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MSIpred: a python package for 
tumor microsatellite instability 
classification from tumor mutation 
annotation data using a support 
vector machine
Chen Wang1 & Chun Liang   1,2

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite 
lengths due to deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types 
and its status can be considered as an important indicator for patient prognosis. Conventional clinical 
diagnosis of MSI examines PCR products of a panel of microsatellite markers using electrophoresis 
(MSI-PCR), which is laborious, costly, and time consuming. We developed MSIpred, a python package 
for automatic MSI classification using a machine learning technology – support vector machine (SVM). 
MSIpred computes 22 features characterizing tumor somatic mutational load from mutation data in 
mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, 
subsequently using these features to predict tumor MSI status with a SVM classifier trained by MAF 
data of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent testing set, 
MAF data of another 358 tumors, achieved overall accuracy of ≥98% and area under receiver operating 
characteristic (ROC) curve of 0.967. Further analysis on discrepant cases revealed that discrepancies 
were partially due to misclassification of MSI-PCR. Additional testing of MSIpred on non-TCGA data 
also validated its good classification performance. These results indicated that MSIpred is a robust pan-
tumor MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Microsatellites are tandemly repeated sequences with typical repeat unit length varying from 1 to 6 bases1. 
Slippage events during DNA replication can lead to gain or loss of repeat units from microsatellite loci throughout 
genome. Under normal circumstances, these spontaneous mutations can be sensed and corrected by mismatch 
repair (MMR) system. When MMR system is inactivated or affected due to mutations or epigenetic silencing in 
its associated genes, including MSH2, MSH3, MSH6, MLH1, MLH3, PMS1, PMS22, consequent high degree of 
polymorphism in microsatellite length, defined as microsatellite instability (MSI), frequently occurs3. Clinical 
diagnosis of MSI is usually achieved by examining lengths of PCR products of five informative microsatellite loci 
(BAT25, BAT26, D2S123, D5S346, and D17S250) of National Cancer Institute microsatellite panel by capillary 
electrophoresis (known as MSI-PCR method). According to Bethesda guideline4, tumors are termed as micro-
satellite stable (MSS) if none of five loci tested is mutated, and tumors are termed as microsatellite instability low 
(MSI-L) if only one tested locus is mutated and microsatellite instability high (MSI-H) if two or more tested loci 
are mutated. MSI is best known in colorectal tumor where clear clinical implications have been established. 15% 
cases of colorectal tumors are observed with MSI. 3% of them are inheritable and are defined as Lynch syndrome 
where inactivating germline mutations in genes of MMR system are detected. The other 12% are sporadic cases 
caused by somatic mutations in genes of MMR system5,6. MSI-H colorectal tumors tend to have better prognosis 
and are less prone to metastasis7. Though less understood, MSI is also reported in endometrial, gastric, glioblas-
toma and prostate tumors8,9. Classification of MSI is of great importance due to its significant relationship with 
therapeutic decisions, but clinical diagnosis of MSI by MSI-PCR is laborious, costly, and time consuming. With 
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the development of next generation sequencing (NGS) technology, several computational tools utilizing NGS 
data were developed for MSI diagnosis. MSIsensor10 and mSINGS11 determine tumor MSI status by measuring 
prevalence of unstable microsatellite loci in paired tumor-normal sequencing data. These two tools showed good 
performance but they both require lots of computational resources since they directly examine aligned reads in 
BAM format. MSIseq, MOSAIC, and MIRMMR12–14 utilize machine learning algorithms to predict MSI status. 
MSIseq and MOSAIC implemented decision tree classifiers for MSI classification depending on just a single 
feature derived from tumor somatic mutation information, which is prone to over-fit their training datasets. 
MIRMMR built a logistic regression classifier requiring both methylation and mutation information of genes 
belonging to MMR system. A recent study revealed that, in addition to MSI, MMR-deficient tumors also display 
relatively higher somatic mutational load15. Thus, it is a reasonable direction to predict tumor MSI status through 
tumor mutation information obtained by exome sequencing. Recently, mutation calling has become a routine 
analysis of paired tumor-normal sequencing data. Several different pipelines for mutation calling have been 
published16–21. These pipelines typically create a file in mutation annotation format (MAF). MAF files provide 
somatic mutation information of tumors including single nucleotide mutations, micro-indels, and their detailed 
translational/regulatory effects (for example, missense, nonsense, and silence mutations) on annotated genes. 
In this study, we explored distributions of somatic mutational load in MSI-PCR termed MSI-H and non MSI-H 
(MSS and MSI-L) tumors using their corresponding MAF files obtained from The Cancer Genome Atlas (TCGA) 
Research Network22, and subsequently developed a python package, MSIpred, implementing a pan-tumor binary 
MSI classifier to predict MSI status from tumor MAF files.

Results
Distributions of somatic mutational load in MSS and MSI-H tumors.  We calculated 22 features 
characterizing somatic mutational load of 1432 tumors of four types (see Table 1, COAD: colon adenocarcinoma, 
READ: rectal adenocarcinoma, STAD: stomach adenocarcinoma, and UCEC: uterine corpus endometrial carci-
noma) using mutation data from tumor MAF files. Of all 22 features, 1–9, previously used by MSIseq12, describe 
a general type (single nucleotide variants or micro-indels) of a mutation. 10–22 describe detailed classification of 
a mutation based on its translational and/or regulatory effects, which can provide critical information about how 
deleterious a mutation is (see Supplementary Table S1). All of these 22 features displayed skewed distributions in 
total 1432 tumors (see Supplementary Fig. S1). As a recent study revealed that MSI-L tumors were consistent with 
MSS tumors in terms of their MSI burden13, we combined MSS and MSI-L tumors together, and denoted them 
as MSS in this study. Referring to tumor clinical data provided by TCGA, 1123 of 1432 tumors were determined 
as MSS using MSI-PCR, the other 309 tumors were determined as MSI-H (see Table 2). MSI-H tumors displayed 
significantly higher counts of mutations (both single nucleotide variants and micro-indels) per megabase than 
MSS tumors throughout exome sequences and in simple sequence repeat regions. MSI-H tumors also tended to 
possess more deleterious mutations, such as mutations causing shifts in open reading frames, missense muta-
tions, and nonsense mutations (Fig. 1). By pairing these 22 features, a clear separation between MSS tumors and 
MSI-H tumors can be observed (see Supplementary Fig. S2). Wilcoxon rank-sum tests of each of these 22 features 
between MSS and MSI-H tumors were performed, and results indicated that all these 22 features were differently 
distributed between MSS and MSI-H tumors.

Analysis of 22 features used for mutational load characterization.  1432 tumors were then ran-
domly split into two datasets, training and testing, using 3:1 ratio within each tumor type. Accordingly, the train-
ing set incorporated 1074 tumors of all four types, and the testing set incorporated 358 tumors of four types. 
Detailed information about these two datasets were presented in Tables 1 and 2. In order to gain some insights 
about the contributions of these features to MSI classification, we first trained a random forest classifier using all 
22 features of 1074 tumors belonging to the training set. The importance scores of all these 22 features were then 

Project Training Testing

COAD 278 99

READ 92 39

STAD 334 103

UCEC 370 117

Total 1074 358

Table 1.  Composition of training and testing data sets according to tumor types.

MSI status Training Testing

MSS* 705 227

MSI-L* 138 53

MSI-H 231 78

Total 1074 358

Table 2.  Composition of training and testing data sets according to MSI-PCR determined MSI status. *Both 
MSS and MSI-L are labelled as MSS for binary classification in our study.



www.nature.com/scientificreports/

3Scientific ReportS |         (2018) 8:17546  | DOI:10.1038/s41598-018-35682-z

obtained (see Supplementary Table S2) from the random forest classifier to evaluate contributions of these fea-
tures23. According to their importance scores, those 13 new features other than the 9 features selected by MSIseq12 
greatly impact the classification results, especially Frame_Shift_Del and Frame_Shift_Ins. Besides, all 22 features 
contributed to the classification of MSS and MSI-H tumors in terms of their importance scores obtained from the 
random forest classifier. Thus, we decided to keep all 22 features for further implementation.
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Figure 1.  MSS and MSI-H tumors possessed different somatic mutational load. Boxplots for eight somatic 
mutational load features of MSS (a combination of MSI-L and MSS) tumors and MSI-H tumors were given. X 
axis of each subplot denotes two MSI status and Y axis denotes counts (per megabase (Mb)) of a mutational load 
feature. P-values obtained by Wilcoxon rank sum test were labeled on each subplot. From (a–h), each subplot 
denotes following features: SNP, INDEL, SNP_R, INDEL_R, Frame_Shift_Del, Frame_Shift_Ins, Missense_
Mutation, and Nonsense_Mutation, respectively.
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Classification of MSI using Support Vector Machine.  We then developed a pan-tumor support vector 
machine (SVM) classifier with a radial basis function kernel for MSI classification using aforementioned 22 fea-
tures of all tumors from the training set. After the SVM classifier was trained, we released a python package called 
MSIpred (Microsatellite Instability Predictor) implementing that SVM classifier and a bioinformatics pipeline to 
compute those required features from MAF files to perform MSI auto classification.

MSIpred is accurate for MSI classification.  We applied MSIpred to that 358-tumor testing set and evalu-
ated its performance by finding concordances between MSIpred predicted MSI status and MSI-PCR determined 
MSI status provided by TCGA, using several different metrics. In this study, we denoted MSS tumors as negative 
samples while MSI-H tumors as positive ones. MSIpred finally achieved a sensitivity (recall) of 0.936, specificity 
of 0.996, precision of 0.986, G mean of 0.966, F1 score of 0.961, and overall accuracy of 0.983. ROC curve (Fig. 2a) 
of MSIpred achieved area under curve of 0.969. Precision-recall curve (Fig. 2b) of MSIpred achieved average pre-
cision of 0.967. These results indicated that MSIpred is a robust tool for MSI classification, and revealed that MSS 
tumors and MSI-H tumors possessed distinct somatic mutational loads.

MSIpred is robust across different tumor types.  MSIpred was designed to perform pan-tumor MSI 
classification since it didn’t incorporate tumor type as a feature when predicting MSI status. It is reasonable to 
evaluate performance of MSIpred on each tumor type individually since different types of tumors may hold dif-
ferent signatures of somatic mutational load. Hence, we then evaluated performance of MSIpred on each tumor 
type individually using the 358-tumor (UCEC: 117 tumors; STAD 103 tumors; COAD and READ :138 tumors) 
testing set. ROC curves for endometrial, stomach, and colorectal tumors were plotted (Fig. 2c). For colorectal 
tumors and stomach tumors, MSIpred achieved area under curve of 1.0 and 0.995, respectively. Area under curve 
for endometrial tumor is slightly lower with a value of 0.943. These results indicated that MSIpred didn’t over-fit 
a particular tumor type and MSIpred was robust and generic on different tumor types.

Analysis of discrepant cases.  We further investigated somatic mutational load (characterized by afore-
mentioned 22 features) for those tumors whose MSIpred predicted MSI status and MSI-PCR determined MSI 
status were discrepant. In the 358-tumor testing set, 5 (4 endometrial, 1 stomach) of 78 MSI-PCR determined 
MSI-H tumors were classified as MSS by MSIpred (false negative). 1 (endometrial) of 280 MSI-PCR determined 
MSS tumors was classified as MSI-H (false positive) by MSIpred. As shown in Fig. 3a, three (TCGA-B7-A5TJ, 
TCGA-A5-A0GD, TCGA-BG-A0M0) of five false negative tumors possessed quite low somatic mutational load, 
indicating their MMR system might still be intact. The other two false negative tumors possessed high somatic 
mutational load. The only false positive tumor (TCGA-BG-A0G2, see Fig. 3a) also possessed relatively high 

a b

c

Figure 2.  Performance of MSIpred. (a) Receiver operating characteristic (ROC) curve of MSIpred. The blue 
dash line denotes a line with slope of 1 and intercept of 0. (b) Precision-recall curve of MSIpred. Both ROC 
curve and precision-recall curve were obtained by applying MSIpred on the 358-tumor testing set. (c) ROC 
curves of MSIpred for different tumor types. Endometrial tumors (UCEC): orange, 117 tumors; stomach tumors 
(STAD): green, 103 tumors; colorectal tumors (COAD-READ): purple, 138 tumors.



www.nature.com/scientificreports/

5Scientific ReportS |         (2018) 8:17546  | DOI:10.1038/s41598-018-35682-z

somatic mutational load, indicating that its MMR system might have been inactivated or affected. We then ana-
lyzed their corresponding MAF files with special foci on five genes involved in MMR system including MLH1, 
MSH2, MSH3, MSH6 and PMS2. For those three false negative tumors (TCGA-B7-A5TJ, TCGA-A5-A0GD, 
TCGA-BG-A0M0) with low somatic mutational load, no mutation was found in these five MMR genes. 
For the other two false negative tumors with high somatic mutation load, mutations were detected in MMR 
genes: TCGA-A5-A1OF possessed mutations in four (MLH1, MSH2, MSH3, MSH6) of five MMR genes; 
TCGA-A5-A0G1 possessed mutations in three (MLH1, MSH6, PMS2) of five MMR genes. The only false posi-
tive tumor, TCGA-BG-A0G2, possessed mutations in all five MMR genes (Fig. 3b). This result suggests that the 
MSI-PCR results might not be very accurate for these cases.

Validation of MSIpred using non-TCGA MAF data.  As both of the training set and testing set data were 
obtained from TCGA, the performance of MSIpred on the aforementioned testing set might be overoptimistic. 
We further decided to validate the performance of MSIpred with another 390-tumor testing set whose data were 
generated by non-TCGA projects. This 390-tumor testing set consisted of MAF files of 368 colorectal tumors24 
and 22 stomach tumors25. These MAF files and their corresponding binary (cBioPortal directly provided binary 
MSI status) MSI status determined by MSI-PCR were all obtained from cBioPortal26,27. 90 of 390 tumors were 
determined as MSI-H and the rest 300 were determined as MSS by MSI-PCR. With this non-TCGA testing set, 
MSIpred achieved a sensitivity (recall) of 0.778, specificity of 0.990, precision of 0.959, G mean of 0.877, F1 score 
of 0.859, and overall accuracy of 0.941. Compared to the performance of MSIpred on the previous 358-tumor 
TCGA testing data, the sensitivity of MSIpred on non-TCGA testing data was lower, but still reached a good 
overall accuracy.

Comparison of MSIpred with MSIseq.  Among previously published software tools, MSIseq12 is the only 
one that also predicts MSI status solely from tumor MAF files. Our tool MSIpred also utilized nine mutation 
features that were first proposed by MSIseq. Therefore, we compared performances of MSIseq with MSIpred in 
this study. The 390-tumor non-TCGA testing set that was utilized to validate performance of MSIpred was also 
used to evaluate MSIseq with its default decision tree classifier. MSIseq gave overall accuracy of 0.918, sensitivity 
of 0.667, precision of 0.968 and specificity of 0.993 (see Table 3). These results revealed that MSIseq was good at 
recognizing negative samples (MSS) but poor at recognizing positive samples (MSI-H). Thus, MSIpred achieved 
higher sensitivity and accuracy than MSIseq.
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Figure 3.  Analysis of discrepant cases. (a) Bar plot of four features (SNP, INDEL, Missense_Mutation, 
Nonsense_Mutations) characterizing somatic mutational load of six discrepant tumors (b) Mutation profiles of 
six discrepant tumors in terms of genes in MMR system.
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13 new features improved performance of MSIpred.  Of all 22 features utilized by MSIpred, 13 (see 
Supplementary Table S1, row 10–22) were new features for MSI classification. These 13 features characterized 
detailed translational or regulatory effects of mutations. We validated the positive impacts of these 13 new fea-
tures on MSI classification by comparing performances of two different versions of MSIpred on the aforemen-
tioned 390-tumor non-TCGA testing set: the original MSIpred that utilized all 22 (9 inherited from MSIseq 
plus 13 new features) features and a modified MSIpred that only utilized 9 features proposed by MSIseq (see 
Supplementary Table S1, row 1–9). Results showed that by adding 13 new features, performance of MSIpred was 
improved (see Table 3). The sensitivity of MSIpred was improved from 0.667 to 0.778 and overall accuracy was 
improved from 0.910 to 0.941.

Discussion
We utilized 22 features, which can be computed from tumor MAF files, to characterize somatic mutational load 
of tumors by considering both mutation types and their detailed translational/regulatory effects. All these 22 
features were differentially distributed in MSI-PCR determined MSS and MSI-H tumors, indicating that these 
features could serve as useful predictors for MSI classification. Further analysis on these 22 features using a ran-
dom forest classifier revealed that all these 22 features contributed to the classification of MSS and MSI-H tumors. 
We then developed a python package called MSIpred, which implemented a SVM classifier trained by those 22 
features of a 1074-tumor training set, and a bioinformatics pipeline to compute those required features from MAF 
files to perform automatic binary MSI classification. If more data is available for training, MSIpred allows redo of 
the training step in order to get a better classifier. Those MAF files that MSIpred utilized as inputs were generated 
from paired tumor-normal exome sequencing data. An evaluation of MSIpred by finding concordances with 
MSI-PCR determined MSI status on a 358-tumor testing set showed that MSIpred is a robust pan-tumor MSI 
classification tool with high accuracy, sensitivity, and specificity.

Using MSI-PCR determined MSI status as the experimental reference, 6 discrepancies including five false 
negative cases and one false positive case were observed in MSIpred classification results. Further analysis of their 
somatic mutational load and mutation profiles in terms of genes belonging to MMR system revealed that three 
of five false negative tumors were likely to possess intact MMR systems, while the other two false negatives were 
likely to possess inactivated or insufficient MMR systems. The only false positive case was also likely to possess 
an inactivated or insufficient MMR system. These results all together revealed that some of the discrepancies may 
due to misclassification of MSI-PCR method when considering tumor mutation profiles (see Fig. 3). For those 
three false negatives with intact MMR systems and the only false positive case, their MSIpred predicted MSI status 
were more persuasive while for the rest two false negative cases, MSI-PCR termed MSI status were more likely to 
be correct. Thus MSIpred can serve as a reliable complementary tool for MSI diagnosis beyond the conventional 
MSI-PCR method. Besides, as MSIpred only requires MAF files for MSI classification, it enables researchers to 
better utilize NGS data from public domain.

Several computational tools for MSI classification based on NGS data were published. MSIsensor10 and mSI-
NGS11 both examine aligned reads in “BAM” format, and try to derive MSI status by measuring prevalence of 
unstable microsatellite loci throughout genome. MOSAIC13 is another software that utilizes sequencing data 
in “BAM” format for MSI classification. However, MOSAIC doesn’t directly compare distributions of unstable 
microsatellite loci in paired tumor-normal data, instead, it implemented a weighted tree classifier to perform 
MSI classification using average gain of novel microsatellite alleles. BAM files are often very large and need large 
amount of computational resources to manipulate. Mutation calling has become a routine analysis for NGS data 
and yields tumor mutation data in MAF format. MSIseq12 and MIRMMR14, two MSI classification tools that 
either solely or partially utilize MAF data for MSI classification have been released. MSIseq implemented a deci-
sion tree classifier using features computed from MAF files as well as a feature of tumor types, which would poten-
tially limit its application to some rare tumors. In addition, MSIseq only makes use of general types of mutations 
(single nucleotide variants or micro-indels) without considering their translational and regulatory effects. Unlike 
MSIseq, which only requires MAF data, MIRMMR also requires additional tumor methylation data to predict 
MSI status by a logistic regression classifier. In our study, MSIpred incorporated 9 of 10 features (eliminated 
tumor type) proposed by MSIseq, and added another 13 features that take potential translational and regulatory 
effects of mutations into account. By applying MSIpred and MSIseq to another 390-tumor non-TCGA testing set, 
the good performance of MSIpred was further validated, though a decline in its sensitivity was observed. This 
underestimation of MSI using non-TCGA data could potentially be explained by that MMR genes can also be 
repressed by epigenetic mechanisms. Apart from that, MSIpred did not consider individual microsatellite locus 
when doing classification, but individual microsatellite locus might be informative in terms of MSI classification. 
Compared to MSIseq, MSIpred still reached a better sensitivity and overall accuracy. A modified MSIpred that 
only utilized 9 (the features previously utilized by MSIseq) of 22 features was also applied to the same non-TCGA 

Tools

non-TCGA testing set size

MSS MSI-H Se (recall) Sp Pre G mean F1 ACC

MSIpred (22 features)
300 90

0.778 0.990 0.959 0.877 0.859 0.941

MSIpred (9 features) 0.622 0.997 0.982 0.787 0.762 0.910

MSIseq 0.667 0.993 0.968 0.814 0.789 0.918

Table 3.  Performances of original MSIpred, modified MSIpred, and MSIseq on 390-tumor non-TCGA testing set.
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testing set, resulting a lower sensitivity and overall accuracy. It implied the positive informative effects of those 13 
new features in MSI classification.

We finally conclude that MSIpred is a robust tool for pan-tumor MSI classification from tumor MAF data, and 
is available as a python 2 package. We anticipate that MSIpred will have a wide usage in MSI clinical diagnosis.

Methods
Input and output.  MSIpred requires MAF files containing tumor somatic mutation annotation informa-
tion derived from paired tumor-normal whole exome sequencing data, a reference file indicating loci of simple 
sequence repeats regions throughout genome, and length (Mb) of overall captured sequences used for exome 
sequencing. MSIpred then computes 22 features characterizing somatic mutational loads of tumors with the 
implemented bioinformatics pipeline. Subsequently, these features are utilized for prediction of MSI status. The 
final output of MSIpred is a pandas dataframe containing predicted MSI status of tumors.

Implementation.  MSIpred is written and tested under python 2 (version 2.7.12) and is freely available as 
a python package. It requires pandas (version 0.20.3)28, intervaltree (version 2.1.0)29, and scikit-learn (0.19.1)30 
packages to work properly. First, a MAF file is annotated by adding an additional column “In_repeats”, indicating 
whether mutation events took place in simple sequence repeats region or not. The annotated MAF file generated 
by last step is then utilized to extract 22 features characterizing somatic mutational load for all tumors embedded 
in this annotated MAF file. These 22 features of all tumors are then combined into a feature matrix as a pandas 
dataframe. Finally, MSIpred calls the implemented SVM classifier to accurately predict tumor MSI status using 
the aforementioned feature matrix, and returns results as a pandas dataframe. MSIpred also allows users to train 
new SVM classifier given new MAF data and known MSI statuses of tumors. Subsequently, the newly trained 
SVM classifier can be utilized for MSI prediction. A general workflow of MSIpred is presented in Fig. 4.

Somatic mutation data and clinical MSI status of tumors.  MAF files of somatic mutation data cre-
ated by MuTect mutation calling pipeline were collected from four projects (COAD: colon adenocarcinoma, 

Figure 4.  Workflow for MSIpred. MSIpred provides a python class of MAF file (MSIpred.Raw_Maf), which 
requires a tumor MAF file to create a MAF file object. After a MAF file object has been created, a method (Raw_
Maf.create_tagged_maf) associated with this object will re-generate an annotated MAF file by adding one extra 
column called “In_repeats”, which indicates whether mutation events happen in simple repeats region or not, 
given a reference file indicating loci of simple repeats regions throughout genome (simpleRepeats.txt file). Then, 
a class of annotated MAF file provided by MSIpred (MSIpred.Tagged_Maf) takes the aforementioned annotated 
MAF file to create an object of annotated MAF file. A method (Tagged_Maf.make_feature_table) associated 
with annotated MAF file object takes the size (Mb) of captured exome sequences used for exome sequencing to 
calculate 22 features for somatic mutational load characterization of all tumors embedded in the very first MAF 
file, and returns a feature matrix as a pandas dataframe. Finally, MSIpred.msi_prediction, a function provided 
by MSIpred, takes that feature matrix, and gives the final predicted MSI status for all tumors with the help of a 
implemented SVM classifier. MSIpred also allows users to train their own SVM classifier by a function called 
MSIpred.svm_training using newly obtained MAF data and known MSI status of tumors. The newly trained 
classifier can be utilized in MSIpred.msi_prediction function for MSI prediction and classification.



www.nature.com/scientificreports/

8Scientific ReportS |         (2018) 8:17546  | DOI:10.1038/s41598-018-35682-z

READ: rectal adenocarcinoma, STAD: stomach adenocarcinoma, and UCEC: uterine corpus endometrial carci-
noma) of TCGA31–33.

MSI-PCR determined MSI status of all tumors were collected from tumor clinical data provided by TCGA. To 
retrieve these data from TCGA, a R package called TCGAbiolinks (version 2.5.12)34 was used for data query in 
this study. In total, MAF files together with MSI-PCR determined MSI status of 1432 tumors (COAD: 377, READ: 
131, STAD: 437, UCEC: 487) were used in this study.

Feature selection.  We incorporated 9 features (see Supplementary Table S1, row 1–9) proposed by 
MSIseq12. These nine features were calculated based on information of ‘Variant_Type’ columns of MAF files. 
These nine features take account mutations in simple sequence repeats region specially, thus we need a reference 
file for loci of simple sequence repeats region in human genome. We retrieved loci of simple sequence repeats for 
GRCh38 (Genome Reference Consortium Human Reference 38) from a table called “SimpleRepeats” in UCSC 
genome annotation database (http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/simpleRepeat.txt.gz). 
Although, typical unit lengths of microsatellites vary from one to six base pairs, but a recent study pointed out 
that microsatellite loci with long unit lengths cannot be detected reliably by using 100 bp (which is the reads 
length utilized by TCGA) sequencing reads35. Thus we only retrieved loci of simple sequence repeats whose unit 
lengths are less than and equal to five base pairs. Besides, we utilized another 13 features (see Supplementary 
Table S1, row 10–22), which were calculated from information of ‘Variant_Classification’ columns of MAF files. 
These 13 features gave more detailed information about potential translational and regulatory effects of mutations 
that can differentiate deleterious mutations from not deleterious ones. In general, all these 22 features denote 
counts of different kinds of mutations normalized by lengths (Mb) of captured exome sequences. For all 1432 
tumors used in this study, their captured exome sequence lengths were obtained from their TCGA project marker 
papers (COAD: 44 Mb, READ: 44 Mb, STAD: 50 Mb, UCEC: 44 Mb)31–33.

Training and testing set.  Features and corresponding MSI-PCR determined MSI status for all tumors were 
formulated into a large table (see Supplementary 1432_tumor_feature.csv). This table were then randomly split 
into two data sets, training and testing, according to a ratio of three to one for each tumor type, using a function 
called “train_test_split” provided by sklearn. Tables 1 and 2 shows the summary of these two datasets.

Analysis of 22 features regarding their importance in MSI classification.  We used the random 
forest algorithm to perform comprehensive analysis of all 22 features in order to gain their importance in MSI 
classification23. A random forest classifier was trained by the 1074-tumor training set using a random forest clas-
sifier framework provided by the python package scikit-learn (sklearn, 0.19.1)30. Importance scores of all features 
were then obtained from the “feature_importances_” attribute of the trained random forest classifier.

Categorization of MSI.  TCGA categorized MSI into three types using MSI-PCR: MSS (microsatellite sta-
ble), MSI-L (microsatellite instability low), and MSI-H (microsatellite instability high) in its clinical data. In this 
study, we grouped first two categories (MSS and MSI-L) together and denoted them as MSS because a recent 
study pointed out MSS and MSI-L tumors possess similar MSI burden13. We denoted MSI-H tumors as positive 
samples and MSS tumors as negative samples to make it more convenient for binary classification and model 
evaluation.

Non-TCGA testing set.  MAF files of 390 tumors, including 368 colorectal tumors and 22 stomach tum-
ors generated by two non-TCGA projects24,25 together with their corresponding clinical data that embedded 
MSI-PCR determined binary (MSS and MSI-H) tumor MSI status, were directly downloaded from cBioPor-
tal26,27. 22 features for mutational load characterization of each of these 390 tumors (see Supplementary non_
tcga_390_tumor.csv) were extracted by MSIpred from their MAF files. Corresponding captured exome lengths 
(colorectal: 67 Mb, stomach: 38 Mb) required by MSIpred were obtained from their corresponding papers24,25. 
This data set was denoted as non-TCGA testing set, which was aimed to validate performance of MSIpred, and 
to conduct comparisons among original MSIpred (22 features), modified MSIpred (9 features), and MSIseq (10 
features).

Support vector machine.  Support vector machines (SVMs) have been widely used in classification prob-
lems of computational biology due to high accuracy and flexibility in statistical modeling36. In this study, we uti-
lized a SVM framework provided by the python package scikit-learn (sklearn, 0.19.1)30 to build our binary (MSS 
and MSI-H) classifier. As support vector machine is sensitive to scaling of features, our classifier actually was 
designed to incorporate a two-step framework: the first step is a standardized scaler provided by StandardScaler 
class of sklearn for feature normalization; the second step is a support vector machine classifier. A radial basis 
function (RBF) kernel of SVM was chosen and hyper parameters, gamma and C were tuned with 1074-tumor 
training data using grid search paired with ten-fold cross validation, which was achieved using GridSearchCV 
function of sklearn. The hyper parameter set yielding the largest average accuracy during cross validation was 
chosen. The SVM framework with optimized hyper-parameters was then trained with all training data (1074 
tumors), and this trained SVM classifier was embedded in MSIpred.

Model assessment metrics.  As our 358-tumor testing set is imbalanced (280 MSS (negative) and 78 
MSH(positive)), it is not sufficient to evaluate performance of our classifier by just using overall accuracy. Thus, 
we incorporated several other metrics for model evaluation. Equations of these metrics are given with following 
abbreviations: sensitivity (Se), specificity (Sp), precision (Pre), accuracy (ACC), FP (False Positive), FN (False 
Negative), TP (True Positive), TN (True Negative).

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/simpleRepeat.txt.gz
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∗
+
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1 2

Receiver operating characteristic (ROC) curve and precision-recall curve were plotted to visualize the per-
formance of MSIpred. Coordinate data used for plotting precision-recall curve and ROC curve was obtained by 
“precision_recall_curve” function and “roc_curve” function provided by sklearn, respectively. Visualizations were 
achieved using Matplotlib package.

Comparisons among original MSIpred, modified MSIpred and MSIseq.  We compared perfor-
mances of our original MSIpred (22 features) with a modified version of MSIpred (9 features) and MSIseq (10 
features) using the aforementioned 390-tumor non-TCGA testing dataset. The simple sequence repeats reference 
file required by these three tools was based on the same human reference genome (i.e., GRCh37) that the testing 
MAF files were based on. The modified MSIpred implemented a MSI classifier that was trained by just 9 (see 
Table S1 row 1–9) of 22 features of all tumors from the 1074-tumor training set. Performance comparisons of the 
original MSIpred, modified MSIpred and MSIseq were conducted by using aforementioned metrics.

Statistical analysis.  Wilcoxon rank sum tests were conducted using a built-in R (version 3.4.3) function 
wilcox.test. Data visualization was achieved using R package ggplot2 (version 2.2.1)37, python package Matplotlib 
(version 2.0.2)38, and python package Seaborn (version 0.8.0)39.

Availability
MSIpred is written in python 2. The package and detailed usage documents are freely available on GitHub: 
(https://github.com/bioinfolabmu/MSIpred). All the datasets generated and analyzed during the current study 
are available from the corresponding author on reasonable request.
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