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Abstract

Background: Obstructive Sleep Apnea (OSAS) is a disease associated with the increase of cardiovascular risk
and it is characterized by repeated episodes of Intermittent Hypoxia (IH) which inducing oxidative stress and
systemic inflammation. Mitochondria are cell organelles involved in the respiratory that have their own DNA
(MtDNA). The aim of this study was to investigate if the increase of oxidative stress in OSAS patients can
induce also MtDNA alterations.

Methods: 46 OSAS patients (age 59.27 ± 11.38; BMI 30.84 ± 3.64; AHI 36.63 ± 24.18) were compared with 36 control
subjects (age 54.42 ± 6.63; BMI 29.06 ± 4.7; AHI 3.8 ± 1.10). In blood cells Content of MtDNA and nuclear DNA (nDNA)
was measured in OSAS patients by Real Time PCR. The ratio between MtDNA/nDNA was then calculated. Presence of
oxidative stress was evaluated by levels of Reactive Oxygen Metabolites (ROMs), measured by diacron reactive oxygen
metabolite test (d-ROM test).

Results: MtDNA/nDNA was higher in patients with OSAS than in the control group (150.94 ± 49.14 vs 128.96 ±
45.8; p = 0.04), the levels of ROMs were also higher in OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04) and
they were positively correlated with MtDNA/nDNA (R = 0.5, p < 0.01).

Conclusions: In OSAS patients there is a Mitochondrial DNA damage induced by the increase of oxidative
stress. Intermittent hypoxia seems to be the main mechanism which leads to this process.
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Introduction
Obstructive sleep apnea syndrome (OSAS) is a disease
characterized by repetitive episodes of apnea and hypop-
nea during sleep, inducing cyclical alterations of arterial
oxygen saturation/desaturation and sleep fragmentation.
Intermittent hypoxia (IH) is the major pathophysiologic
character of OSAS since it is the trigger of oxidative stress,
systemic inflammation, and sympathetic activation. IH also
causes the increase of reactive oxygen species (ROS) pro-
duction [1] and increases the expression of inflammatory
cytokines through activation of NF- κB [2,3].
Mitochondria are independent double membrane or-

ganelles found in the cytosol of eukaryotic cells which
are involved in energy production, specifically they carry
out oxidative phosphorylation (OXPHOS) [4]. Unlike
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the nuclear genome, mitochondriacontain unmethylated
circular DNA and composed of one heavy strand and
one light strand, organized into a nucleoprotein as a
complex with the transcription factor A (TFAM) pro-
tein, that is responsible of the DNA packaging into com-
pact nucleoids, which are found associated with the
inner mitochondrial membrane [5]. The lack of introns,
protective histones, and the close proximity to the
electron transport chain result in mithocondrial DNA
(MtDNA) being more susceptible to oxidative damage
than nuclear DNA (nDNA). In addition to this, mito-
chondria have limited DNA repair capacity [6].
Our hypothesis is that the presence of oxidative

stress can induce in OSAS patients an alteration of the
transcriptional and replication machinery of mitochon-
drial biogenesis which would be up-regulated resulting
in an increased mitochondrial biogenesis by replication
of the mitochondrial genome. This change could be
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detected in body fluids. To test this hypothesis we
used real time qPCR to measure mitochondrial to nu-
clear genome ratio (Mt/N) in accordance with the
early theory which suggests that Mt/N is a biomarker
of mitochondrial dysfunction [7].
Materials and methods
Population
Patients were consecutively enrolled in the Sleep Center
of the University of Foggia from January 2012 to July
2013. The exclusion criteria were as follow: recent myo-
cardial infarction or ictus, pregnancy, current smokers,
patients with COPD, diabetes and tumors. (were also ex-
cluded). A spirometry (Sensormedics, USA) was performed
to exclude chronic obstructive pulmonary disease (COPD),
defined according to the GOLD guidelines as an irrevers-
ible chronic airway obstruction (FEV1/FVC ≤ 70%) in post-
bronchodilation spirometry. Patients with central apnoea
and obesity hypoventilation syndrome were also excluded.
The population was divided in two groups according to
the poligraphy results: OSAS (AHI >5 events/hour) and
control group (AHI ≤5). The protocol was approved by the
Medical Ethics Committee at “Ospedali Riuniti of Foggia
University” and all subjects provided a written informed
consent before participating.

Polygraphy
An unattended cardio-respiratory overnight monitoring
(Vitalnight 11, Germany) was performed during the pa-
tient staying in the sleep laboratory. Sleep stages were
not evaluated while flow, snoring, sleep position, SaO2
and heart rate were recorded. Oro-nasal flow was mea-
sured by a nasal canula, whereas abdominal and rib-cage
movements were measured by pneumatic sensors and
oxyhemoglobin saturation with a finger probe. Sleep-
disordered breathing was quantified according to the
standard criteria of the American Academy of Sleep
Medicine manual [8]. The exam was considered to be
good if there were at least 6 hours of registration. A
manual score was performed the day after registration
by a doctor specialized in sleep disorders.

Blood collection and DNA extraction
A blood sample was obtained at wake up time the day
after polygraphy. A total of 3 ml peripheral blood sample
were collected in EDTA tubes and then was stored at
−80°. Whole blood DNA was extracted with QIAamp
DNA MiniKit according to the manufacturer’s protocol
(Qiagen, Hilden, Germany). The concentration of ex-
tracted DNA was measured at 260 nm with NanoDrop
Spectrophotometer (Thermo Scientific NanoDrop, USA)
and was adjusted to 10 ng/μl. Extracted DNA was stored
at −20° until further use.
Quantitative real-time PCR
Mitochondrial DNA content was measured by quantita-
tive real time PCR method using an Applied Biosystems
7300 real-time PCR System (PE Applied Biosystems).
MtDNA was measured by quantification of a unique mito-
chondrial fragment relative to a single copy region of beta-
2-microglobulin nuclear gene (β2M) [9]. Primers, Probes
(IDT, Integrated DNA Technologies, USA) and gene acces-
sion numbers are listed in Table 1. Mitochondrial DNA
and β2M probes were labelled at 5’ end with 6 FAM and
MAX fluorescent dyes respectively and both probes con-
tained BHQ-1 as a quencher dye at 3’ end. The PCR mix
was: 1x TaqMan® Universal PCR Master Mix (PE Applied
Biosystems), 200 nM of each primer, 125 nM of TaqMan
Probe, 50 ng of total genomic DNA extract in a 20 μl
PCR reaction. Quantitative real-time PCR conditions were
2 min at 50°C and 10 min at 95°C, followed by 40 cycles of
15 s of denaturation at 95°C and 60s of annealing/exten-
sion at 60°C. Standard curves obtained from serial dilutions
of PCR-amplified target sequences were used for the quan-
tification of MtDNA (Mt) and nuclear genome (N) then
the ratio of Mt/N DNA was calculated.

The d-Roms test
Diacron reactive oxygen metabolite test (d-ROM test)
was performed (Diacron SPF, Grosseto, Italy) to analyze
the plasma levels of Reactive Oxygen Metabolites (ROMs).
This test is based on the reaction of hydroperoxides
of a biological sample with transition metals (iron)
that catalyze the formation of free radicals which then
oxidize an alkyilamine forming a colored radical de-
tected by photometry at 505 nm. Ten μl of blood are
mixed with 1 ml of an acidic (PH 4.8) buffer reagent
(R2) in order to release iron from plasma proteins
that will react with blood peroxides to form free radi-
cals, and then 10 μl of a chromogen reagent (R1 re-
agent, alkyilamine) are added forming a pink-colored
derivative. The concentration of these persistent spe-
cies can be easily determined through spectrophoto-
metric procedures (absorption at 505 nm). The results
of the dROM test are expressed in arbitrary units
called “Carratelli units” (U. CARR), where 1 U. CARR
corresponds to 0.08 mg/dL of H2O2. Reference values
of d-ROMs test are between 250 and 300 U. CARR.
Values higher than 320 indicate increasing levels of
oxidative stress.

Blood gas analysis
Arterial blood sample for the analysis of gases during
room-air breathing was drawn with the patient in sitting
position, the day after polygraphy registration and within
one hour of waking up. PaO2, PaCO2 and pH were mea-
sured in a blood gas analyzer (Model 1312; Instrumenta-
tion Laboratory; Milan, Italy).



Table 1 Primers/probes used in the study

Gene accession number Primer/probe Sequence Product size (bp)

Human mithocondrial genome NC_012920 Mito F TTAAACACATCTCTGCCAAACC 150

Mito R AGATTAGTAGTATGGGAGTGGGA

Mito P AA CCC TAA CAC CAG CCT AAC CAG A

Human β2M accession number M17987 β2M F CTTTCTGGCTGGATTGGTATCT 100

β2M R CAGAATAGGCTGCTGTTCCTAC

β2M P AG TAG GAA GGG CTT GTT CCT GCT G

Table 2 General characteristics of population and results
of mitochondrial and nucluear DNA analysis

Patients (N = 46) Controls (N = 36)

Mean ±DS Mean ±DS p

General Characteristics

Males (%) 76 73 0.67

Age (years) 59.27 ± 11.38 54.42 ± 6.63 0.08

BMI (Kg/m2) 30.84 ± 3.64 29.06 ± 4.7 0.07

pH 7.40 ± 0.02 7.40 ± 0.01 0.60

PaO2 (mmHg) 80.78 ± 11.65 71.90 ± 18.00 0.13

PaCO2 (mmHg) 40.95 ± 4.45 40.42 ± 5.51 0.80

FVC (%) 104.89 ± 18.55 103.25 ± 14.05 0.37

FEV1 (%) 97.60 ± 25.02 96.58 ± 11.65 0.85

FEV1/FVC 75.37 ± 4.2 78.2 ± 6.1 0.30

Polygraphic Data

AHI (events/h) 36.63 ± 24.18 3.8 ± 1.10 <0,001

ODI (events /h) 28.51 ± 25.31 3,1 ± 1.00 <0,001

T90 (%) 16.98 ± 22.98 1,5 ± 0.31 <0,001

SaO2 Mean (%) 91.51 ± 5.65 95,1 ± 2.42 <0,001

ESS 11.35 ± 3.68 4.3 ± 2.15 < 0,001

Biological Data

MtDNA/nDNA 150.94 ± 49.14 128.96 ± 45.80 0.04

Ct MtDNA/nDNA 0.67 ± 0.02 0.69 ± 0.03 0.01

Log MtDNA 2.16 ± 0.14 2.08 ± 0.19 0.04

ROMs 329.71 ± 70.17 226.00 ± 36.76 0.04

Abbreviations: BMI Body Mass Index, AHI Apnea Hypopnea Index, ODI Oxygen
Desaturation Index, T90 Total time with SaO2 under 90%, ESS Epworth
Sleepiness Scale.
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Statistical analysis
Descriptive statistics (i.e., means, standard deviations,
percentages) were applied to summarize the continuous
and categorical variables. The relationship between two
continuous variables was determined by measuring the
Pearson’s correlation coefficient. All variables analyzed
were normally distributed so Student’s T-test was used
to compare the mean values. Multiple regression analysis
was also used to evaluate the influence of different factors
on MtDNA level. P value < 0,05 was considered significant.
Statistical Software (Statistica version 8.0, StatSoft, Inc.
2007, USA) was used to analyze the data.

Results
Among patients potentially eligible, 82 patients were en-
rolled according to the inclusion criteria and divided in
46 OSAS and 36 controls respectively. Table 2 shows
general characteristics of populations. Between control
subjects and OSAS group there are no differences of age
and BMI. The groups were also similar for gas exchange
and pulmonary function.
OSAS patients showed higher level of Mitochondrial

DNA/nuclear DNA ratio (150.94 ± 49.14 vs 128.96 ±
45.8; p = 0.04) and lower Ct (Threshold Cycle) (0.67 ±
0.02 vs 0.69 ± 0.03; p = 0.01) than the control group
(Figure 1). The level of ROMs was also higher in
OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04).
The level of MtDNA/nDNA was correlated with diur-
nal PaO2, FEV1% and ROMs (Table 3, Figure 2). Age,
body mass index (BMI) and the main sleep parameters
(AHI, ODI and T90) did not influence directly mito-
chondrial DNA. Multiple regression analysis including
PaO2, FEV1 and ROMs shows that only the levels of
ROMs were correlated with MtDNA/nDNA (R = 0.71;
Beta = 0.67; Stand. Err. = 0.15; t = 4.2; p < 0.01).

Discussion
The main finding of our study is that OSAS patients
have an alteration of MtDNA content and this seems to
be related with the increase of oxidative stress levels.
OSAS is a common condition characterized by intermit-
tent hypoxia (IH). IH acts as a trigger of oxidative stress,
systemic inflammation, and sympathetic activation. In turn,
an increased oxidative stress will lead to activation of
nuclear factor (NF)-κB, and hence increased expression
of a number of downstream NF-κB target genes, for ex-
ample proinflammatory cytokines (TNF-α, IL-6, and
IL-8) as well as intercellular adhesion molecules and
others basic biomarkers of inflammatory status such as
C-Reactive Proteine (CRP) or Fibrinogen [10-12]. On
the other hand in vitro studies it was well documented
[13] that IH can also induce mitochondrial alterations
and MtDNA injuries. So, we can speculate also that the
presence of ischemia-reperfusion injury in sleep apnoea
could induce a mitochondrial damage and an alteration
of MtDNA.



Figure 1 Differences between ratio mitochondrial/nuclear DNA in OSAS subjects and in control group. (□ median with range, CI 25-75%,
p = 0.04).
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The human mitochondrial genome is particularly
susceptible to alterations because mithocondria have
few repair mechanisms so, an increased oxidative
stress could be very deleterious to it [14]. Different
methods to study MtDNA are available, however re-
cent studies suggest that the measure of content of
MtDNA estimated by the mitochondrial to nuclear
genome ratio (Mt/N) is a simple way to evaluate the
presence of mitochondrial dysfunctions. The number
of mitochondria in a particular cell type can vary de-
pending on many factors, including the stage of cell
cycle, environment and redox balance of the cell, stage
of differentiation, and a different cell signaling mecha-
nisms [15]. Individual mitochondria can contain sev-
eral copies of the mitochondrial genome [16]. A
decrease in the number of MtDNA copies has been as-
sociated with renal cell carcinoma and breast cancer
while, by contrast, an increased MtDNA copy number
was observed in esophageal squamous cell carcinoma
and other chronic inflammatory diseases [17].
Table 3 Correlation between each variable (R)

PaO2 MtDNA/nDNA ROMs

BMI −0.37 0.23 0.13

PaO2 −0.32 −0.19

FEV1% 0.24 −0.30 −0.02

AHI −0.38 0.007 −0.20

T90n −0.59 0.11 0.14

ODI −0.46 0.13 0.005

ROMs 0.5

In bold the results which were significant (p < 0.05) in OSAS.
The presence of oxidative stress seems to be the main
cause of change in MtDNA copy number. Mitochondria
are the major site of reactive oxygen species (ROS) gen-
eration, produced during the ATP production by elec-
tron leakage that occurs in the mitochondrial electron
transport chain [18]. As well as in energy production,
mitochondria are also involved in the regulation of nu-
merous other cellular functions including cell prolifera-
tion, apoptosis, and intracellular calcium homeostasis
[7]. Several studies have shown how these disorders are
related to a condition of oxidative stress [7].
Oxidative stress is the result of a disorder of the redox

balance of the cell, resulting in excessive oxidation of
intracellular proteins. Oxidation and reduction of pro-
teins are a major signalling mechanism of intracellular
control and are usually mediated via sulfhydril groups of
cysteines in proteins and can affect almost all cellular
processes including protein folding, protein activity,
and numerous biochemical pathways [19]. Therefore,
an alteration of cells redox balance can have major im-
plications on cell signaling, resulting in cell alterations
that could impair the normal function and lead to
disease [20].
It is known that chronic oxidative stress can cause

damage to proteins, lipids and DNA molecules within
the cell and it is considered to play a role in many
common diseases such as diabetes and its complica-
tions, cancer [21], neurodegenerative disorders [22]
and OSAS [23].
In the same way, oxidative stress induces mitochon-

drial dysfunctions even if its molecular mechanisms are
not well understood. Multiple pathways may converge in



Figure 2 Correlation between ratio mitochondrial/nuclear DNA and level of ROMs in OSAS patients: R = 0.5, p < 0.01. (Dashed lines
rappresent CI 95%).
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mitochondria to modify respiratory chain activity. More-
over, recent studies indicate that the production of ROS
may be accompanied by changes in mitochondrial metabol-
ism [24]. In these damaged mitochondria the electron
transport chain may be blocked, resulting in accumulation
of excess of free radicals [25]. As mitochondrial DNA is
located close to the source of ROS production, the DNA
itself can become damaged resulting in an accumulation of
deletions and mutations [26]. An accumulation of such
damaged MtDNA in the cell may result in a chronic innate
inflammatory response.
We know that reactive oxidative stress (ROS) is in-

creased in OSAS [27] and cyclic changes in arterial
oxygen saturation are the main responsible of ROS pro-
duction [28]. During ischemia, ROS production starts to
increase and after few minute of reperfusion there is a
peak of oxidative stress [29].
Mitochondrial components and mitochondrial mem-

brane are highly susceptible to be attacked by reactive
oxygen species (ROS) [30], in fact in conditions of oxida-
tive stress there is the opening of mitochondrial perme-
ability transition pore, cytochrome C releasing, and
mitochondrial apoptosis [31]. In case of acute IH the
endogenous anti-oxidant molecules can contrast dele-
terious effects of ROS, but in OSAS patients the pres-
ence of a persistent IH maintains high level of ROS in
the cell which leads, to mitochondria dysfunction and
MtDNA alteration and others dangerous effects.
Sleep fragmentation could be another possible mechan-

ism that can induce an alteration of mitochondrial function.
In fact, it is well known that sleep deprivation can lead to
an imbalance between sympathetic and parasympathetic
system with many consequences, in particular on cardio-
vascular system (higher blood pressure levels, increased risk
of arrhythmia and stroke) and on some metabolic diseases
such as obesity and diabetes. It was demonstrated that sleep
fragmentation can induce a pro-inflammatory status with
an increase of IL-6 and TNF-alfa and it also activates an
adaptive stress pathway which has deleterious consequence
of reactive oxygen species [32]. Thus, we can suppose that
sleep deprivation can induce mitochondrial damage by the
same mechanism.
Because mitochondria are involved in several funda-

mental cellular processes, their dysfunction can affect a
range of important cellular functions and can lead to a
variety of diseases [15]. The role of mitochondrial dys-
function in numerous diseases is well documented [9].
Studies looking specifically at alterations in MtDNA
content in various cell types cover a broad range of
human diseases, such as diabetes and its complications
[33], obesity [34], cancer [35-38], cardiovascular diseases
[39], COPD [40] and others. So, the presence of mito-
chondrial dysfunctions in OSAS subjects could be not
only a simple consequence of IH but also one of the
mechanisms which contribute to increase other diseases
frequently associated with OSAS such as cardiovascular,
metabolic and inflammatory diseases.

Study limitations
There are some limitations in this study. First, a complete
Polysomongraphy was not performed so we have no infor-
mation about sleep fragmentation and how it could have
influenced the oxidative stress and mtDNA alterations.
Second, there is not a clear consensus about this method
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because any standard values of Mt/N are available up today.
Finally, MtDNA content changes in different cells types, so
tissues MtDNA could be differently influenced by IH com-
pared to blood cells. Thus, even if the results of present
study are encouraging, it is early to affirm with certainty
that there is a direct link between OSAS and MtDNA
damage. In fact the limited number of subjects involved in
the study and the relative low level of correlation coefficient
among all variables considered (almost 0.5) although
statically significant maybe are not enough to give a defini-
tive answer about our hypothesis. Others variables such as
obesity, drugs, years of OSAS history could be involved and
needs to be excluded in the further study. Anyway we
would underline that this is a pilot study in this field and
our hypothesis should be confirmed by others studies.

Conclusion
Our results suggest that in OSAS subjects the transcrip-
tional and replication machinery of mitochondrial bio-
genesis will be up-regulated resulting in an increased
mitochondrial biogenesis via replication of the mito-
chondrial genome and this change could be detected in
body fluids. The conditions of oxidative stress due to
repetitive episodes of ischemia-reperfusion are likely the
main way to induce these dysfunctions. From our point of
view this research field could open interesting sceneries to
better understand the pathophysiology of diseases linked to
OSAS as well as in others respiratory diseases in which
oxidative stress is always involved such as COPD or
pulmonary interstitial lung disease.
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