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Abstract: Mitochondria are key intracellular organelles involved not only in the metabolic state of
the cell, but also in several cellular functions, such as proliferation, Calcium signaling, and lipid
trafficking. Indeed, these organelles are characterized by continuous events of fission and fusion
which contribute to the dynamic plasticity of their network, also strongly influenced by mitochondrial
contacts with other subcellular organelles. Nevertheless, mitochondria release a major amount of
reactive oxygen species (ROS) inside eukaryotic cells, which are reported to mediate a plethora of
both physiological and pathological cellular functions, such as growth and proliferation, regulation of
autophagy, apoptosis, and metastasis. Therefore, targeting mitochondrial ROS could be a promising
strategy to overcome and hinder the development of diseases such as cancer, where malignant cells,
possessing a higher amount of ROS with respect to healthy ones, could be specifically targeted by
therapeutic treatments. In this review, we collected the ultimate findings on the blended interplay
among mitochondrial shaping, mitochondrial ROS, and several signaling pathways, in order to
contribute to the dissection of intracellular molecular mechanisms involved in the pathophysiology
of eukaryotic cells, possibly improving future therapeutic approaches.
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1. Introduction

Mitochondria are intracellular organelles present in eukaryotic cells that evolutionarily
originated from symbiotic resident proteobacteria [1]. These organelles are involved in
many cellular functions, such as oxidative phosphorylation, the regulation of cell prolif-
eration, differentiation, and death. Their different roles in several cellular processes are
largely dependent on ATP and reactive oxygen species (ROS) production, both generated
during oxidative phosphorylation [2]. Indeed, targeting mitochondrial metabolism with
molecules able to specifically disrupt mitochondrial fitness and trigger cell death has
become a promising strategy against several diseases [3].

Importantly, mitochondria are physically interconnected with other subcellular or-
ganelles, such as endoplasmic reticulum (ER), lipid droplets, Golgi apparatus, lysosomes,
melanosomes, and peroxisomes [4]. Indeed, mitochondria–organelle contact sites represent
real signaling hubs that are involved in multiple cellular functions, such as lipid trafficking,
mitochondrial dynamics, calcium (Ca2+) flow, and ER stress, such that the contacts not only
result in physical but also functional links that finely tune multiple signaling pathways.

Moreover, the capability to establish these interactions with other intracellular or-
ganelles is strongly dependent on mitochondria’s high attitude to fuse and divide, leading
to modification of the intracellular mitochondrial network [5].

In addition, ROS figure as byproducts of oxygen consumption and cellular metabolism,
and 45% of their total amount is related to mitochondria, specifically to Complex I and
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Complex III leakage of electrons, which is involved in superoxide (O2
−) and hydrogen

peroxide (H2O2) production [6]. While ROS production was at first believed to be only
detrimental for the cell in physiological conditions, in the last two decades, it has been
considered that its presence in a sublethal concentration could act as a secondary messenger
that specifically modulates distinct cellular pathways [7] and mitochondrial dynamics and
morphology [8]. As a consequence, ROS homeostasis is strictly regulated by enzymatic and
nonenzymatic mechanisms, with the aim of maintaining balance among ROS production
and scavenging [9]. Once this critical equilibrium is impaired, ROS overload is one of the
main players in the onset of a plethora of different diseases, including cancer [6], where it
exerts a dual regulation, influencing cell survival and oxidative stress, leading to cell death,
as well as mediating redox signaling events beneficial for the progression of the disease [9].

In this review, we describe the known signaling pathways mediated by mitochondrial
structure rearrangements or by mitochondrial ROS release, focusing also on possible
therapeutic targets against disease formation.

2. Mitochondrial Dynamics: A Multiplayer Regulation

Proper mitochondrial integrity and physiology is essential for cell homeostasis. Mito-
chondrial fusion and fission dynamics, organelle transport, mitophagy, interaction with
other organelles, such as the endoplasmic reticulum (ER) and the cytoskeleton, and ge-
nomic mitochondrial control are only a few of the several mechanisms involved in the
fitness of these fundamental organelles. Thus, the improper surveillance on mitochondrial
dynamics and partitioning on daughter cells can give rise to a wide spectrum of syndromes
and diseases [5].

Focusing on the fusion and fission processes, these are mainly regulated by proteins
belonging to the dynamin-related family of large GTPases that utilize GTP hydrolysis to
drive mechanical work on biological membranes (Figure 1) [10].
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Figure 1. Modulation of fusion and fission processes. Left panel: the endoplasmic reticulum is wrapping the mitochondria
in the site of fission, where polymers of dynamin-related protein 1 (DRP1) (main interactor in the fission process) are
present. Right panel: the two different events of outer mitochondrial membrane (OMM) fusion and inner mitochondrial
membrane (IMM) fusion are separately shown. Essentials components for OMM fusion are Mitofusins. In the IMM fusion
process, instead, the role of long and short optic atrophy protein 1 (OPA1) is fundamental, as well as their interaction
with cardiolipins. Green arrows point out the positive regulators of these processes, whereas the red ones represent the
negative modulators.
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The membrane potential is also a crucial player in the mitochondrial fission process,
by triggering dynamin-related protein 1 (DRP1) activity [11,12]. DRP1 translocates from
the cytoplasm to the outer mitochondrial membrane (OMM) via a physical interaction
with several adapter proteins, such as mitochondrial fission factor (MFF), mitochondrial
dynamics protein 49 and 51 (MID49, MID51), and mitochondrial fission 1 protein (Fis1) [13].
Specifically, DRP1 firstly binds GTP through its GTP-binding site. This mediates a confor-
mational change that allows DRP1 to interact with the OMM receptors and polymerize,
encircling the mitochondria in a spiral fashion [14]. Once a complete turn is performed,
contacts between the GTPase domains of the DRP1 polymers trigger the GTP hydrolysis
causing the detachment of filaments from the OMM receptors and the constriction of the
spiral [15]. Nevertheless, it seems that DRP1 itself is not sufficient to completely perform
the fission process. In fact, it has been shown that Dynamin-2 is a fundamental component
that works in concert with DRP1 in order to orchestrate sequential constriction events
that ultimately lead to division [16]. Some authors suggested that the fission process
occurs in sites that have been previously wrapped by a smooth ER protrusion. These ER–
mitochondria contact sites act as the fission starting point, so that DRP1 can cooperate with
the actin-nucleating protein inverted formin 2 (INF2) causing the accumulation of actin in
the site of fission. Actin filament accumulation can ultimately facilitate the formation of
the initial constriction, supporting the subsequent DRP1 activity [13,17].

In particular, ER–mitochondria contact sites, also known as mitochondria–ER contacts
(MERCs), are relevant for mitochondrial fitness and plasticity regulation. Therefore, the
characterization of the proteins involved in MERCs revealed the presence of several players
that allow the connection between the two organelles. In fact, the existence of dynamic
bridges that consist of proteins inserted in the OMM, such as voltage-dependent anion
channel (VDAC), physically connected to the ER membrane proteins (such as inositol 1,4,5-
triphosphate receptor (IP3R)), by linker proteins (e.g., glucose-regulated protein (GRP75)
and transglutaminase type 2 (TG2)), contribute to the modulation of many mitochondrial
events such as lipid trafficking, Ca2+ homeostasis, and ER stress [16]. Moreover, the
functional role of such contacts is highlighted by their involvement in several pathologies,
such as diabetes, neurodegenerative diseases, and cancer [18]. Interestingly, very recently,
it was demonstrated that downregulation of transglutaminase type 2, which is involved
in ER–mitochondria contacts [19], is linked to a decrease in canonical Wnt signaling
targets, such as β-catenin and Lymphoid enhancer binding factor 1 (LEF1), suggesting
new possible ways of modulating Wnt-dependent proliferation, strongly associated with
diseases development [20].

Since mitochondria are characterized by a double membrane, the fusion process
requires the coordination of two separate events which occur almost simultaneously.
Indeed, mitochondrial fusion is a mechanism mediated by MFN1 and MFN2 at the level of
the OMM and by optic atrophy protein 1 (OPA1) in the inner mitochondrial membrane
(IMM) [10,17]. While MFN1 and MFN2 must both be present in the OMM in order to
mediate outer membrane fusion, it is enough for OPA1 to be present in only one of the
IMMs to mediate inner membrane fusion [10]. Fusion onset is established by the docking
of two Mitofusin molecules. This interaction mediates conformational changes that trigger
Mitofusin-mediated GTP hydrolysis and the subsequent OMM fusion [17].

Concerning IMM fusion, the opa1 gene encodes eight different long isoforms [21], and
all of them are firstly inserted into the IMM thanks to the presence of the mitochondrial
targeting sequence (MTS), which is subsequently cleaved by the matrix processing protease
(MPP). Once inserted into the IMM, OPA1 isoforms can be processed by two inner mem-
brane peptidases: zinc metallopeptidase (OMA1) and ATP-dependent zinc metalloprotease
(YME1L1), thus forming the essential short form of OPA1. Up to now, it seems that both
the isoforms are required in order to guarantee the correct and physiological levels of
mitochondrial fusion [22]. Then, the heterodimer of one IMM, formed by long-OPA1 and
short-OPA1, interacts with cardiolipin of the other IMM and mediates IMM fusion [17]. It
is important also to remember that OPA1 is essential in cristae structure maintenance [10].
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3. Mitochondrial Plasticity and Cell Signaling: A Two-Way Interaction

In recent years, numerous studies pointed out links between key oncogenic signaling
pathways and mitochondria [13]. These networks among the two players have been deeply
explored, revealing not only that mitochondrial plasticity could be influenced by distinct
cellular pathways, but also that mitochondrial shaping could be crucial for the modulation
of several signaling cascades.

Indeed, Malhotra et al. explored the role of Sonic Hedgehog (Shh) signaling in
mitochondrial biogenesis regulation in cerebellar granule neuron precursors (CGNPs),
the progenitor of Shh-associated medulloblastoma. Surprisingly, the authors observed
a decreased mitochondrial membrane potential (MMP) and overall ATP production in
CGNP cells upon Shh induction, along with an increase in glycolysis levels, which resulted
in higher intracellular acidity leading to mitochondrial fragmentation and reduced cristae
network formation. These results are quite controversial since decreased MMP is usually
linked to a reduction in proliferation and apoptotic induction. Inversely, these cells are
characterized by a rise in the proliferation rate and absence of cell differentiation. This
effect seems to be derived from the Shh-mediated lowering of MFN1 and MFN2 activity.
Really interesting is that the phenotype can be rescued by the inhibition of the Shh pathway,
as well as through the downregulation of DRP1, remarking the importance of the delicate
balance between fission and fusion mechanisms involved in mitochondrial biogenesis [23].

Canonical Wnt-signaling is involved in a plethora of different cellular functions,
such as neuroprotection, stemness maintenance, self-renewal, and regulation of mitochon-
drial dynamic inside eukaryotic cells [24–26]. Strikingly, recent studies demonstrated a
novel mechanism via which damaged mitochondria promote restoration of the mitochon-
drial pool through the activation of canonical Wnt-signaling via the Pgam5/β-catenin
axis. Presenilins-associated rhomboid-like (PARL)-mediated cleavage of the mitochondrial
Serine/threonine-protein phosphatase Pgam5 occurs in stressed mitochondria character-
ized by a decreased membrane potential. This cleaved and cytosolic form seems to be
able to interact with Axin at the level of the β-catenin destruction complex. Such inter-
action counters the casein kinase 1 α (CK1α)- and glycogen synthase 3 (GSK3)-mediated
phosphorylation of β-catenin, thus avoiding its degradation and leading to an increased
transcriptional activity performed through the activation of the canonical Wnt/β-catenin
axis. This cell-intrinsic stimulation of the Wnt/β-catenin cascade can trigger the mitophagy
process, in order to degrade or recycle the old and dysfunctional mitochondria, thus
supporting the process of mitochondrial biogenesis [27].

Several other pathways are involved in the regulation of mitochondrial dynamics. For
instance, it has been shown that the activity of mothers against decapentaplegic homolog
(Smad) proteins—mediators of the transforming growth factor β (TGF-β) signaling—are
able to modulate mitochondrial fusion when present in their inactive and cytoplasmatic
form. In fact, SMAD2 can promote mitochondrial fusion through its interaction with MFN2
at the level of the OMM. In particular, a model has been established in which SMAD2
colocalizes with Ras and Rab interactor 1 (RIN1) and MFN2 at the level of the OMM
and stimulates the process of fusion. Problems or mutations at the level of any of these
characters can interfere with the modulation of mitochondrial dynamics, thereby favoring
the development of different kinds of diseases, such as carcinogenesis and metabolic
issues [28].

Indeed, increased mitochondrial fission is often associated with tumor formation,
e.g., lung cancers and breast cancers. In particular, the presence of a mitochondrial fission
and Notch signaling positive feedback loop has been elucidated in triple-negative breast
cancers (TNBCs). In fact, it seems that mitochondrial fragmentation is linked to an in-
creased cytoplasmic Ca2+ level, causing the subsequent activation of calcineurin. Therefore,
calcineurin activates Notch signaling, increasing the level of the cleaved and active Notch
intracellular domain (NICD) inside the nucleus. In turn, Notch signaling promotes the
upregulation of DRP1 and the downregulation of MFN1, thus establishing a vicious cycle.
Moreover, this positive feedback loop enhances the apoptotic resistance and survival of
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tumor cells through the Notch-mediated upregulation of the inhibitor of apoptosis (IAP)
protein Survivin [29].

Moreover, some types of human breast cancers are characterized by dysregulated Myc
signaling. Overexpression of Myc leads, among all the other targets, to the overexpression
of Phospholipase D Family Member 6 (PLD6)—a phospholipase of the OMM involved in
the regulation of lipid metabolism, which is able to mediate mitochondrial fusion in order to
improve lipid metabolism, but which also cooperates with the increased nucleotide demand
during DNA synthesis. This Myc-mediated metabolic reprograming, in part caused by
the overstimulated mitochondrial fusion derived by PLD6 activity, strains cellular energy
resources and leads to 5’ adenosine monophosphate-activated protein kinase (AMPK)
activation. AMPK is also able to phosphorylate and inhibit yes-associated protein (YAP),
and YAP inactivation is characteristic of some types of Myc-dependent triple-negative
mammary carcinomas. Another effect mediated by PLD6-dependent mitochondrial fusion
is also the increase in the levels of glutaminolysis, an essential process for tumor survival
since MYC-driven cell growth depends on glutamine [30].

Additionally, mitochondrial fission is also correlated to other diseases, such as uni-
lateral unilateral obstruction (UUO)-induced renal tubulointerstitial fibrosis. Indeed, it
has been shown that Honokiol (2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol,
HKL) is able to stimulate the activity of Sirtuin 3 (SIRT3), which sequentially mediates the
activation of OPA1 and decreases DRP1 expression, restoring the correct mitochondrial
fusion and fission dynamics and normal mitochondrial shape and function. Thus, targeting
mitochondrial dynamics can be a novel therapeutic approach for the treatment of acute or
chronic kidney diseases [31].

Recently, the importance of signal transducer and activator of transcription 3 (STAT3)
was also elucidated in the regulation of mitochondrial dynamics. Indeed, Zhang et al.
demonstrated in diabetic mice and in albumin-treated proximal tubular HK-2 cells how
anomalies resulting from diabetes, e.g., hyperglycemia and ROS, can mediate the over-
expression or overactivation of the dipeptidyl peptidase-4 (DPP4) enzyme, leading to
DPP4-mediated cleavage of stromal cell-derived factor-1α (SDF-1α) and suppression of the
SDF-1α/C-X-C Motif Chemokine Receptor 4 (CXCR4) phosphorylation of STAT3 at the
level of serine-727. Thus, this impedes STAT3 translocation into the mitochondria and its
interaction with OPA1, ultimately leading to increased mitochondrial fragmentation. This
result highlights novel targets for managing diabetic kidney disease [32].

The connection between STAT3 and mitochondrial fusion protein OPA1 has also been
described in a myocardial ischemia and reperfusion mouse model. In this study, it was
demonstrated how κ-opioid receptor (κ-OR) activation mediates mitochondrial fusion
through enhanced OPA1 expression. In particular, this suggests that κ-OR activation
can stimulate STAT3 phosphorylation at the level of tyrosine-705, allowing its nuclear
translocation where it can mediate OPA1 overexpression. This result allows novel insight
into therapeutic strategies for myocardial ischemia and reperfusion injury [33].

Thus, STAT3 induction of mitochondrial fusion through the modulation of OPA1
seems to be quite clear. Nevertheless, a more in-depth investigation is still needed into the
effective mechanism.

4. Mitochondrial ROS in the Modulation of Cell Signaling

ROS are small molecules that figure as byproducts of oxygen consumption and cellular
metabolism, which derive from the partial reduction of molecular oxygen. The most known
molecules among the ROS family are the highly unstable oxygen free radicals, superoxide
(O2
−) and hydroxyl (OH−), which can be converted into more stable non-radical and

diffusible forms, e.g., hydrogen peroxide (H2O2) or hypochlorous acid [6,34].
As it is well known, mitochondria represent one of the major contributors to ROS

generation. In fact, it was recently demonstrated that, in resting C2C12 myoblasts, mi-
tochondria account for the 45% of the total amount of reactive oxygen species produced
inside the cell [35], and that up to 1% of the mitochondrial oxygen is utilized for superox-
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ide production [36]. In addition, 11 distinct sites associated with substrate oxidation in
the electron transport chain (ETC) in mammalian mitochondria resulted in the release of
electrons involved in the production of superoxide (O2

−) and hydrogen peroxide (H2O2).
In particular, Complex I and Complex III are the main sources of ROS both in healthy and
in pathological conditions, which are required for a plethora of biological processes such as
cell differentiation and proliferation, oxygen cell sensing, and Hypoxia-inducible factor
(HIF) activation [7,37–39].

Inside the mitochondria, mitochondrial ROS are mainly produced by Nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases (NOX) and, to a minor extent, by
other enzymes such as cyclooxygenases (COX), lipoxygenases, xanthine oxidases, and
cytochrome P450 enzymes [34,40–43]. Moreover, the electron transport chain is intrinsically
leaky; indeed, even in physiological conditions, 0.2–2% of the electrons generated by
the respiratory chain are not coupled with the production of ATP but contribute to the
generation of superoxide anion (O2

−) or hydrogen peroxide (H2O2) due to their premature
interaction with oxygen. Thus, a minor percentage of ROS is physiologically released
during all the respiratory processes, playing a crucial role in mitochondria and cell fate [44].

Actually, ROS generation is involved in the regulation and induction of both physio-
logical and pathological cellular pathways. For a long time they were considered with a
negative connotation in physiological conditions, being responsible for the induction of
oxidative stress and consequent apoptosis and necrosis, ultimately resulting in alterations
in cell survival rate [45]. Indeed, mitochondrial dysfunction in the ETC is strongly linked to
an unregulated release of mitochondrial ROS, which causes both DNA and macromolecular
oxidative damage, leading to the development of degenerative pathologies and biological
aging [46]. For this reason, ROS homeostasis must be strictly regulated by enzymatic and
non-enzymatic mechanisms, such as superoxide dismutases (SODs), catalases, glutathione
peroxidases (GPX), peroxiredoxins (PRX), thioredoxins (TRX), and vitamins A, C, and E
(for extended reviews, see [9,47–49]).

Accordingly, ROS are well recognized mediators of DNA damage, affecting the DNA
damage response (DDR), and their accumulation can also induce mitochondrial DNA
lesions, strand breaks, and degradation of mitochondrial DNA [50]. Specifically, ROS-
induced DNA damage and the consequent inability to evoke the DNA repair system are
responsible for Cellular tumor antigen p53 (p53) activation and mitochondrial-mediated
apoptosis, a pathway that is elicited by different anticancer drugs, leading to the suggestion
that ROS modulators could be promising for cancer targeting [51,52].

Interestingly, in the latest two decades, a new role for mitochondrial ROS emerged. In
fact, sublethal concentrations of ROS could act as potential secondary messengers which
could be used to specifically modulate distinct cellular pathways, introducing new possible
therapeutic approaches [7,53]. Specifically, via the reversible oxidation of specific cysteine
(and also methionine) residues within redox-sensitive proteins, ROS can modify a putative
target protein activity or conformation, altering the signal transduction. In this regard,
ROS can act on phosphatases, kinases, proteases, and transcription factors [54], regulating
growth factor cascades, cell proliferation and differentiation, cellular oxygen sensing, and
hypoxia (and the consequent angiogenic stimulation), while also finely tuning aging-related
mechanisms, immunity responses, inflammation, and autophagy [9,44,45,53,55–57].

Moreover, a role for ROS in the modulation of mitochondrial dynamics was recently
elucidated, suggesting a link between the redox homeostasis of the cell and the regulation
of mitochondrial morphology [8]. In particular, high levels of ROS, if not counterbal-
anced by an efficient antioxidant system, promote mitochondrial fragmentation, swelling,
or shortening, whereas a reduction in ROS leads to mitochondrial filamentation. In fact,
exogenous concentrations of hydrogen peroxide induced dose-dependent mitochondrial
fragmentation in human umbilical vein endothelial cells (HUVECs) and the expression
of several fusion and fission-related genes [58]; in C2C12 myocytes, hydrogen peroxide
induced mitochondrial membrane depolarization, stimulating fragmentation involving
an increased DRP1 activity [59,60]. On the contrary, lowering ROS levels in fibroblasts



Life 2021, 11, 332 7 of 20

triggered MFN2-dependent mitochondrial filamentation [61]. The redox regulation of
fission and fusion proteins by ROS is mediated by post-translational modifications, such as
phosphorylation, ubiquitination, and sumoylation, in addition to the S-glutathionylation
and S-nitrosylation of their Cys residues [62]. Moreover, ROS also act at the transcriptional
level, stimulating the expression of factors that are involved in both redox regulation
and mitochondrial dynamics; an example is the peroxisome proliferator-activated recep-
tor gamma coactivator (PGC1α/β), which is redox-sensitive and associated with MFN2
regulation [63]. Another important role in the link among mitochondrial dynamics and
ROS is played by AMPK; once activated, it phosphorylates MFF and DRP1, necessary for
mitochondrial fission [62].

5. Mitochondrial ROS Involvement in Cancer

Interestingly, when an imbalance among the production and the scavenging of ROS
species occurs, impaired ROS homeostasis results in the onset and the progression of
various pathologies, including neurodegenerative diseases [64], diabetes [65,66], cardiovas-
cular diseases [67], and cancer [6,68]. More specifically, it is clear that mitochondrial ROS
can act in a dual mode during the progression of these pathologies; as oxidants, at elevated
concentrations, they influence cell survival and oxidative stress, ultimately leading to cell
death, whereas, at lower concentrations, they act as signaling molecules which mediate
redox signaling events beneficial for the progression of the disease [9,37].

In addition, cancer cells are characterized by increased ROS levels with respect to nor-
mal cells; this is due to their abnormal metabolism, which exploits normal cell machinery
in a constitutive way in order to maximize cellular growth and proliferation, to enhance
aerobic glycolysis (the so-called “Warburg effect”) [9], and to promote altered expression
of pro-tumorigenic networks (as for example, Kras and Myc overexpression [69,70]), as
well as the inhibition of tumor suppressors [71]. Moreover, the accumulation of mutations
in mitochondrial DNA (mtDNA), increased tumor-derived hypoxia, and mitochondrial
shape changes, along with alterations in the antioxidant system and in cellular signaling
pathways, all contribute to the increased ROS level in neoplastic cells [45].

High ROS levels have been demonstrated to be causative of a cascade of multiple
events in cancer—perpetuating the tumorigenic transformation—including DNA dam-
age [50], genetic instability, enhanced cell proliferation, cellular injury, cell death, and
resistance to drugs [34]. Moreover, ROS species work as signaling intermediates in several
pathways that are physiologically used by healthy cells in order to sustain both prolifera-
tion and cellular growth [71]. Crucial pathways that are activated by ROS accumulation are
the mitogen activated-protein kinase (MAPK)/extracellular-regulated kinase 1/2 (ERK1/2)
and phosphatidyl inositol 3 kinase (PI3K) signaling cascades that are mainly responsible
for cell proliferation, growth, and survival. Indeed, ROS have been found to be involved
in the inhibition of the phosphatase and tensin homolog (PTEN) via cysteine oxidation,
thereby promoting Akt activity and positively regulating the PI3K pathway, which, in turn,
results in higher proliferation rates [72].

Moreover, it was recently discovered that high concentrations of mitochondrial ROS
in cancer stem cells (CSCs) promote cancer metastasis, via fatty acid β-oxidation, involving
the activation of PI3K/AKT and ERK signaling, leading to epithelial-to-mesenchymal
transition (EMT) [73]. In addition, Wang et al. demonstrated that, in colorectal cancer,
elevated cholesterol levels increased ROS production, which, in turn, activated the MAPK
signaling pathway, stimulating tumor progression (Figure 2) [74].

Even STAT3, which is activated in a plethora of cancers and controls the expression of
multiple genes involved in tumor initiation, progression, and chemoresistance, has been
proven to be regulated by mitochondrial ROS production. Normally, STAT3, in its inactive
form, is present as a monomer in the cytoplasm, whereas, once activated by Janus activated
kinases (JAKs), proto-oncogene tyrosine-protein kinase Src (Src), and MAP kinases, on
its tyrosine-705 (Y705) and serine-727 (S727), it dimerizes, migrates into the nucleus, and
regulates the transcription of several proliferative and antiapoptotic genes such as cyclins,
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Bcl-2, Bcl-xl, and Survivin [75,76]. Moreover, a distinct pool of STAT3 resides in the
mitochondria and is responsible for the control of ETC, modulation of ROS production,
Ras transformation, cellular growth, and protection from ischemia/reperfusion injuries
through the regulation of the mitochondrial permeability transition pore (MPTP) [77]. Very
recently, Lee et al. elucidated a role in hepatoma cell invasiveness of ROS-induced STAT3
activation, which in turn promoted Nrf2 transcription and syntaxin 12 expression [78].
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Figure 2. Mitochondrial reactive oxygen species (ROS) regulation of cellular signaling pathways. Many convergent signaling
pathways that contribute to autophagy, proliferation, metastasis, and apoptosis are deeply modulated by an increase in
mitochondrial ROS. In blue are depicted several drugs discussed in the text and reported in Table 1, which have been
demonstrated to target key mediators of the pathways involved in ROS signaling.

Dysregulated mitochondrial dynamics have been reported in various diseases includ-
ing cancer, and they can contribute to development, progression, and chemoresistance of
tumors. Recent studies demonstrated that higher levels of ROS induce a DRP1-mediated
mitochondrial fission in metastatic cancer and tumor-initiating cells, increasing migration
and chemoresistance [79]. As an example, hypoxia-induced ROS in ovarian cancer cells are
responsible for an increase in mitochondrial fission rate through the activation of DRP1
and downregulation of MFN1, leading to cisplatin resistance [80].

Generally, high levels of ROS production are counterbalanced by enhanced levels
of antioxidant and scavenging activity, carefully maintaining a redox balance in order
to avoid reaching a toxic amount of ROS which would lead to programmed cell death
by apoptosis or necrosis. The most important way in which tumor cells potentiate their
antioxidant system is through the activation of the nuclear factor erythroid 2-related factor
2 (Nrf2) [81]. Normally, this protein interacts with Kelch-like Enoyl CoA hydratase (ECH)-
associated protein 1 (KEAP1) and ubiquitine ligase cullin3 (CUL3) and is targeted for
proteasomal degradation. In elevated ROS condition, the oxidation of several cysteine
residues in KEAP1 releases Nrf2, which translocates into the nucleus, associates with the
MAF proteins, and binds to antioxidant-responsive elements (AREs) within the regulatory
regions of several antioxidant genes [71], including those encoding Glutathione (GSH)
S-transferase (GST), heme oxygenase 1 [53], and HIF1α (Figure 3) [82].
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(mROS). Indeed, mitochondrial ROS increase promotes the translocation into the nucleus of important factors that possess
transcriptional activity, leading to the synthesis of genes related to these main events. In blue, several drugs that target
intermediates of different signaling cascades are shown, as reported in Table 1.

Along with cell proliferation, other ROS-dependent signaling pathways are important
for the adaptation of tumor cells to hypoxia-induced metabolic stress. Generally, in non-
hypoxic conditions, hypoxia-inducible factors (HIFs) form heterodimers made up of two
subunits: HIF1α and HIF1β. The oxygen-sensitive HIF1α is then hydroxylated by prolyl
hydroxylases (PHDs) and targeted to proteasomal degradation due to its ubiquitylation
by von Hippel–Lindau protein [83]. Instead, hypoxia stabilizes the HIFs, and the larger
production of ROS inhibits PHD2 [84], thereby stabilizing HIF1α that, in turn, translocates
into the nucleus, dimerizes with HIF1β, and regulates the expression of proangiogenic
genes, including vascular endothelial growth factor (VEGF) [54]. Eventually, ROS are also
able to directly enhance VEGF production at a transcriptional level. Finally, once bound
to its receptor VEGFR2, VEGF promotes the proangiogenic signaling cascade, leading to
activation of the ERK/MAPK pathway (Figure 3) [54,85].

An excessive level of ROS could give rise to apoptotic and autophagic responses,
through the interaction with fundamental signaling molecules. Indeed, either extrinsic
or intrinsic apoptosis has been demonstrated to be activated by mitochondrial ROS. For
instance, ROS oxidation of thioredoxin (Trx) mediates the separation of Thx from Apop-
tosis signal-regulating kinase 1 (ASK1), a mitogen activated protein (MAP) kinase kinase
kinase (MAPKKK) that upstream regulates c-Jun n-terminal kinase (JNK) pathways. ASK1
homo-oligomerization and activation by autophosphorylation phosphorylates JNK that,
in turn, phosphorylates Bim and Bmf proteins, further activating Bcl-2-associated death
promoter Bax and Bak, to initiate apoptosis. Moreover, JNK can increase p53 expression
inducing apoptosis [68]. Additionally, other signaling cascades have been demonstrated
to drive apoptosis through higher ROS levels, such as the mitogen-activated protein ki-
nases (MAPKs), the signal transducer and activator of transcription-3 (STAT3), and the
nuclear factor κB (NF-κB) signaling pathways. MAPK signaling includes extracellular-
signal-regulated kinase (ERK), JNK, and p38, which regulate not only proliferation but
also a variety of other cellular behaviors [86]. In fact, JNK (as previously reported) and
p38 are considered mediators of apoptosis and are activated through phosphorylation by
MAPK in response to several stress signals, including ROS. On the contrary, ERK, which is
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activated by growth factors, is considered pro-survival and oncogenic, and it antagonizes
apoptosis by phosphorylating proapoptotic Bax and antiapoptotic Bcl-2 proteins, inhibiting
and promoting their functions, respectively (Figure 2) [87]. Activated ROS production also
plays a role in JAK2/STAT3 signaling suppression and subsequent apoptosis induction; for
example, Cao et al. demonstrated that CYT997, a novel synthetic microtubule-disrupting
agent, through the upregulation of mitochondrial ROS, triggers protective autophagy and
inhibits the JAK2/STAT3 pathway, inducing gap 2 (G2)/mitosis (M) arrest and apoptosis
in gastric cancer cells [88].

Furthermore, the activity of NF-κB, which is part of a family of signal-responsive
transcription factors, has been shown to be modulated by ROS levels. In fact, in the classical
pathway, NF-κB can be maintained inactive within the cytoplasm through interactions and
binding to inhibitor of κB (i-κB) in normal cells, whereas it is constitutively activated in
cancer cells; the phosphorylation of i-κB protein results in it being targeted by protease,
releasing NF-κB that is translocated to the nucleus where it acts as transcription factor,
leading to the expression of genes related to apoptosis, cell cycle control, adhesion, and
migration [89]. All these processes are strictly related to tumor progression [90]. Chen
et al. recently discovered that deferoxamine (DFO), an iron chelator and anticancer drug,
was able to increase mitochondrial ROS and, in turn, elicit NF-κB and TGF-β pathways,
promoting migration of a TNBC cell line MDA-MB-231 (Figure 2) [91].

Lastly, a complex interconnection among ROS and autophagy is present in cancer
cells. Autophagy stands for the regulated self-degradative process in mammalian cells
where unnecessary or dysfunctional cytoplasmic organelles are degraded in the lysosomes.
This process has been demonstrated to be elicited by several anticancer drugs [92]. Au-
tophagy driven by mitochondrial ROS possesses a double role; the first is to decrease the
intracellular ROS level, mediating the mitophagy (degradation of damaged mitochon-
dria) that contributes to oxidative stress. Mitophagy is achieved through the NIX/ B-Cell
lymphoma 2 (BCL2) and adenovirus E1B 19kDa-interacting protein 3 like (BNIP3L) and
ubiquitin-protein ligase PARKIN/PTEN induced putative kinase 1 (PINK1) molecular path-
ways [93,94]. On the other hand, elevated ROS levels contribute to defective autophagy
in cancer cells, leading to autophagic cell death [95]. As an example, hydrogen peroxide,
through the activation of BNIP3, inhibits mammalian target of rapamycin (mTOR) activity
and induces autophagy in C6 glioma cells after sanguinarine treatment [96]. Moreover,
under starvation conditions, autophagy related 4 (ATG4) protease becomes a target of
mitochondrial produced hydrogen peroxide that oxidates its cysteine residue, mediating its
inactivation, and promoting the lipidation of LC-3, starting the autophagosome formation
process (Figure 2) [97] (for extended reviews on ROS control of autophagy, see [98,99]).

Table 1. Novel pharmaceutical treatments based on mitochondrial ROS exploitation which proved to be effective in cancer
management.

Pharmacological
Treatments

Cancer
Types Cell Lines Mechanism of Action Reference

Resveratrol +
salinomycin

Breast
cancer MCF-7

↑ ROS impairs mitochondrial membrane potential;
decreased Bcl2 expression, activation of caspases 7,8,9,

chromatin condensation, PARP cleavage, apoptosis
[100]

Resveratrol +
salinomycin

Breast
cancer MCF-7 ↑ ROS activates MAPK pathway, phosphorylates JNK

and p38, leading to apoptosis [100]

Withaferin A (WA) Colorectal
cancer HCT-116, RKO

↑ ROS reduces mitochondrial membrane potential,
decreasing Bcl-2/Bax ratio, activating caspase 3–9,
leading to apoptosis, and activating JNK pathway

[101]

Carnosic Acid (CA) Colon
cancer HCT-116 ↑ ROS diminishes STAT3 phosphorylation, decreasing

STAT3 gene products [76]

Quinalizarin Breast
cancer MCF-7 ↑ ROS affects MAPK, STAT3, and NF-κB signaling

pathways, inducing cell-cycle arrest and apoptosis [102]
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Table 1. Cont.

Pharmacological
Treatments

Cancer
Types Cell Lines Mechanism of Action Reference

Quinalizarin Lung cancer A549 ↑ ROS affects MAPK, STAT3, and NF-κB signaling
pathways, inducing cell-cycle arrest and apoptosis [103]

Cucurbitacin (CuD) Pancreatic
cancer Capan-1 ↑ ROS induces G2/M cell-cycle arrest and mediates

p38/MAPK pathway, promoting cell death [104]

Imiquimod (IMQ) Skin cancer BCC/KMC-1,
B16F10 and A375

↑ ROS causes mitochondrial membrane potential loss,
mitochondrial fission, and mitophagy [105]

Isorhamnetin (IH) +
chloroquine (CQ)

Breast
cancer

MDA-MB-231,
MCF-7, BT549,

MCF-10A

ROS-mediated phosphorylation of CaMKII/Drp1
promotes Bax translocation and release of cytochrome

c, mitochondrial fission, caspase activation,
and apoptosis

[106]

Cetuximab +
oridonin

Laryngeal
cancer Hep-2, Tu212 ↑ ROS, through NF-κB, PI3K/Akt, and JAK2/STAT3,

induces apoptosis [107]

Valproic acid (VPA) +
Trichostatin A (TSA)

Pancreatic
cancer PANC1, PaCa44 ↑ ROS triggers autophagy [108]

Legend: ↑: increase; ROS: reactive oxygen species; Bcl-2: B-cell lymphoma 2; PARP: poly adenosine phosphate-ribose polymerase;
MAPK: mitogen activated protein kinase; JNK: c-Jun N-terminal kinase; Bcl-2/Bax; B-cell lymphoma 2/Bcl-2-associated X protein; STAT3:
signal transducer and activator of transcription; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; CaMKII/Drp1:
Ca2+/calmodulin-dependent protein kinase II/Dynamin-1-like protein; PI3K/Akt: Phosphatidylinositol 3 Kinase/Protein Kinase B; JAK2:
Janus kinase 2.

6. Hints for Anticancer Therapy: Exploitation of Mitochondrial ROS

As clearly stated in the previous paragraphs, tumor cells generate and maintain
high levels of ROS to preserve pro-tumorigenic signaling cascades, granting proliferation,
growth, and metabolic adaptation. However, their level must be tightly regulated by
the antioxidant system of the cell, in order to not exceed the toxic threshold ROS level,
preventing cell death due to oxidative stress. This duality represents the specific challenge
in the effort to find an effective ROS therapy in cancer.

Indeed, manipulating ROS in the context of cancer treatment is a promising approach
recently developed, either by decreasing or by increasing their levels in cancer cells. The
first approach relies on trying to decrease ROS levels while increasing antioxidant systems,
in order to diminish the pro-tumorigenic activity of ROS. The reduction in ROS levels
not only decreases cell survival and proliferation but also reduces DNA damage and
genetic instability, lowering the pro-tumorigenic signaling and the exacerbation of the
tumorigenicity. A great variety of studies aimed at investigating the effects of a range
of antioxidants on tumor growth and yielded different outcomes, from no effect to, in
some cases, increased cancer-related mortality [109]. On the other hand, metformin, a
pleiotropic drug that targets mitochondrial complex I with antineoplastic functions, seems
to suppress ROS production, decreasing ROS levels and inhibiting inflammatory signaling
and metastatic progression in breast cancer [110]; moreover, metformin decreased the
viability of Mia PaCa and PANC1 pancreatic ductal adenocarcinoma cell lines through the
reduction in intracellular ROS, increasing MnSOD and decreasing NOX2 and NOX4 [111].

The second approach consists of pushing the ROS concentration over the threshold of
toxicity, selectively killing tumor cells by disabling antioxidants and activating different cell
death processes such as apoptosis, necrosis, and autophagy-mediated cell death. Necrosis,
for example, is a programmed cell death characterized by organelle swelling and membrane
rupture. As apoptosis, it involves a controlled signaling cascade which requires the receptor-
interacting protein kinase 1 (RIP1)/ receptor-interacting protein kinase 3 (RIP3) complex,
whose formation was proven to be regulated by mitochondrial ROS [112]. A novel type
of cell death is ferroptosis, an iron-dependent programmed cell death occurring when
the intracellular levels of lipid reactive oxygen species exceed the activity of glutathione
peroxidase 4 (GPX4), leading to the collapse of redox homeostasis. Mitochondria are focal
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hubs for iron metabolism and homeostasis; moreover, the free and redox active iron pool
has been demonstrated to participate in the accumulation of mitochondrial ROS, which
can interact with polyunsaturated fatty acids, leading to lipid peroxidation, initiating
ferroptosis in cancer and healthy cells [113]. Lastly, pyroptosis could also be an option.
This mechanism is mediated by the gasdermin family, accompanied by inflammatory and
immune responses; in the last few years, it has been considered a potential cancer treatment
strategy [114]. One of the latest updates in ROS-exploiting cancer therapy, in fact, identifies
iron as an amplifier of ROS signaling to induce pyroptosis (a lytic programmed cell death
initiated by inflammasomes), via the Tom20/Bax/caspase-3-cleaved gasdermin E (GSDME)
pathway in melanoma cells [115].

Chemotherapy, the most common treatment in cancer, in the majority of cases, elevates
intracellular levels of ROS, in general pushing the cancer cell over a threshold to induce
cell death; this is one of the proposed mechanisms via which chemotherapeutics provoke
tumor regression. There are two causes for the increase in ROS level in the tumor cell:
mitochondrial ROS generation and inhibition of the antioxidant system [116]. Intracellular
ROS increase promotes a series of signaling cascades, including the activation of MAPK
and NF-κB pathways; moreover, DNA damage induced by ROS accumulation can promote
p53 accumulation, activating the p53/Bax pathway and resulting in apoptosis [117].

The combinatorial therapy against breast cancer using resveratrol (RESV)—a natural
polyphenol having antiproliferative activity against breast cancer cells—and salinomycin
(SAL)—a monocarboxylic polyether ionophore—in MCF7 cell lines has been observed
to elicit an apoptotic response through the enhancement of mitochondrial ROS, because
of mitochondrial impairment. In fact, after the combinatorial treatment, ROS increase
induced mitochondrial membrane potential disruption, decreasing the expression of Bcl-2.
This led to the activation of caspases 7,8,9, chromatin condensation, and Poly adenosine
diphosphate (ADP)-ribose polymerase (PARP) cleavage, inducing apoptosis. In addition,
ROS activated the MAPK pathway, which responds to cellular stress and metabolism
by phosphorylating JNK and p38 and leading to apoptosis [100]. In the same direction,
Xia et al. studied for the first time on colorectal cancer cells the effect on tumor cells
of Withaferin A (WA), an active steroidal lactone derived from Withania somnifera that
exhibits antitumor activity in several cancers, including breast cancer, lung cancer, and
pancreatic cancer, via ROS production. They validated the hypothesis that ROS production,
driven by mitochondrial dysfunction, inhibited cell growth and increased apoptosis; the
reduction in mitochondrial membrane potential started the traditional apoptotic cascade
(decrease on Bcl-2/Bax ratio, subsequent activation of caspase 3–9) and activated of the JNK
pathway [101]. Carnosic acid (CA), an antioxidant compound derived from Rosmarinus
officinalis, was able to induce apoptosis in HCT116 colon cancer cell line via ROS generation
and inactivation of STAT3 signaling. Specifically, treatment with CA, generating ROS,
diminished the phosphorylation of STAT3, JAK2, and Src kinases (it is likely that ROS
may cause oxidative modification of Cys residues on these proteins), decreasing also the
expression of STAT3 gene products, such as D-cyclins and survivin [76]. Quinalizarin, an
anthraquinone component isolated from Rubiaceae, has been demonstrated to link ROS
generation to MAPK, STAT3, and mitochondrial dynamics and inheritance during cell
division, as well as the development and disease NF-κB signaling pathways, leading the
MCF7 breast cancer cell line and A549 lung cancer cell line to cell-cycle arrest and caspase-
dependent apoptosis [102,103]. Cucurbitacin (CuD), a common phytochemical derived
from Trichosanthes kirilowii, was used in Capan-1 pancreatic cancer cell line, demonstrating
that the drug-induced ROS production induced G2/M cell-cycle arrest and mediated the
p38/MAPK pathway, promoting cell death (Figures 2 and 3) [104].

More studies, instead, are needed to understand the exact mechanism and correlation
among mitochondrial ROS production and mitochondrial dynamics in cancer, to utilize
these findings for therapeutic purposes, in order to overcome chemoresistance and/or to
improve patient prognosis [79]. Meanwhile, Chuang et al. very recently demonstrated
that imiquimod (IMQ), a Toll-like receptor (TLR) 7 ligand, induced severe ROS produc-
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tion that in turn caused mitochondrial membrane potential loss, mitochondrial fission,
and mitophagy in skin cancer cells [105]. Moreover, isorhamnetin (IH), a flavonoid that
is present in plants of the Polygonaceae family, in combination with chloroquine (CQ),
was able to induce apoptosis in triple-negative breast cancer cells, via an ROS-mediated
phosphorylation of CaMKII/Drp1, leading to Bax translocation and release of cytochrome
c, mitochondrial fission, caspase activation, and apoptosis [106].

In the last few years, the role of ROS in cancer therapy, especially the increase in ROS
levels elicited by targeted therapy, has received more and more attention; monoclonal
antibodies and small-molecule inhibitors, which specifically target tyrosine kinases, have
been demonstrated to show ROS-mediated anticancer effects, eliciting signaling cascades
that provoke apoptosis [68]. Moreover, other targeted therapies such as proteasome in-
hibitors, histone deacetylase (HDAC) inhibitors (HDACi), and STAT3 inhibitors have been
shown to sensitize tumor cells by increasing the level of ROS. Cetuximab, in combination
with oridonin, inducing ROS production, enhanced mitochondrial apoptosis through the
NF-κB, PI3K/Akt, and JAK2/STAT3 pathways in laryngeal squamous carcinoma cells [107].
Moreover, histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA) in
PANC1 and PaCa44 pancreatic cancer-derived cell lines triggered autophagy through ROS
production [108].

Photodynamic therapy (PDT) is a method for the treatment of tumors, based on a
photochemical reaction between a photosensitizer (PS) and molecular oxygen. These three
apparently harmless components, taken together, result in the formation of ROS [118].
When the PS, after intravenous, intraperitoneal, or topical administration, is exposed to
light with a precise wavelength, it changes from a ground (singlet) state to an excited
(triplet) state. The excited state can undergo two kinds of reactions; it can react directly
with substrates in the cells, such as the membrane or a molecule, transferring an electron or
a proton to form radical anion or cation species (type I reactions), whereby these radicals
react with oxygen to form oxidizing free radicals and singlet oxygen [119]. Alternatively,
excited PS can be restored to the ground state, which then releases energy inducing the
conversion of oxygen to the excited state singlet oxygen. Both species produced exert a
cytotoxic effect on the cell, as they both interact with lipids, proteins, and nucleic acids. The
irradiation of the tumor can selectively activate the photosensitive drug in situ, triggering a
photochemical reaction and tumor destruction, via three different mechanisms: (1) PDT can
kill the malignant cells directly, through ROS generation; (2) PDT can damage the tumor-
associated vasculature, leading to tumor infarction; (3) PDT can activate an inflammatory
and immune response against tumor cells [120]. Focusing on the first mechanism, PDT can
evoke apoptosis, necrosis, and autophagy-associated cell death pathways. As an example,
mitochondria-associated PSs leading to the photodamage of Bcl-2 is a permissive signal
for mitochondrial outer membrane permeabilization (MOMP), mediating the release of
caspase activators cytochrome c and Smac/DIABLO or proapoptotic molecules such as
apoptosis-inducing factor (AIF) [121]. Moreover, other nonapoptotic pathways could be
elicited, including the necrosis signaling cascade [122] and autophagy that can have both a
cryoprotective and a pro-death role, depending on the PDT doses [123,124]. However, it
has been demonstrated that cancer cells exploit their antioxidant activity to neutralize ROS
derived for PDT, as an increase in SODs and other antioxidant enzymes has been observed
following PDT [125]. Moreover, PDT induces the expression of proteins that are related to
signaling pathways such as apoptosis [126] or are responsible for cell survival mechanisms,
in order to cope with the oxidative stress and damage. Transcription factors such as Nrf2,
activator protein 1 (AP-1), HIF1, and NF-κB are among the factors that are expressed, in
addition to those that mediate the proteotoxic stress response [127,128]. New combinatorial
approaches to increase the efficacy of the therapy are now being studied, while also
integrating chemotherapeutic drugs and PSs into nanocarriers [129,130]. Developed on the
basis of PDT, sonodynamic therapy (SDT) is a novel noninvasive approach for use against
solid tumors, with low-intensity ultrasound and sonosensitizers [131,132], inducing an
excess of ROS, thereby promoting cell death pathways via downregulation of Bcl-2 family
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proteins [133]. Lastly, new ways to improve traditional PDT are being developed; since
PDT has limited killing capacity due to hypoxia in the tumor niche, strategies are taken into
consideration not only to increase the ROS killing effect, but also to inhibit ROS defense
systems (Figures 2 and 3) [134].

7. Conclusions and Future Perspectives

In this review, we discussed the currently known intracellular pathways mediated
either by mitochondrial structure rearrangements or by mitochondrial ROS production and
release. In particular, we demonstrated how finely tuned the regulation of mitochondrial
shaping is, reporting the presence of a two-way modulation of mitochondrial dynamics by
several pathways and the existence of a vice versa axis [23,27–30]. Interestingly, these two
players can also establish more intricated positive feedback loops or vicious cycles, directly
responsible for the maintenance of physiological states or contributing to pathological
conditions. For instance, we reported that mitochondria can restore their own biogenesis
in normal tissues through an upregulation of canonical Wnt via the Pgam5/β-catenin
interaction, which stimulates mitophagy and organelle remodeling [27], while a mitochon-
dria/Notch cascade alters mitochondrial fusion and fission rates, ultimately supporting
tumor proliferation [29].

Moreover, we addressed the possibility of exploring the functional role of “contac-
tology” in cell signaling modulation, especially to unravel possible links with disease
formation and development. Nevertheless, we believe that mitochondrial biology is now
evolving into “organellar biology”, via which several different organelles work together to
regulate important intracellular pathways. In this regard, further studies may be helpful
to more deeply investigate the role of ER/mitochondria in cell signaling modulation, but
further experiments will be necessary to address this issue.

The existence of a direct link between mitochondrial ROS and cell signaling was
also reported in this review, resulting in the modulation of important cellular functions
such as proliferation, autophagy, and apoptosis, also acting on a transcriptional level,
as summarized in Figures 2 and 3. This leads to the possibility of taking advantage of
mitochondrial ROS production for anticancer treatment in multiple ways, by both lowering
and enhancing mitochondrial ROS levels inside the cells, resulting in the promotion of
cell death via, for instance, DNA damage or mitochondrial impairment, which ultimately
provokes the block of tumor progression [68]. To support the idea of the efficacy of this
strategy, we collected the novel findings on mitochondrial ROS-targeting drugs (Table 1)
which proved to be useful in in vitro studies and could be possibly employed for future
clinical trials. The presence of innovative approaches, such as the introduction of photo-
dynamics [118–121] and sonodynamics [131–133], to specifically activate mitochondrial
ROS targeting pharmaceuticals to treat cancer supports the relevance of the exploitation of
this molecular species, underlining the importance of dissecting cell signaling cascades in
which they are involved.

In conclusion, it is clear that mitochondrial physiology has a fundamental role in
tuning intracellular functions, leading to the possibility to target these organelles to treat
several human diseases. Further work will be necessary to improve drug selectivity to
preferentially hit pathological cells while sparing healthy ones.
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