higher error rate than an SVM with a
standard kernel that implies a very high-dimensional feature space
(cf. Table 1).

The best methods in Table 1 are all based on SVMs that work
in feature spaces that exhaustively represent the incidences of all
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k-mers up to a certain maximum length K . There are two cases: the
k-mers are either (i) summarized over all positions or (ii) considered
separately for each position. For (i) there are the popular spectrum
kernel without (Leslie et al., 2002) and with mismatches (Leslie
et al., 2003); for (ii) we use the weighted degree kernel without
(WD; Rätsch and Sonnenburg, 2004) and with shift (WDS; Rätsch
et al., 2005).

Nowadays, SVMs with string kernels can be trained efficiently
on millions of DNA sequences even for large orders K (e.g.
Sonnenburg et al., 2007a), thereby inducing enormous feature spaces
(for instance, K =30 gives rise to more than 430 >1018 k-mers).
Such feature spaces supply a solid basis for accurate predictions
as they allow to capture complex relationships (e.g. binding site
requirements). From an application point of view, however, they
are yet unsatisfactory as they offer little scientific insight about the
nature of these relationships. The reason is that SVM classifiers
ŷ=sign( f (x)) employ a kernel expansion,

f (x)=
N∑

i=1

αiyik
(
xi,x

)+b, (1)

where (xi,yi)i=1,...,N , with yi ∈{+1,−1}, are the N training
examples (Schölkopf and Smola, 2002). Thus, SVMs use a
weighting α over training examples that only indirectly relate to
features. One idea to remedy this problem is to characterize input
variables by their correlation with the weight vector α (Üstün et al.,
2007); however, the importance of features in the induced feature
space remains unclear.

Partial relief is offered by multiple kernel learning (MKL;
e.g. Lanckriet et al., 2004; Rätsch et al., 2006). In MKL,
convex combinations of M kernels are considered, i.e.
k(xi,xj) :=

∑M
m=1βmkm(xi,xj) with βm ≥0 and

∑M
m=1βm =1.

For appropriately designed sub-kernels km, the optimized
combination coefficients β can then be used to highlight which
parts of an input sequence are important for discrimination (Rätsch
et al., 2006). The use of the l1-norm constraint (

∑M
m=1βm =1)

causes the resulting β to be sparse, however at the price of discarding
relevant features, which may lead to inferior performance.

An alternative approach is to keep the SVM decision function
unaltered, and to find adequate ways to ‘mine’ the decision boundary
for good explanations of its high accuracy. A natural way is to
compute and analyze the normal vector of the separation in
feature space, w=∑N

i=1αiyi�(xi), where � is the feature mapping
associated to the kernel k. This has been done, for instance, in
cognitive sciences to understand the differences in human perception
of pictures showing male and female faces. The resulting normal
vector w was relatively easy to understand for humans since it can
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Table 1. Comparison of SVM performance (second column) versus competing state-of-the-art classifiers (third column) on six different DNA signal detection
problems

Signal detection
problem to be solved

SVM performance SVM-based approach and string
kernel names

Performance of
competitor

Competing approach

Transcription start 26.2% auPRC WDS and spectrum (ARTS,
Sonnenburg et al., 2006b)

11.8% auPRC RVM (Eponine, Down and
Hubbard, 2002)

Acceptor splice site 54.4% auPRC WDS (Sonnenburg et al., 2007b) 16.2% auPRC IMC (Sonnenburg et al., 2007b)

Donor splice site 56.5% auPRC WDS (Sonnenburg et al., 2007b) 25.0% auPRC IMC (Sonnenburg et al., 2007b)
Alternative splicing 89.7% auROC WDS (RASE, Rätsch et al., 2005) - -

Trans-splicing 95.2% auROC WD (mGene, Schweikert et al.,
manuscript in preparation)

- -

Translation initiation 10.7% Se80 WD (mGene, Schweikert et al.,
manuscript in preparation)

12.5% Se80 PWM, ICM (Startscan,
Saeys et al., 2007)

The chosen best SVMs employ spectrum, WD or WDS kernels. Note that performance measures differ. AuROC denotes the area under the receiver operator characteristic curve and
auPRC the area under the precision recall curve; for both, larger values correspond to better performance. Se80 is the false positive rate at a true positive rate of 80% (lower values
are better). Transcription start site (TSS): among the best TSS recognizers is the relevance vector machine (RVM) based Eponine, which is clearly outperformed by our ARTS TSS
detector. Acceptor and donor splice sites: the best existing splice site detectors are SVM based (Sonnenburg et al., 2007b); we therefore deliberately compare our methods to the
popular inhomogeneous Markov chains (IMC), which achieve less than half of the auPRC on human splice sites. Alternative and trans-splice sites in Caenorhabditis elegans: to
the best of our knowledge no other ab initio approaches are available. Translation initiation sites: for TIS recognition we compare with Startscan (ISMB, 2007) which is based on
positional weight matrices (PWM) and interpolated context models (ICM). Our WD-kernel SVM, trained using default settings C =1, d =20 (no model selection) on the dataset
from Saeys et al. (2007), already performs favorably.

be represented as an image (Graf et al., 2006). Such approach is only
feasible if there exists an explicit and manageable representation of
� for the kernel at hand. Fortunately, for most string kernels we can
also compute such weight vector which leads to weightings over all
possible k-mers. However, it seems considerably more difficult to
represent such weightings in a way humans can easily understand.
There have been first attempts in this direction (Meinicke et al.,
2004), but the large number of k-mers and their dependence due
to overlaps at neighboring positions still remain an obstacle in
representing complex SVM decision boundaries.

In this work, we address this problem by considering new
measures for k-mer-based scoring schemes (such as SVMs with
string kernels) useful for the understanding of complex local
relationships that go beyond the well-known sequence logos. For
this, we first compute the importance of each k-mer (up to a
certain length K) at each position as its expected contribution to
the total score f (x). The resulting Positional Oligomer Importance
Matrices (POIMs) can be used to rank and visualize k-mer-
based scoring schemes. Note that a ranking based on w is not
necessarily meaningful: due to the dependencies of the features
there exist w′ �= w that implement the same classification, but yield
different rankings. In contrast, our importance values are well-
defined and have the desired semantics. The lowest order POIM
(k =1) essentially conveys the same information as is represented in
a sequence logo. However, unlike sequence logos, POIMs naturally
generalize to higher order nucleotide patterns.

The article is structured as follows. In Section 2 we introduce
POIMs for visualization and feature extraction. In Section 3 we use
artificial data to show that POIMs easily out-compete MKL and the
SVM weight w. We then analyze POIMs of state-of-the-art SVM-
based signal detectors for recognizing acceptor splice, transcription
start and trans-splicing sites (TRSSs). We show that POIMs recover
many known motifs: they exactly pin-point length, location and
typical sequences of motifs. We close the article with a discussion
and an outlook on future work (Section 4).

2 METHODS
First we introduce the necessary background, then define POIMs, provide
recursions for efficient computation, and finally describe visualization and
analysis.

2.1 Linear positional oligomer scoring systems
Given an alphabet �, here the DNA nucleotides �={A,C,G,T}, let x∈∑L

be a sequence of length L. A sequence y∈∑k is called a k-mer or oligomer
of length k. A positional oligomer (PO) is defined by a pair (y,i)∈I :=⋃K

k=1 (
∑k ×{1,...,L−k+1}), where y is the subsequence of length k and i

is the position at which it begins within the sequence of length L. We consider
scoring systems of order K (that are based on POs of lengths k ≤ K) defined
by a weighting function w :I →R. Let the score s(x) be defined as a sum of
PO weights:

s(x) :=
K∑

k=1

L−k+1∑
i=1

w
(

x[i]k ,i
)
+b, (2)

where b is a constant offset (bias), and we write x[i]k :=xixi+1 ... xi+k−1 to
denote the substring of x that starts at position i and has length k. Many
classifiers implement such a scoring system as will be shown below.

2.1.1 The WD kernel The WD kernel (Rätsch and Sonnenburg, 2004) of
order K compares two sequences x and x′ of equal length L by counting
k-mer matches of lengths k ∈{1,...,K} with predefined weights βk :

k(x,x′)=
K∑

k=1

βk

L−k+1∑
i=1

I

{
x[i]k =x′[i]k

}
,

where I{·} is the indicator function (see also Fig. 1 for illustration). A feature
mapping �(x) is defined by a vector representing each PO of length ≤ K :
if it is present in x then the vector entry is

√
βk and 0 otherwise (Rätsch

and Sonnenburg, 2004). It can be easily seen that �(x) is an explicit
representation of the WD kernel, i.e. k(x, x′)=�(x)·�(x′).

When training any kernel method (e.g. an SVM or a kernel regression
method) with this kernel, the resulting function is a weighted sum of kernel
evaluations (1). If there exist an explicit feature map, the function f (x) can
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Fig. 1. Example of WD kernel of order K =3. In the shown case,
k(x,x′)=21β1 +8β2 +3β3.

be equivalently computed as f (x)=w·�(x)+b, where w=∑N
i=1αiyi�(xi)

(Vapnik, 1995). Given the feature map of the WD kernel, it becomes apparent
that the resulting w is a weighting over all possible POs and, hence, f (x) can
be written in the form of (2).

2.1.2 Other kernels The above findings extend to the oligomer kernel
(Meinicke et al., 2004) and the related WD kernel with shift (Rätsch et al.,
2005), which additionally include displaced matches. The spectrum kernel
(Leslie et al., 2002) counts pairs of identical k-mers independent of their
position and can be modeled with (2) by using equal weights at each position
i∈{1,...,L} (analogously for the spectrum kernel with mismatches, Leslie
et al., 2002).

2.1.3 Markov model of order T In a Markov model of order T
it is assumed that each symbol in a sequence x is independent of
all other symbols in x that have distance greater than T . Thus, the
likelihood of x can be computed as a product of conditional probabilities:
Pr(x)=∏T

i=1 Pr
(
xi|x[1]i−1

)·∏L
i=T+1 Pr

(
xi|x[i−T ]T

)
. Note that a positional

weight matrix (PWM) is essentially a Markov model of order T =0.
The log likelihood for T =K −1 is easily expressed as a linear PO
scoring system for K–mers as follows: log Pr(x)=∑K−1

i=1 w
(
x[1]i,1

)+∑L
i=K w

(
x[1−K +1]K ,i−K +1

)
, with w(x[1]i,1)= logPr(xi|x[1]i−1) and

w(x[i−K +1]K ,i−K +1)= logPr(xi|x[i−K +1]K−1). A log likelihood
ratio is modeled by the difference of two such scoring systems.
This derivation applies to both homogeneous (position-independent) and
inhomogeneous (position-dependent) Markov models. It further extends to
the decision rules of mixed order models.

2.2 POIMs
The goal of POIMs is to characterize the importance of each PO (z, j) for
the classification. On first sight, looking at the scoring function (2), it might
seem that the weighting w does exactly this: w(z, j) seems to quantify the
contribution of (z, j) to the score of a sequence x. In fact this is true whenever
the POs are statistically independent. However, already for K ≥2 many POs
overlap with each other and thus necessarily are dependent. To assess the
influence of a PO on the classification, the impact of all dependent POs has
to be taken into account. For example, whenever z occurs at position j, the
weights of all its positional substrings are also added to the score (2).

To take dependencies into account, we define the importance of (z, j) as
the expected increase (or decrease) of its induced score. We quantify this
through the conditional expectation of s(x) conditioned on the occurrence of
the PO in x (i.e. on x[j]=z)1:

Q(z,j) :=E[s(x)|x[j]=z]−E[s(x)] . (3)

This is the central equation of this article. When evaluated for all positions
j and all k-mers z, it results in a POIM.

The relevance of (3) derives from the meaning of the score s(•). Higher
absolute values |s(x)| of scores s(x) indicate higher confidence about the
classifiers decision. Consequently, high |Q(z,j)| show that the presence of a k-
mer z at position j in an input sequence is highly relevant for class separation.

1We omit the length of the subsequence in comparisons where it is clear from
the context, e.g. x[j] = z means x[j]|z| =z.

For example, with an SVM trained for splice sites a high-positive score
s(x) suggests that x contains a splice site at its central location while a
very negative score suggests that there were none. Thus a PO (z, j) of high
absolute importance |Q(z,j)| might be part of a splice consensus sequence,
or a regulatory element (an enhancer for positive importance Q(z,j)>0, or
a silencer for Q(z,j)< 0).

The computation of the expectations in (3) requires a probability
distribution for the union of both classes. In this article, we use a zeroth-
order Markov model, i.e. an independent single-symbol distribution at each
position. Although this is quite simplistic, the approximation that it provides
is sufficient for our applications. A generalization to Markov models of order
D ≥ 0 can be found in Zien et al. (2007).

There are two strong reasons for the subtractive normalization w.r.t. the
(unconditionally) expected score. The first is conceptual: the magnitude of
an expected score is hard to interpret by itself without knowing the cut-off
value for the classification; it is more revealing to see how a feature would
change the score. The second reason is about computational efficiency; this
is shown next.

2.2.1 Efficient computation of Q (z, j) Naive implementation of (3) would
require a summation over all |�|L sequences x of length L, which is clearly
intractable. The following equalities show how the computational cost can
be reduced in three steps; for proofs and details see our technical report (Zien
et al., 2007).

Q(z,j) =
∑

(y,i)∈I
w(y,i)[Pr(x[i]=y|x[j]=z)−Pr(x[i]=y)]

=

⎧⎪⎨
⎪⎩

∑
(y,i)∈I(z,j)

w(y,i)Pr(x[i]=y|x[j]=z)

− ∑
(y,i)⊥(z,j)

w(y,i)Pr(x[i]=y)
(4)

= u(z,j)−
∑

z′∈�|z|
Pr(x[j]=z′)u(z′,j). (5)

Here u is defined by

u(z,j) :=
∑

(y,i)∈I(z,j)

Pr(x[i]=y|x[j]=z)w(y,i), (6)

I(z,j) is the set of features that are dependent and compatible with (z, j),
and ⊥ indicates that two POs are dependent. Two POs are compatible if they
agree on all positions they share. For example, (TATA, 30), and (AAA, 31) are
incompatible, since they share positions {31, 33} but disagree on position
32, whereas (TATA, 30) and (TACCA, 32) are compatible. Note also that for
Markov chains of order zero statistical dependence of two POs is equivalent
with them being overlapping.

The complexity reduction works as follows. In (4) we use the linear
structure of both the scoring function and the expectation to reduce
summation from all L-mers to the set I of all k-mers. This is still prohibitive:
for example, the number of POs for K =20 and L=100 on DNA is roughly
O(1014). In (5), we exploit the facts that the terms for POs independent
of (z, j) cancel in the difference, and that conditional probabilities of
incompatible POs vanish. Finally, probability calculations lead to (6), in
which the difference is cast as a mere weighted sum of auxiliary terms u.

To compute u we still have to access the SVM weights w. Note that, for
high orders K , the optimal w found by any kernel method (e.g. an SVM) is
sparse as a consequence of the representer theorem (Schölkopf and Smola,
2002): the number of non-zero entries in w is bounded by the number of POs
present in the training data, which for the spectrum and WD kernels grows
linearly with the training data size. Due to this sparsity, w can efficiently be
computed and stored in positional suffix tries (Sonnenburg et al., 2007a).

2.2.2 Recursive algorithm for Q(z, j) (Even with the summation over the
reduced set I(z, j) as in (6) and (7), naive sequential computation of the
importance of all POs of moderate order may easily be too expensive. We
therefore develop a strategy to compute the entire matrix of values Q(z, j),
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Fig. 2. Substrings, superstrings, left partial overlaps and right partial overlaps: definition and examples for the string AATACGTAC.

Fig. 3. The theorem which enables efficient POIM computation for zeroth-order Markov chains (Zien et al., 2007).

for all k-mers z up to length P at all positions 1, …, L−p+1, which takes
advantage of shared intermediate terms. This results in a recursive algorithm
operating on string prefix data structures and therefore is efficient enough to
be applied to real biological analysis tasks.

The crucial idea is to treat the POs in I(z,j) separately according to
their relative position to (z, j). To do so, we subdivide the set I(z,j)
into substrings, superstrings, left partial overlaps and right partial overlaps
of (z, j), as illustrated in Figure 2. The function u can be decomposed
correspondingly; see Equation (8) in Figure 3. This figure also summarizes
all the previous observations in the central POIM computation theorem. The
complete derivation can be found in Zien et al. (2007).

Once w is available as a suffix trie (Sonnenburg et al., 2007a), the
required amounts of memory and computation time for computing POIMs
are dominated by the size of the output, i.e. O(|�|k ·L). The recursions are
implemented in the freely available toolbox SHOGUN2 (which also offers
a non-positional version for the spectrum kernel) and applicable online.3

2available from http://www.shogun-toolbox.org
3via Galaxy at http://galaxy.fml.tuebingen.mpg.de/

2.3 Ranking features and condensing information for
visualization

Given the POIMs, we can analyze POs for their contributions to the scoring
function. Now we discuss several methods to visualize the information in
POIMs and to find relevant POs. In the following, we will use the term motif
either synonymously for PO, or for a set of POs that are similar (e.g. that
share the same oligomer at a small range of neighboring positions).

2.3.1 Ranking tables A simple analysis of a POIM is to sort all POs by
their importance Q(·) or absolute importance |Q(·)|. As argued above, the
highest ranking POs are likely to be related to relevant motifs. Examples of
such tables can be found in the Supplementary Material.

2.3.2 POIM Plots We can visualize an entire POIM of a fixed order k ≤ 3
in the form of a heat map: each PO (z, j) is represented by a cell, indexed
by its position j on the x-axis and the k-mer z on the y-axis (e.g. in lexical
ordering), and the cell is colored according to the importance value Q(z, j).
This allows to quickly overview the importance of all possible POs at all
positions. An example for k =1 can be found in Figure 6. There also the
corresponding sequence logo is shown.
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Fig. 4. Two (k−1)-mers are covered by a k-mer.

However, for k >3 such visualization ceases to be useful due to the
exploding number of k-mers. Similarly, ranking lists may become too
long to be accessible to human processing. Therefore we need views that
aggregate over all k-mers, i.e. that show PO importance just as a function
of position j and order k. Once a few interesting areas (j, k) are identified,
the corresponding POs can be further scrutinized (e.g. by looking at local
rank lists) in a second step. In the following paragraphs we propose three
approaches for the first, summarizing step.

2.3.3 POIM weight mass At each position j, the total importance can be
computed by summing the absolute importance of all k-mers at this position,
weight_massk(j)=∑

z∈�k |Q(z,j)|. Several such curves for different k can
be shown simultaneously in a single graph. An example can be found in
Figure 7B.

2.3.4 Differential POIMs Here we start by taking the maximum absolute
importance over all k-mers for a given length k and at a given position j.
We do so for each k ∈{1,...,P} and each j∈{1,...,L}. Then we subtract the
maximal importance of the two sets of (k−1)-mers covered by the highest
scoring k-mer at the given position (Fig. 4). This results in the importance
gain by considering longer POs. As we demonstrate in the next section, this
allows to determine the length of relevant motifs. Figure 5A–D shows such
images.

2.3.5 POIM diversity A different way to obtain an overview over a large
number of k-mers for a given length k is to visualize the distribution of their
importances. To do so, we approximate the distribution at each position by a
mixture of two normal distributions, thereby dividing them into two clusters.
We set the values in the lower cluster to zero, and sort all importances in
descending order. The result is depicted in a heat map just like a POIM plot.
Here we do not care that individual importance values cannot be visually
mapped to specific k-mers, as the focus is on understanding the distribution.
An example is given in Figure 7C.

2.3.6 k-mer scoring overview Previously, the scoring and visualization
of features learned by SVMs was performed according to the values of
the weight vector w (Meinicke et al., 2004; Sonnenburg et al., 2007a). In
order to show the benefit of our POIM techniques in comparison to such
techniques, we also display matrices visualizing the position-wise maximum
of the absolute value of the raw weight vector w over all possible k-mers at
this position, KS(p,j)=maxz∈�k |(z,j)|. We will also display the Weight Plots
and the Weight Mass for the weight matrices SVM-w in the same way as for
the importance matrices. Differential plots for SVM-w do not make sense,
as the weights for different orders are not of the same order of magnitude.
Figure 5E–H shows such overview images.

3 RESULTS

3.1 POIMs reveal motifs which remain hidden in
sequence logos and SVM weights

As a first step we demonstrate our method on two simulations with
artificial data.

3.1.1 Two motifs at fixed positions In our first example we reuse a
toy data set of Sonnenburg et al. (2005): two motifs of length seven,
with consensus sequences GATTACA and AGTAGTG, are planted
at two fixed positions into random sequences (Sonnenburg et al.,
2005). To simulate motifs with different degrees of conservations
we also mutate these consensus sequences, and then compare
how well different techniques can recover them. More precisely,
we generate a data set with 11 000 sequences of length L=50
with the following distribution: at each position the probability
of the symbols {A, T} is 1/6 and for {C, G} it is 2/6. We
choose 1000 sequences to be positive examples: we plant our
two POs, (GATTACA, 10) and (AGTAGTG, 30), and randomly
replace s symbols in each PO with a random letter. We create
four different versions by varying the mutation level s∈{0,2,4,5}.
Each data sets is randomly split into 1000 training examples
and 10 000 validation examples. For each s, we train an SVM
with WD kernel of degree 20 exactly as in Sonnenburg et al.
(2005). We also reproduce the results of Sonnenburg et al. (2005)
obtained with a WD kernel of degree 7, in which MKL is
used to obtain a sparse set of relevant pairs of position and
degree.

The results can be seen in Figure 5. We start with the first column,
which corresponds to the unmutated case s=0. Due to its sparse
solution, MKL (I–L) characterizes the positive class by a single
3mer in the GATTACA. Thus MKL fails to identify the complete
consensus sequences. The K-mer scoring matrices (E–H) are able
to identify two clusters of important oligomers at and after positions
10 and 30; however they assign highest impact to shorter oligomers.
Only the differential POIMs (A–D ) manage to identify the exact
length of the embedded POs: they do not only display that 7mers
up to k =7 are important, but also that exactly 7mers at position 10
and 30 are most important.

Moving through the columns to the left, the mutation level
increases. Simultaneously the performance deteriorates, as expected.
In the second column (2/7 mutations), differential POIMs still
manage to identify the exact length of the embedded motifs, unlike
the other approaches. For higher mutation rates even the POIMs
assign more importance to shorter POs, but they continue to be
closer to the truth than the two other approaches. In Figure 6 we
show the POIM plot for 1mer versus sequence logos for this level
of mutation. As one can see, 1mer POIMs can capture the whole
information contained in sequence logos.

3.1.2 Mutated motif at varying positions In order to make our
experiment more realistic, we consider motifs with positional shift.
First 5000 training and test sequences are created by drawing
uniformly from {A, C, G, T}100. For half of the sequences, the
positive class, we randomly insert the 7mer GATTACA, with one
mutation at a random position. The position j of insertion follows
a normal distribution with mean 0 and standard deviation 7 (thus
for 50% of the cases, j∈[−5,+5]). We train an SVM with WDS
kernel of degree 10 with constant shift 30 to discriminate between
the inseminated sequences and the uniform ones; it achieves an
accuracy of 80% on the test set. As displayed in Figure 7, both
the sequence logo and the SVM-w fail to make the consensus and
its length apparent, whereas the POIM-based techniques identify
length and positional distribution. Please note that Gibbs sampling
methods have been used to partially solve this problem for PWMs.
Such methods can also be used in conjunction with SVMs.
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A B C D

E F G H

I J K L

Fig. 5. Comparison of different visualization techniques for the fixed-position-motifs experiment. Motifs GATTACA and AGTAGTG were inserted at positions
10 and 30 respectively with growing level of mutation (i.e. number of nucleotides randomly substituted in the motifs) from left to right. SVMs classifiers
were trained to distinguish random sequences from sequences with the (mutated) motifs GATTACA and AGTAGT inserted. (A–D) We computed Differential
POIMs [Equation (9)] for up to 8mers, from a WD-kernel SVM of order 20. Here each figure displays the importance of k-mer lengths (y-axis) for k =1 … 8
at each position (x-axis) (i=1 … 50 as a heat map. Red and yellow color denotes relevant motifs, dark blue corresponds to motifs not conveying information
about the problem. 1mers are at the bottom of the plot, 8mers at the top. (E–H) K-mer scoring overview (SVM-w) was computed using the same setup as for
differential POIMs. The SVM-w is again displayed as a heat map. (I–L) It was obtained using MKL (averaged weighting obtained using 100 bootstrap runs,
Rätsch et al., 2006). Again the result is displayed as a heat map, but for 1-to 7mers only. For a more detailed discussion see text.

A

B

Fig. 6. 1mer POIM plot (A) versus sequence logo (B) for motifs GATTACA
and AGTAGTG at positions 10 and 30, respectively, with 4-out-of-7 mutations
in the motifs.

3.2 Analysis of biological data
We now demonstrate the power of our technique on three real
biological tasks, namely the recognition of splice sites, TSSs and
TRSSs. Note that the SVMs investigated here are among the most
accurate existing sensors for these signals (cf. Table 1). It is thus
of highest interest which clues the SVM uses to distinguish true
sites from decoys: the most important POs can be suspected to be
the biological traits that determine the cellular events. However, the
number of relevant POs may not be small, because (unlike common

A B C

D

G

E F

Fig. 7. Comparison of different visualization techniques for the varying-
positions-motif experiment. The mutated motif GATTACA was inserted at
positions 0 + −13 in uniformly distributed sequences. (A–C) shows the
Differential POIM matrices [cf. Equation (9)] as a heat map, the POIM
weight mass for different k =1 … 8 and the POIM k-mer diversity for k =3
as a heat map; (D–F) shows the SVM-w overview plot as a heat map, the
SVM-w weight mass also for k =1 … 8 and the k-mer diversity for k =3 as
a heat map; (G) sequence logo.

motif finders) we do not yet pool them. Due to space constraints
we have to omit many detailed figures and lists of the extracted
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A B C

D E F

Fig. 8. Comparison of different visualization techniques for the C. elegans splice data set based on (A–C) POIM matrices versus (D–F) weight matrices.
Position 0 is the splice site.

A B C

Fig. 9. POIM visualization for the TSSs of D. melanogaster. (A–C): differential POIMs, POIM weight mass for k =1…8 and POIMs for k =3 are displayed.

motifs for the following analyses, which however can be found in
the supplementary material.

3.2.1 Splice site analysis First, we apply our techniques to a
acceptor splice site recognition task derived from mRNA and
genomic sequences of C.elegans. The data set contains 262 421 DNA
sequences of length 141 nucleotides, each anchored at a AG, which
is the acceptor splice site consensus [see Rätsch et al. (2006) for
details]. We train an SVM (C =1) with a WD kernel (K =20) on
the first 100 000 examples; the resulting classifier achieves 99.7%
auROC on the remaining 162 421 examples. POIM results are
depicted in Figure 8.

Upstream: A relatively weak, but surprising signal can be seen
around 43 nt upstream of the acceptor splice site. Looking at the
dinucleotide weighting w (Fig. 8F), one can see an increased
weighting for the GT dinucleotide. This leads to the discovery of
the upstream donor splice site. In C.elegans this site is indeed often
located 40–50nt upstream of the acceptor splice site. Zooming into
the −55 nt to −35 nt window in the differential POIM figure (Fig. 8C
and p.1 in Supplementary Material) one may notice strong signals for
up to 7mers. Extracting the three highest scoring 7mers one detect
the motifs GGTAAGT, AGGTAAG, GGTAGGT which have high
importances in this whole region, especially around −43 nt. This
perfectly matches parts of the known donor consensus AGGTAAGT.
Upstream in the interval −18 nt to −14 nt we find in the 6mer POIMs
that GGGGGG has a strong negative score, which makes it a potential
silencer. Furthermore in the same region one also finds TAAT which
is one of the known branch site signals (Harris and Senapathy, 1990).

Central: one can observe a very strong and localized signal in front
of the acceptor splice site, which is located at position 0 and followed
by the AG consensus at positions 1, 2 [see Rätsch et al. (2006)

for more details]. Extracting the highest scoring 7mers in the
window from −9 nt to +5 nt one detects several sequences ending
on …TTTC directly in front of the splice site. Following this
known strong T-rich region are the motifs TTTCAGG and TTTCAGA
scoring highest at −3 nt, recovering the known acceptor consensus
TTTTCAG(A/G).

Downstream: finally, one also recognizes the strong penalty
against T’s downstream of the splice site (+6 nt to +20 nt),
where the motif TTTTTTT scores most negative (Supplementary
Material).

3.2.2 Promoter regulatory elements In the following we apply
these techniques to the search for promoter regulatory elements. We
train a classifier with the WDS kernel—the core ingredient of our
SVM-based human TSS finder (ARTS; Sonnenburg et al., 2006b)—
Drosophila melanogaster TSS detection. We use the same data that
have been used for training and evaluation McPromoter (Ohler et al.,
2002) and follow the same cross-validation procedure for training
and evaluation (optimal SVM parameters after model selection:
C =10, K =10, shift =40). Our cross-validation performance
is auROC =96.2%, and comparable to the one achieved by
McPromoter (version 2: 95.8% and version 3: 98.1%, (Ohler,
2006). The POIM analysis is displayed in Figure 9. Inspection
of POIM tables in the discriminative regions from −33 to −21
upstream, around position 0, and downstream +15 to +35 retrieve
the following known motifs:

Upstream: extracting the highest scoring 7mers from the POIM
tables in −70 nt to −16 nt let us find several variants of the
TATA-box’s core motif TATAAA (e.g. Burke and Kadonaga, 1997):
TATAAAA, GTATAAA, ATATAAA, TATATAA, TATAAAG,
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A B

C D

Fig. 10. POIM visualization for the trans-splicing control elements of C.elegans. (A, B) (A) displays Differential POIMs and the (B) the POIM weight mass
for k =1…8. (C, D) POIMs for k =2 and POIM k-mer diversity.

GTATATA etc., with a peak score at −29 (see Supplemental Files
at http://www.fml.tuebingen.mpg.de/raetsch/projects/POIM).

Central: one finds the motif CAGT at positions −1 to +3 (and
it’s repeated version CAGTCAGT as a high scoring 8mer); as the
next highest scoring in the 8mer POIM at −15 to +9 TCAGTTGT
at −1, CGTCAGTT at −3, GTCAGTTT at −2, GGTCAGTT at −3
and AGTCAGTT at 0 are detected. These all match the known
signal TCAGTT from the initiator (Inr) element consensus TCAGTT

T
C

(cf. Arkhipova, 1995; Burke and Kadonaga, 1997).
Downstream: many CG-rich motifs score high for 2-, 4-, 6-,

8mers and peak at ≈+23 nt, which is consistent with CpG-
overrepresentation downstream of the TSS. At positions +15 to
+22 nt, the oligomer CGTCGCG and its mostly GC-rich variations
score highest while ATATTAT (and AT-dominated variants) in this
region have a negative effect. A specific search for the downstream
promoter element (DPE) A

GG
A
TCGTG—as reported in Arkhipova

(1995) and Burke and Kadonaga (1997)—in the POIM 7mer
rankings finds AGACGTG ranked 1024 (top 8%) with an importance
weight half of the highest scoring CGTCGCG. This shows that the
DPE is hidden by the C/G-richness as dominating effect. Clustering
of POs may help to identify such occluded motifs.

3.2.3 Detection of trans-splicing control elements We finally
apply our methods to the trans-splice detector as used in the mGene
gene finder (Schweikert et al., manuscipt in preparation). The data
set has been constructed using the Wormbase WS170 annotation
and by mapping annotated TRSSs to known, i.e. EST/cDNA
confirmed genes (if possible). The remaining TRSSs were used as
positive examples. Negative sites were generated from the remaining
successfully mapped interior acceptor sites, leading to a total of
69 808 sequences (4970 positive, 64 838 negative) sites. We used a
window −190 to +70 nt around the splice site and train an SVM
classifier (K =30) on 60% of the data. On the validation set this
classifier achieves auROC of 95.2%, indicating that TRSSs can
be distinguished well from other splice site acceptors. Figure 10
displays the POIMs computed based on this classifier.

Upstream: in the region −150 nt to −71 nt TTTT is the highest
scoring 4mer, peaking at −78 nt. We then extract the top 40 scoring
8mers in the −70 nt to −21 nt window and find that they all contain
one to three Cs within a poly-T motif. Finally, for comparison of our
findings using POIMs with recent work by Graber et al. (2007), we
extract the top N scoring 5mers separately for each of the windows
[−60, −50], [−50, −40], [−40, −30], [−30, −20], [−10, 0],

[0, 10]; we then verify how many of the motifs we determined
are identical to the ones found in these in Graber et al. (2007).
In Graber et al. (2007), two classes of TRSS leader sequences were
separately analyzed: the SL1 class (trans-spliced to individual or
operon-contained genes) and the SL2 class (nearly exclusively found
attached to the downstream genes in operons). We do not split the
data into two sets, and therefore compute the overlap for both parts
(Graber et al., 2007); part 3 – SL1, part 4 – SL2, table 2). For N =40,
the agreement is 15 of 25 and 18 of 25 in SL1 and SL2, respectively.
For N =10 it is 9 of 25 and 14 of 25. The agreeing motifs
are AAATG, AGAAT, AGATG, CTTTT, GAATG, GATGA, GATGG,
GATGT, TAAA, TCTTT, TTCTC, TTCTT, TTTCC, TTTCT, TTTC
and TTTTT (made unique). Please note that such large overlaps are
very unlikely to happen by chance. The remaining differences can
be attributed to the fact that in Graber et al. (2007) SL1 and SL2
were separately compared to vanilla acceptor sites, whereas we do
compare SL1 + SL2 with acceptor sites simultaneously, and thus
we expect weaker (overlapping) motifs to be harder to detect. And
indeed, when looking at the [−60, −50] region, we find 7/8 of the
SL1 motifs but only 3/8 of the motifs in the SL2 category; similarly
we find 5/5 motifs in the [0, 10] interval for SL2 but only 4/8 for
SL1. This suggests that one motif class is more dominant in a certain
region.

Central: one can clearly observe the high importance of positions
around the TRSS and the region ∼−50 nt upstream (UR). The POIM
plots of order 2 display the dominance for TT, CT and TCs in the
UR, and the dominance of AAs around the TRSS. By extracting
3mers around the TRSS, we find the high ranking ATG start codon.
This finding again perfectly matches the prior reported fact that the
distance between TRSSs and the TIS is often very short (often 0 nt)
(Graber et al., 2007).

4 DISCUSSION
Modern kernel methods with complex, oligomer-based sequence
kernels are very powerful for biological sequence classification.
However, until now no satisfactory tool for visualization was
available that helps to understand their complex decision surfaces.
In this work we close this gap by introducing a method which
efficiently computes the importance of POs defined as their
expected contribution to the score. Different from the discrimination
normal vector w, the importance takes into account the correlation
structure of all features. We illustrated on simulated data how the
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visualization of POIMs can help to identify even vaguely localized
motifs where pure sequence logos will fail. On three genomic signal
detection applications we demonstrated that many previously known
regulatory patterns can be recovered with POIM-based ranking and
visualization tools.

Note that the structure of the feature spaces of the
considered string kernels allows us to accurately learn complex
local correlations as opposed to long range correlations
which are for instance modeled in Bayesian networks
(Barash et al., 2003; Ben-Gal et al., 2005; Chen et al., 2005).
It therefore seems surprising that Bayesian networks fail to achieve
state-of-the-art results for tasks like the splice site recognition
(Chen et al., 2005; Sonnenburg et al., 2007b). This suggests
that for such tasks explicit modeling of long range relationships
is not mandatory. Also, many other motif discovery algorithms
and discrimination methods have been proposed before, but they
typically come at the price of decreased classification accuracy as
compared to SVMs with exhaustive kernels. It therefore seems
promising to thoroughly analyze the SVM’s decision boundary
to understand the nature of the differences between the classes.
Different from our previous MKL approach (Rätsch et al., 2006),
we propose here to leave the SVM untouched for classification to
retain its high accuracy, and to defer motif extraction to subsequent
steps. This way motif finding can take advantage of the SVMs
power: it ensures that the truly most important POs are identified.

Even though we have shown the usefulness of POs and methods of
their visualization, for instance our analysis of promoter regulatory
elements for D. melanogaster reveals several obstacles to systematic
motif discovery with POIMs. First, we realize that the list of
POs can be prohibitively large for manual inspection. Hence, if
several discriminative motifs occur in the same sequence region,
we currently only find the strongest ones. Second, if a motif z has
positional variance exceeding its length, we also find its duplicate
zz. This effect gets even stronger for self-overlapping motifs (like
AAA, where appending a single further A already yields a second
motif occurrence). We currently work on clustering approaches to
summarize POs scoring high in similar regions to obtain motifs like
PWMs with positional preferences. We believe that such approaches
will solve both problems.

Additional work in progress includes computational techniques
to efficiently determine the highest scoring ‘consensus’ sequence
x∗ :=argmaxx s(x), which can be of interest for sequence design
applications. Finally, note that protein sequences are known to
show dependencies of XOR type, e.g. a pair of a positively and
a negatively charged amino acid that can swap their positions. As
such dependencies escape sequence logos, but can be modeled by
POIMs, an implementation of protein POIMs seems desirable.

We believe that our new POIM-based ranking and visualization
algorithms are easy to use yet very helpful analysis tools. It is
freely available as part of the SHOGUN toolbox (Sonnenburg et al.,
2006a) at http://www.shogun-toolbox.org. Finally, note that it seems
possible to transfer the underlying concept to other kernels and
feature spaces to aid understanding of SVMs that are used for other
biological tasks.
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