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Abstract: The deregulation of energetic and cellular metabolism is a signature of cancer cells. Thus,
drugs targeting cancer cell metabolism may have promising therapeutic potential. Previous reports
demonstrate that the widely used normoglycemic agent, metformin, can decrease the risk of cancer
in type 2 diabetics and inhibit cell growth in various cancers, including pancreatic, colon, prostate,
ovarian, and breast cancer. While metformin is a known adenosine monophosphate-activated protein
kinase (AMPK) agonist and an inhibitor of the electron transport chain complex I, its mechanism
of action in cancer cells as well as its effect on cancer metabolism is not clearly established. In
this review, we will give an update on the role of metformin as an antitumoral agent and detail
relevant evidence on the potential use and mechanisms of action of metformin in cancer. Analyzing
antitumoral, signaling, and metabolic impacts of metformin on cancer cells may provide promising
new therapeutic strategies in oncology.
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1. Introduction

The history of the biguanide, metformin (molecular formula C4-H11-N5, Table 1), is
linked to Galega officinalis and is also known as French lilac or Italian fitch. The Galega
officinalis represents a traditional herbal medicine that was found to lower blood glucose
in 1918 [1]. Guanidine derivatives were used to treat diabetes mellitus (DM) in the 1920s
and 1930s but with the availability of insulin were discontinued due to their toxicity [2].
During World War II and throughout the search for antimalarial agents, metformin was
re-discovered and determined to lower blood glucose levels [3,4]. The French physician-
scientist Jean Sterne was the first to report the use of metformin to treat DM in 1957 and
named the compound Glucophage, which means glucose eater [5]. Since its introduction,
metformin has become the most prescribed glucose-lowering drug worldwide [2].

In 1998, the UK Prospective Diabetes Study (UKPDS), a prospective randomized trial
of 5100 type 2 DM patients who received glucose-lowering treatment for more than a
decade showed reduced cancer risk [6]. Subsequent large database analyses have reported
lower incidence of certain types of cancer among diabetic populations taking metformin de-
spite data indicating that these diabetic populations were overall more prone to developing
cancer. This has led to a deeper investigation into the role of metformin in cancer [7,8]. Here,
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we review five years of updated literature on metformin’s antineoplastic activity, its mecha-
nisms of action, as well as current limitations and future directions for the repurposing of
metformin in the treatment of cancer.

Table 1. Metformin’s biometric information.

Characteristics Metformin
Structural name 3-(diaminomethylidene)-1,1-dimethylguanidine

Structure
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Treatment Result 

Other Com-
ments 
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Solid  

Tumors 

[38] Phase Ib 

Variety of advanced 
solid tumors refrac-

tory to standard 
therapies 

9 

Everolimus + 
metformin (n = 
9; metformin 
500 mg twice 

daily) 

Combination 
therapy was 
poorly toler-

ated 

Open-label, pro-
spective, single-
center, dose-es-
calation study, 

The Netherlands 

[39]  -- 

Variety of advanced 
solid tumors (meta-

static or unresec-
table) 

24 

Sirolimus + 
metformin (n = 

11; mainte-
nance on 1000 
mg once daily) 

vs. 
sirolimus (n = 

13) 

Combination 
therapy did 
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tion 
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Formula C4-H11-N5

Molecular weight 129.16 g/mol

Density 1.3 g/cm3

Melting point 223–226 ◦C

Boiling point 224.1 ◦C at 760 mmHg

Color White

CAS number 657-24-9

PubChem Substance ID 4091

2. Metformin in Cancer

To date, there are over 50 recent or active clinical trials investigating the use of met-
formin in human malignancies (Table 2). Total daily dose of oral metformin in these clinical
trials ranges from 500 to 3000 mg. This range reflects the previously established dosing
strategy used to treat patients with type 2 DM, with gastrointestinal (GI) toxicity limiting
use beyond 2500 mg per day [9]. In future clinical trials, we suggest aiming to achieve
the maximum tolerated dose of 2500 mg per day given the majority of preclinical studies
required high concentrations of metformin to achieve anti-cancer activity [10]. Furthermore,
we recommend planned dose escalation to allow for GI habituation as well as allowance of
dose interruptions and reductions for drug toxicity to reflect real-world practices.

Table 2. Recent clinical trials investigating oral metformin use in cancers [11–48]. N/A: not applicable.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

Various Solid
Tumors

[38] Phase Ib

Variety of
advanced solid
tumors
refractory to
standard
therapies

9

Everolimus +
metformin
(n = 9;
metformin
500 mg twice
daily)

Combination
therapy was
poorly
tolerated

Open-label,
prospective,
single-center,
dose-
escalation
study, The
Netherlands

[39] –

Variety of
advanced solid
tumors
(metastatic or
unresectable)

24

Sirolimus +
metformin
(n = 11;
maintenance
on 1000 mg
once daily)
vs.
sirolimus
(n = 13)

Combination
therapy did
not improve
mTOR
inhibition

Open-label,
randomized
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

[40] NCT01442870
Phase I

Variety of solid
tumors
(nondiabetic,
histologically
confirmed
solid tumors
receiving
adjuvant or
systemic
chemotherapy)

100

Concurrent
chemother-
apy +
metformin
(n = 49;
500 mg twice
daily) vs.
delayed
chemother-
apy +
metformin
(n = 51;
500 mg twice
daily)

Metformin is
safe to use in
combination
with a wide
range of
chemother-
apy
regimens

Delayed-start,
randomized

[41] NCT02496741
Phase Ib

IDH1-mutated
solid tumors
including chon-
drosarcoma
(refractory
grade II-III),
glioma (WHO
grade II-IV),
and
intrahepatic
cholangiocarci-
noma

17

Chloroquine
+ metformin
(n = 17;
maximum of
1500 mg
twice daily)

Combination
treatment
with
chloroquine
and
metformin
did not
induce
clinical
response

Prospective,
open-label,
dose-
escalation, The
Netherlands

N/A NCT04945148
Phase II

Glioblastoma,
IDH-wildtype 640

Metformin
(1500–3000 mg
daily) plus
radiation and
temozolo-
mide

No results
available

Open-label,
prospective,
single-center,
France

Glioma

N/A NCT02149459
Phase I

Brain
neoplasms 18

Metformin
(dose not
specified),
radiation,
and low
carbohydrate
diet

No results
available

Open-label,
prospective,
single-center,
Israel

N/A NCT02780024
Phase II Glioblastoma 50

Metformin
(dose not
specified)
and
neoadjuvant
temozolo-
mide
followed by
combined
radiation and
temozolo-
mide

No results
available

Open-label,
prospective,
single-center,
Canada

N/A NCT03243851
Phase II

Recurrent or
refractory
glioblastoma

81

Metformin
(ramp up to
2000 mg
daily) and
low dose
temozolo-
mide

No results
available

Open-label,
prospective,
single-center,
South Korea
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

N/A NCT03151772
Phase I Glioblastoma 3

Metformin
(850 mg
daily) and
disulfiram
for 3 days
preopera-
tively

No results
available,
study was
terminated
for low
enrollment

Open-label,
prospective,
single-center,
Sweden

N/A NCT04691960
Phase II Glioblastoma 36

Metformin
(ramp up to
850 mg three
times daily)
and
ketogenic
diet

No results
available

Open-label,
prospective,
single-center,
US

N/A NCT05183204
Phase II Glioblastoma 33

Metformin
(ramp up to
850 mg three
times daily as
tolerated),
ketogenic
diet and
Paxalisib|

No results
available

Open-label,
prospective,
single-center,
US

N/A NCT01430351
Phase I

Glioblastoma
and
gliosarcoma

144

Metformin
(dose not
specified),
mefloquine,
memantine,
hydrochlo-
ride,
hydrochlo-
ride, and
temozolo-
mide

No results
available

Open-label,
prospective,
single-center,
US

Bladder
Tumors [26] NCT03379909

Phase II

Non-muscle-
invasive
bladder cancer
(intermediate-
risk)

49 (target)

Metformin
(maximum of
3000 mg
daily)

Ongoing Multicenter,
open-label
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

Breast
Tumors

[16] NCT00490139
Phase III

HER2-positive
primary breast
cancer

8381

Substudy
analysis of
diabetic
study
participants
on/off
metformin
therapy (dose
not specified;
all patients
previously
taking for
DM) in
patients
receiving
relevant
anti-HER2
therapies,
described
elsewhere

Diabetic
patients with
HER2-
positive
breast cancer
demon-
strated better
outcomes
when treated
with
metformin
compared to
diabetic
breast cancer
patients not
on
metformin,
whereas
outcomes of
patients with
HR-negative
status were
not affected
by diabetes
treatment
status

Randomized,
adjuvant trial

[11] NCT01654185
Phase II

Hormone
receptor
positive locally
advanced or
metastatic
breast cancer

60

Aromatase
inhibitor
(exemestane
or letrozole) +
metformin
(n = 30;
maintenance
on 500 mg
daily) vs.
aromatase
inhibitor
(exemestane
or letrozole) +
placebo
(n = 30)

No improved
efficacy was
observed in
the addition
of metformin
to aromatase
inhibitor
treatment

Randomized,
China

[42] NCT01266486
Phase I

Treatment-
naïve primary
breast cancer

40

Metformin
(n = 40;
maintenance
on 1500 mg
daily)

Metformin
treatment
precipitated
two distinct
metabolic
responses in
tumors

Window study
design, UK

[14] NCT01310231
Phase II

Metastatic
breast cancer
(nondiabetic)

40

Chemotherapy
+ metformin
(n = 22;
maintenance
on 850 mg
daily) vs.
chemotherapy
+ placebo
(n = 18)

Combined
chemother-
apy with
metformin
had no
demon-
strated effect
on PFS, OS,
or RR

Randomized,
double-blind,
Canada
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

[12] NCT01885013
Phase II

Metastatic
breast cancer
(HER2-
negative,
nondiabetic)

122

Chemotherapy
(doxorubicin
+ cyclophos-
phamide) +
metformin
(n = 57;
maintenance
on 2000 mg
daily) vs.
chemotherapy
(doxorubicin
+ cyclophos-
phamide)
(n = 65)

The addition
of metformin
did not
provide a
meaningful
clinical
benefit to PFS
or OS but
was found to
decrease the
incidence of
severe
neutropenia

Open-label,
multicenter,
randomized

[13] NCT01650506
Phase I

Metastatic
triple negative
breast cancer
who had
received at
least one prior
therapy

8

Erlotinib +
metformin
(n = 8;
maximum
dose was 850
mg thrice
daily)

Combination
therapy was
well-
tolerated but
did not result
in objective
tumor
response

USA

[15] IRCT2010070
6004329N7

Breast
fibroadenoma
(nondiabetic)

175

Metformin
(n = 83;
maximum
dose was
1000 mg
daily) vs.
placebo
(n = 92)

The effect of
metformin is
most obvious
in smaller
masses and
appears to
have a
favorable
effect
compared to
placebo in
terms of
reducing
chances of
significant
enlargement
of tumors

Iran

[17] NCT01627067
Phase II

Metastatic,
hormone
receptor-
positive,
HER2-negative
breast cancer
(obese or
overweight,
post-
menopausal)

22

Everolimus +
exemestane +
metformin
(n = 22; 1000
mg twice
daily)

This
treatment
combination
had
moderate
clinical
benefit

USA
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

Colorectal
Tumors

[24] – Stage II-III
colon cancer

120 out of
total 3759
enrolled in
TOSCA

Goal of
original
TOSCA
study was to
compare 3-
vs. 6-month
treatment
with
fluoropyrimidine-
oxaliplatin
adjuvant
chemother-
apy
(post-
resection)

�
Metformin
users
(n = 76;
dose
not
speci-
fied)

�
Metformin
nonusers
(n = 44)

Neither
metformin
use, nor DM,
nor
metformin
dosage were
associated
with OR/RFS

Subanalysis

[23] NCT01312467
Phase IIa

Nondiabetic,
obese patients
with recent
history of
colorectal
adenoma

32

Metformin
(n = 32;
maintenance
on 1000 mg
twice daily)

Metformin
intervention
did not
reduce rectal
mucosa pS6
(marker of
polyp
suppression)
or Ki-67
(marker of
proliferation)
levels

USA

[25] Phase II Refractory
colon cancer 41

Irinotecan +
metformin
(n = 41;
maintenance
on 2500 mg
daily)

Irinotecan/
metformin
was able to
provide
disease
control, with
diarrhea as a
significant
side effect

Single-center
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

Lung Tumors

[18] NCT01864681
Phase II

Non-small cell
lung cancer
(locally
advanced,
stage IIIb-IV,
EGFR mutated,
treatment-
naïve,
nondiabetic)

224

Gefitinib +
metformin
(n = 100;
maintenance
on 1000 mg
twice daily)
vs.
gefitinib +
placebo
(n = 100)

Combination
treatment
resulted in
non-
significantly
worse
outcomes
and was
accompanied
by more side
effects
(diarrhea)

Multicenter,
double-blind,
China

[22] NCT01578551
Phase II

Chemo-naïve
or metastatic
nonsquamous
NSCLC (stage
IIIB or IV;
nondiabetic)

25

Carboplatin +
paclitaxel +
bevacizumab
+ metformin
(n = 19; 1000
mg twice
daily) vs.
carboplatin +
paclitaxel +
bevacizumab
(n = 6)

The
metformin
combination
treatment
group
experienced
increased PF

Single center,
open-label,
USA

[19] NCT03071705
Phase II

Lung adenocar-
cinoma
(EGFR-
mutated, stage
IIIb-IV)

139

EGFR-TKI
(erlotinib,
afatinib, or
gefitinib) +
metformin
(n = 69; 500
mg twice
daily) vs.
EGFR-TKI
(erlotinib,
afatinib, or
gefitinib)
(n = 70)

The addition
of metformin
to EGFR-TKI
standard
therapy
significantly
improved
PFS and OS
in advanced
lung adeno-
carcinoma
patients

Randomized,
open-label,
prospective,
Mexico

[20] NCT02186847
Phase II

NSCLC
(unresectable,
stage III;
nondiabetic)

167

Chemoradiation
+ metformin
(n = 86;
maintained
on 2000 mg
daily) vs.
chemoradia-
tion
(n = 81)

There was no
survival
benefit
associated
with
metformin
addition to
traditional
chemoradia-
tion
therapy

Randomized,
open-label,
multicenter,
international
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

[21] NCT02115464
Phase II

Locally
advanced
NSCLC
(nondiabetic)

54

Chemoradiation
(platinum-
based) +
metformin
(n = 26;
maintained
on 2000 mg
daily) vs.
chemoradia-
tion
(platinum-
based)
(n = 28)

Trial was
stopped early
due to low
accrual; the
addition of
metformin to
chemoradio-
therapy was
associated
with a worse
treatment
outcome and
increased
toxicity

Randomized,
open-label,
multicenter,
Canada

Ovarian
Tumors

[27] ChiCTR-IOR-
17011859

Epithelial
ovarian cancer
(nondiabetic)

47

Debulking +
paclitaxel/
carboplatin +
metformin
(n = 20; 850
mg daily)
Debulking +
paclitaxel/
carboplatin
(n = 24)

There was no
evidence of
metformin
effect on PFS

China

[29] NCT02312661
Phase I

Advanced
epithelial
ovarian cancer
(FIGO III-IV)

15

Paclitaxel/
carboplatin +
metformin
(n = 15;
maximum
dose of 1000
mg thrice
daily)

The recom-
mended
phase II dose
is 1000 mg
thrice daily
and there is a
potential
pharmacoki-
netic
interaction
between
metformin
and
carboplatin,
though the
combination
is well-
tolerated

Dose escalation
study, the
Netherlands
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

[28] NCT01579812
Phase II

Advanced-
stage
(IIC/III/IV)
epithelial
ovarian cancer
(nondiabetic)

38 evaluable

Neoadjuvant
metformin +
debulking
surgery +
adjuvant
chemother-
apy plus
metformin
(n = 23;
maintenance
on 1000 mg
twice daily)
vs.
neoadjuvant
chemother-
apy and
metformin +
interval
debulking
surgery +
adjuvant
chemother-
apy plus
metformin
(n = 15)

Addition of
metformin is
associated
with better
OS and a
significant
cancer stem
cell
population
reduction

USA

Prostate
Tumors

[43]
EudraCT
number 2014–
005193-11

Prostate cancer
(newly
diagnosed,
localized,
scheduled for
radical
prostatectomy)

100

Metformin
(n = 50;
maintenance
on 1000 mg
twice daily)
vs.
placebo
(n = 50)

Ongoing

Randomized,
placebo-
controlled,
double-blind,
window of
opportunity,
UK

[30] NCT01677897
Phase II

Prostate cancer
(metastatic,
castration-
resistant, with
PSA
progression
while on
abiraterone
therapy)

25

Abiraterone +
metformin
(n = 25; 1000
mg twice
daily)

Combination
therapy
resulted in no
clinical
benefit and
did not affect
progression;
higher-than-
expected
gastrointesti-
nal toxicity
was also
reported

Pilot study,
Switzerland

[31] NCT01796028
Phase II

Prostate cancer
(metastatic,
castration-
resistant,
nondiabetic)

99

Docetaxel +
metformin
(n = 50; 850
mg twice
daily) vs.
docetaxel +
placebo
(n = 49)

No improve-
ment was
observed in
metformin
group vs.
placebo

French,
prospective,
multicenter,
randomized,
placebo-
controlled
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

[32] NCT02614859
Phase II

Prostate cancer
(nondiabetic,
recurrent PC,
overweight or
obese with BMI
> 25)

29

Bicalutamide
+ metformin
(n = 20;
1000 mg
twice daily)
vs.
bicalutamide
(n = 9)

This study
was ended
early due to
predicted
inability to
reach its
primary
endpoint
(achievement
of
undetectable
PSA at 32
weeks)

Randomized,
open-label,
USA

Skin Tumors

[44] NCT02325401 HNSCC 39

Metformin
(n = 39;
maintenance
on 2000 mg
daily)

Metformin is
capable of
modulating
the HNSCC
microenvi-
ronment

Window of
opportunity
(post-biopsy,
pre-resection)

[33] NCT01840007
Phase I

Metastatic
melanoma
(patients who
progressed
after first-line
treatment and
were not
eligible or did
not respond to
ipilimumab)

17

Metformin
(n = 17; 1000
mg thrice
daily)

Metformin
shows no
efficacy and
poor safety in
treating
metastatic
melanoma

Multicenter,
pilot,
prospective,
open-label,
France

[45] NCT02083692 HNSCC
(nondiabetics) 50

Metformin
(n = 49;
maintenance
on 1000 mg
twice daily)

Metformin
treatment
alters the
immune
tumor
microenvi-
ronment,
regardless of
HPV status

Non-
randomized

[46] NCT02325401
Phase I

Locally
advanced
HNSCC
(nondiabetic,
stage III-IV)

20

Cisplatin +
radiotherapy
+ metformin
(n = 20;
maximum
dose was
3000 mg
daily)

Cisplatin did
not appear to
affect
metformin
pharmacoki-
netics

USA

[47] NCT02581137
Phase IIa

Oral
premalignant
lesions
(nondiabetic)

26

Metformin
(n = 26;
maintenance
on 2000 mg
daily)

Metformin
treatment
was
associated
with good
histological
response and
decreased
mTOR
activity

Open-label
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

[48] NCT02083692 HNSCC 50

Metformin
(n = 39
completed;
maintenance
on 1000 mg
twice daily)

Metformin
treatment
alters the
immune
tumor
microenvi-
ronment and
results in
increased
apoptosis in
HPV-,
tobacco+
HNSCC
patients
compared to
HPV+
HNSCC
patients

USA

Uterine
Tumors

[34] Phase III

Endometrioid
endometrial
cancer or
atypical
endometrial
hyperplasia
(pre-surgery)

88

Metformin
(n = 45;
maintenance
on 850 mg
twice daily)
vs.
placebo
(n = 43)

Pre-surgical
treatment
with
metformin
does not
reduce tumor
proliferation

Multicenter,
randomized,
double-blind,
pre-surgical
window study
design, UK

[36] NCTO1877564

Endometrial
cancer
(nondiabetic,
obese,
pre-surgery)

13

Metformin
(maintenance
at 850 mg
twice daily)

Pre-surgical
treatment
with
metformin
alters steroid
receptor
signaling of
EC cells

Window
design

[37] jRCT2031190065 Endometrial
cancer 120 (target)

Medroxyproge-
sterone
acetate vs.
medroxyproge-
sterone
acetate +
metformin
(750 mg
daily) vs.
medroxypro-
gesterone
acetate +
metformin
(1500 mg
daily)

Ongoing

Prospective,
randomized,
open, blinded-
endpoint,
dose–response,
multicenter,
Japan

[35] NCT03618472
Endometrial
cancer
(nondiabetic)

49

Metformin
(n = 25; 850
mg daily) vs.
placebo
(n = 24)

Pre-surgical
metformin
treatment
significantly
decreased
proliferative
tissue marker
Ki-67

Randomized,
double-blind,
placebo-
controlled,
Thailand
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Table 2. Cont.

Tumor
Location

Trial
Reference

ID/
Phase

Tumor/Patient
Characteristics

Number of
Participants Treatment Result Other

Comments

Leukemia
N/A NCT01324180

Phase I

Relapsed acute
lymphoblastic
leukemia

14

Metformin
(twice daily
in dose
escalation
schema) in
combination
with
vincristine,
dexametha-
sone,
PEG-
asparaginase,
doxorubicin,
and
intrathecal
cytarabine

Completed

Single group
assignment,
interventional,
dose-
escalating,
open-label

N/A NCT01849276
Phase I

Relapsed/
refractory
acute myeloid
leukemia

2

Metformin
(twice daily
in dose
escalation
schema on
days 1–15) +
intravenous
cytarabine

Terminated
(due to slow
accrual)

Single group
assignment,
interventional,
open-label

Lymphoma N/A NCT03200015
Phase II

Diffuse large
B-cell
lymphoma
(DLBCL)

15

Metformin
(ramp up to
850 mg thrice
daily) +
rituximab,
cyclophos-
phamide,
doxorubicin,
vincristine,
prednisone

Unknown

Single group
assignment,
interventional,
open-label

N/A NCT02531308
Phase II DLBCL 5

Metformin
(ramp up to
850 mg twice
daily) +
rituximab,
cyclophos-
phamide,
doxorubicin,
vincristine,
prednisone,
pegfilgrastim

Terminated
(slow
accrual)

Single group
assignment,
interventional,
open-label

Myeloma N/A NCT03829020
Phase I

Recurrent
plasma cell
myeloma and
refractory
plasma cell
myeloma

36

Metformin
(dose
escalation
schema) +
bortezomib,
nelfinavir

Recruiting
Single group
assignment,
interventional

N/A NCT02948283
Phase I

Recurrent
plasma cell
myeloma and
refractory
plasma cell
myeloma

3

Metformin
(twice daily
in dose
escalation
schema) +
ritonavir

Completed
Single group
assignment,
interventional
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2.1. Glioma

While there remains a lack of high-level evidence describing the specific role of met-
formin in patients with brain tumors, available literature has reported several advantages
of repurposing metformin to be used in the management of glioma. Systemically adminis-
tered drugs must be able to cross the blood–brain barrier (BBB) to effectively treat brain
tumors. Using a rat model, orally administered metformin was found to penetrate the BBB
at a high rate with biodistribution throughout the central nervous system [49]. Furthermore,
metformin reduces vasogenic brain edema and the neurological symptoms that accompany
brain tumors [50]. There has also been recent effort to characterize the subpopulations of
glioma patients that would benefit most from metformin. A recent retrospective study
of 1093 patients with high-grade glioma from a population-based clinical cancer registry
in Germany reported a survival benefit from metformin in patients with World Health
Organization (WHO) grade III glioma [51]. The benefit in WHO grade III glioma is at-
tributed to the high frequency of isocitrate dehydrogenase (IDH) mutations, which can
increase the vulnerability of tumor cells to therapeutic interventions targeting glutamine
and mitochondrial metabolism [52].

2.2. Breast Cancer

Despite promising preclinical studies demonstrating the synergistic effects of met-
formin and breast cancer chemotherapeutics [53], several clinical trials investigating the
addition of metformin to traditional treatment regimens did not result in improved efficacy.
Negative results were seen with trials using metformin and aromatase inhibitors in hormone
receptor (HR)-positive breast cancer [11], metformin/doxorubicin/cyclophosphamide in
human epidermal growth factor receptor 2 (HER2)-negative breast cancer [12], and met-
formin and erlotinib in patients with metastatic triple negative breast cancer [13]. An-
other trial of nondiabetic patients receiving several different chemotherapeutic agents for
metastatic breast cancer found that the addition of metformin had no effect on progression
free survival (PFS) or overall survival (OS) [14]. However, there have been some posi-
tive results using metformin to treat breast tumors. Metformin monotherapy has been
found to reduce the likelihood of significant tumor enlargement in women with breast
fibroadenomas [15]. Interestingly, subanalysis of a trial featuring HER2-positive breast
cancer patients revealed that metformin-treated DM participants had better prognoses
compared to patients not treated with metformin, whereas the outcomes of patients with
HR-negative cancers were not affected by DM status [16]. Furthermore, combined therapy
with everolimus, exemestane, and metformin provided moderate clinical benefit in over-
weight and obese patients with metastatic, HR-positive, HER2-negative breast cancer [17].

2.3. Lung Cancer

The use of metformin in non-small cell lung cancer (NSCLC) is the focus of many
conflicting clinical trial results. Based on preclinical studies indicating that metformin can
sensitize lung cancer cells to tyrosine kinase inhibitors (TKIs), a combination of gefitinib, a
TKI-targeting mutant epidermal growth factor receptor (EGFR), and metformin was tested
in nondiabetic NSCLC patients. However, co-treatment resulted in non-significantly worse
outcomes for NSCLC patients in terms of PFS and OS [18,54]. In contrast, a trial comparing
EGFR-TKI combination treatment with metformin versus EGFR-TKI monotherapy in
advanced NSCLC found that there was a significant survival benefit to the addition of
metformin [19]. It is possible that the synergistic effect of metformin and EGFR-TKIs
is only observable in patients with higher body mass index (BMI), thereby resulting in
conflicting phase II trial results [55]. These mixed results extend beyond that of EGFR-TKI
combination therapies. Two studies examining the impact of combining metformin with
chemoradiation found that metformin resulted in either no survival benefit [20] or worse
outcomes, potentially due to drug–drug interactions [21]. Others have reported PFS and/or
survival benefits in diabetic NSCLC patients treated with metformin in combination with
chemotherapy [22,56,57]. A recent meta-analysis concluded that more randomized clinical
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trials, particularly those incorporating time-dependent analyses in nondiabetic patients,
are necessary to determine the association between metformin and OS in NSCLC [58].

2.4. Colorectal Cancer

Clinical use of metformin to suppress polyp formation and proliferation in the rectal
mucosa of nondiabetic, obese patients with a history of colorectal adenoma has been
unsuccessful to date [23]. Furthermore, a subanalysis from the large scale Three or Six
Colon Adjuvant (TOSCA) trial found that neither metformin use nor DM status were
associated with survival outcomes in colorectal patients receiving adjuvant chemotherapy
post-resection [24]. Despite these negative findings, a recent study suggests the potential use
of metformin alongside irinotecan for disease control in refractory colorectal patients [25].

2.5. Esophageal Cancers

Metformin dosing below the anti-cancer threshold may still activate the tumor immune
microenvironment in animal models and patients with esophageal squamous cell carci-
noma [59], which in turn may be beneficial for priming patients for subsequent immune
checkpoint inhibitor treatment.

2.6. Kidney Cancer

Retrospective analysis of clinical trials involving metastatic renal cell carcinoma
(mRCC) patients found that the addition of metformin to the TKI, sunitinib, in DM patients
was associated with an improved OS compared to use of other diabetic agents [60]. Another
retrospective study found that, regardless of diabetic status, the addition of metformin to
sunitinib or an alternative TKI, pazopanib, in mRCC patients resulted in a PFS and OS
benefit [61].

2.7. Liver Cancer

A large, retrospective study comparing diabetic patients receiving sulfonylureas versus
metformin revealed a strong inverse correlation between metformin use and incidence
of hepatocellular carcinoma (HCC) (56% risk reduction), indicating the potential use of
metformin as a preventative agent for liver cancer. No association was observed for several
other solid tumors after adjusting for BMI and level of glycemic control [62]. Metformin
treatment may enhance the benefit of certain interventions, as was demonstrated in a
retrospective analysis of patients undergoing Yttrium-90 radioembolization segmentectomy
for non-resectable HCC [63]. However, metformin use does not appear to affect HCC
recurrence in diabetic patients following initial resection [64].

2.8. Bladder Cancer

A retrospective analysis of diabetic patients with Bacillus Calmette–Guerin (BCG)-
treated, non-muscle-invasive bladder cancer (NMIBC) found that metformin use was
associated with increased disease-specific survival and OS [65]. Exploiting the fact that
metformin accumulates in the urine prior to excretion, an ongoing trial is testing oral
metformin treatment in patients with NMIBC [26]. The high upper limit on metformin
dosing in this study (3000 mg daily) may allow for observation of tumor effects not seen in
studies using lower doses.

2.9. Ovarian Cancer

The effect of metformin on epithelial ovarian cancer (EOC) patient outcomes is am-
biguous. A clinical trial in China found that addition of metformin to the traditional therapy
for EOC had no impact on PFS [27]. However, a US trial in nondiabetic EOC patients found
that neoadjuvant metformin treatment resulted in better-than-expected OS as well as a
significant reduction in cancer stem cells [28]. A recent dose escalation study demonstrated
that the combination of metformin and paclitaxel/carboplatin is well-tolerated [29].
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2.10. Pancreatic Cancer

A meta-analysis of 21 studies found that metformin treatment was associated with a
survival benefit in patients with concurrent DM and pancreatic cancer (PC), specifically
for patients at early and intermediate PC disease stages [66], suggesting its potential as an
adjuvant chemotherapeutic.

2.11. Prostate Cancer

Clinical studies in metastatic, castration-resistant prostate cancer patients show that
the addition of metformin is not able to rescue resistance to anti-androgen agent, abi-
raterone [30], nor is it able to improve survival or response outcomes when combined with
a chemotherapy agent, docetaxel [31]. A recent trial combining metformin with a different
anti-androgen agent, bicalutamide, in overweight and obese prostate cancer patients found
that this paired treatment had no effect on PSA levels compared to bicalutamide alone [32].

2.12. Skin Cancer

In the treatment of metastatic melanoma, neither metformin monotherapy [33] nor
combination with immune checkpoint inhibitors (anti-PD-1 and anti-PD-1/anti-CTLA-
4) [67] has been shown to improve patient outcomes.

2.13. Uterine Cancer

Pre-hysterectomy metformin treatment in women with endometrial cancer (EC) has
yielded mixed results; one study found no anti-cancer effects [34], while others suggest that
metformin reduces tumor proliferation [35] and promotes anti-tumor effects by altering EC
steroid receptor signaling [36]. These pre-surgical study designs are limited due to the short
treatment period and small number of patients enrolled. A recent meta-analysis concluded
that metformin does not function as an anti-proliferative agent in EC and is not a beneficial
adjunct therapy to progesterone therapy for EC patients seeking to spare their fertility [68],
though this latter point is still being investigated in an ongoing clinical trial in Japan [37].

2.14. Acute Myeloid Leukemia

A retrospective hospital cohort study found that though metformin users did not fare
better than non-users in OS and disease-free state, they did far better than insulin users.
Insulin users were found to have a two-fold increase in the risk of death and an 85% greater
risk of relapse [69].

2.15. Chronic Myeloid Leukemia

In a single center observation study, metformin use in combination with a TKI was
associated with 100% cytogenetic response (CCyR) compared to only 73.6% of single
agent TKI [70]. Patients receiving a TKI with or without metformin were able to achieve
major molecular response (MMR) as well as complete molecular response (CMR), however,
metformin users achieved this within a shorter period of time with a median time to
response of 11.1 months and 37.4 months, respectively, compared to 19.5 months and not
reached in the control group [70]. Furthermore, CML leukemic stem cells (LSCs) have been
shown to have increased mitochondrial oxygen consumption compared to hematopoietic
stem cells (HSCs) [71], which could be specifically targeted by metformin [70].

2.16. Acute Lymphoblastic Leukemia

In a prospective study of 102 patients with de novo Philadelphia-negative B-cell
ALL, metformin use was associated with a lower risk of therapeutic failure (odds ratio
(OR) 0.07, 95% confidence interval (CI) 0.0037–1.53) and early relapse (OR 0.05, 95% CI
0.0028–1.153) [72]. Furthermore, the patients who benefited most were those with high
expression of multi-drug resistant protein, ATP binding cassette subfamily B member 1
(ABCB1) [72]. In a small phase I clinical trial of ALL patients, the addition of metformin to
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standard chemotherapy was well-tolerated and yielded responses in a heavily pretreated
population, with 56% achieving a complete response (CR) [73].

2.17. Myelodysplastic Syndrome

In a single prospective study, no mortality benefit was detected among myelodysplastic
syndrome patients receiving metformin or sulfonylureas [74].

2.18. Lymphoma

In a population-based case-control study and two large, retrospective analyses, there
were no significant correlations between metformin use and disease progression or survival
in patients with non-Hodgkin lymphoma (NHL) [75–77]. However, in a Taiwanese study
using a database of over 600,000 newly diagnosed DM patients enrolled in the National
Health Insurance database, metformin initiators consistently had a lower risk of NHL [78].
Furthermore, in a retrospective case-control study of DM patients with diffuse large B-cell
lymphoma (DLBCL) treated with or without metformin, metformin was associated with
improved response to immunochemotherapy [79]. The metformin group had CR and
objective response rates (ORR) of 84% and 88%, respectively, compared to control groups,
which had rates of 48% and 68% [79]. Additionally, a retrospective case–control study
found that CR was achieved in 92% of DLBCL patients on metformin, compared to 54%
of control subjects [80]. This data was corroborated by a retrospective study of DLBCL
patients with diabetes in which metformin use was associated with improved PFS from 60
to 90 months and OS from 71 to 100 compared to diabetic patients not on metformin [81].

2.19. Multiple Myeloma

High levels of insulin and a history of DM are poor prognostic indicators for patients
with multiple myeloma (MM) [82]. However, within the DM population, metformin was
associated with a decreased incidence of death from MM [82]. Metformin use has also
been associated with decreased progression of monoclonal gammopathy of unknown
significance (MGUS) to MM [83,84]. The current risk of progression to MM is 1% per
year in MGUS patients [85]. In a retrospective cohort study from the US Veterans Health
Administration database that followed patients diagnosed with MGUS for a total of 10 years,
3% of metformin users progressed to MM compared with 5% of non-users [83]. Among
those who did progress to MM, the individuals on metformin progressed in an average of
71 months compared to 47 months in non-users. A similar benefit was found in a matched
case–control study from a population-representative database of 11,000,000 individuals
treated over an 18-year period in the United Kingdom, but only for those who had received
metformin for at least two years [83].

3. Metformin, Mechanism of Action
3.1. Anti-Cancer Activity of Metformin

In multiple malignancies, metformin has been shown to exert anti-cancer properties,
such as decreased proliferation, cell cycle arrest, and induction of apoptosis and/or au-
tophagy [86–88]. More recently, it has also been established that metformin can induce
alternative forms of cell death, such as pyroptosis, which involves an inflammatory, caspase
1-dependent programmed cell death. Metformin has been shown to induce pyroptosis
through adenosine monophosphate-activated protein kinase (AMPK)-dependent activation
of sirtuin 1, a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, and
downstream nuclear factor kappa B (NF-kB) expression [89]. In breast cancer cell lines,
metformin has also been shown to induce oxidative stress-dependent necroptosis, which
was rescued with necroptosis inhibitors [90]. In in vitro and in vivo models of breast cancer,
metformin was found to induce ferroptosis, which is a non-apoptotic form of cell death
that involves iron-dependent accumulation of lipid oxidation and depletion of plasma
membrane polyunsaturated fatty acids [91,92]. Ferroptosis was induced by upregulation
of miRNA-324-3p expression and subsequent downregulation of glutathione peroxidase
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4, which is a glutathione-dependent antioxidant enzyme that prevents ferroptosis [91].
Finally, metformin can also induce mitophagy in a cervical cancer cell line [93].

In addition to tumor-killing properties, cancer drug development has also focused on
decreasing metastatic spread as well as recurrence post-treatment. Metformin has recently
been found to decrease cell motility and invasion while increasing cellular adhesion in mul-
tiple solid tumor models [94–99]. Furthermore, metformin could specifically target cancer
stem cells [96,100–109]. The mechanisms by which cancer stem cells were targeted varied
but included targeting of mitochondrial respiration in osteosarcoma stem cells [100], inhi-
bition of stem cell markers, specifically CD133 in HCC and oral cancer cell lines [102,104]
and CD47 in breast cancer [105], and regulation of crucial transcription factors [103,110].

3.2. Mechanisms of Metformin’s Anti-Cancer Activity

Nearly 25 years of literature consistently demonstrates that there is no single unifying
mechanism of action of metformin in cancer. As a normoglycemic agent for type 2 DM,
metformin decreases hepatic gluconeogenesis and lipid synthesis, decreases adipose tissue
fatty acid synthesis and lipolysis, decreases pancreatic insulin secretion, and increases
muscle glucose uptake [111,112] (Figure 1). This can occur either through liver kinase B1
(LKB1)/AMPK activation in target tissues or a direct inhibition of insulin signaling.
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Figure 1. Overview of metformin’s systemic effects on tumor growth. Metformin’s activation of
the LKB1/AMPK pathway in hepatocytes and adipocytes, and in the pancreas, leads to reduced
blood glucose and insulin availability, respectively. Decreased glucose and insulin availability can
slow tumor growth and progression. LKB1: Liver Kinase B1, AMPK: AMP-Activated Protein Kinase.
Created in BioRender.

Next, we will briefly summarize the well-established activity of metformin in can-
cer that has been recently reviewed [48,86,87] and as summarized in Figure 2. We will
then shift to novel mechanisms of action established over the last five years, including
immunomodulatory and epigenetic effects of metformin.

Metformin’s well-established anti-cancer mechanisms involve direct and indirect,
AMPK-dependent and -independent inhibition of mammalian target of rapamycin (mTOR),
which plays a significant role in promoting tumor proliferation as well as inhibiting apop-
tosis and autophagy. The indirect, AMPK-independent inhibition of mTOR stems from
metformin’s ability to decrease systemic insulin [113–116]. Decreased insulin leads to
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decreased signaling through the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT)
pathway, subsequently allowing tuberous sclerosis complex 2 (TSC2) to inhibit mTOR [117].
Metformin is also taken up by cancer cells through organic cation transporters [118] and
subsequently inhibits complex I of the mitochondrial electron transport chain leading
to decreased oxidative phosphorylation [119]. The decreased ratio of adenosine triphos-
phate (ATP) to adenosine monophosphate (AMP) leads to cellular stress, activation of
AMPK [120–123], and downstream inhibition of mTOR kinase activity, which results in
a decrease in protein synthesis, cell growth, and proliferation [117,124–127]. Early on,
metformin’s role in cancer clearly showed that AMPK-dependent inhibition of mTOR is re-
quired for multiple anti-cancer effects, as the phenotype can be rescued by targeting AMPK
with siRNA or Compound C as well as constitutive activation of mTOR and short hairpin
RNA targeting TSC2 [117,124,125,128,129]. Furthermore, multiple reports have demon-
strated that metformin can also activate AMPK indirectly through activation of upstream
energy sensor, LKB1, or via ataxia telangiectasia mutated (ATM) [130–132]. Metformin
also inhibits mTOR independently of AMPK through activation of DNA-damage-inducible
transcript 4 (REDD1), which inhibits mTOR via TSC2 activation [133], or via inhibition of
Rag GTPases [134]. Metformin’s inhibition of Rag GTPases was independent of amino acid
levels, which have previously been shown to control Rag GTPases and downstream mTOR
activity [135,136].
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Figure 2. Molecular effects of metformin in cancer cells. Metformin directly inhibits complex I
of the electron transport chain in the mitochondria resulting in decreased ATP/AMP ratio and
activation of AMPK. AMPK activation inhibits mTOR and activates P53 to impact subsequent cellular
processes. Metformin also inhibits mTOR in an AMPK-independent manner, through Rag GTPases
and REDD1. Reduced insulin availability through metformin’s systemic effects indirectly modulates
the proliferative pathway, PI3K/AKT. AMP: Adenosine Monophosphate; AMPK: AMP-Activated
Protein Kinase; ATP: Adenosine Triphosphate; IGF: Insulin-like Growth Factors; IGF-R: Insulin-like
Growth Factor Receptor; mTOR: Mammalian Target of Rapamycin; OTC: Organic Cation Transporter;
PI3K: Phosphoinositide 3-kinase; REDD1: Regulated in Development and DNA damage responses 1;
SLC: Solute Carrier Transporter; TSC2: Tuberous Sclerosis Complex 2. Created in BioRender.

Metformin’s mechanism of action also involves regulation of additional transcription
factors, such forkhead box O3a (FOXO3a), mitogen-activated protein kinase (MAPK), Sonic
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hedgehog, Wnt, Notch, and Kruppel-like factor 5 [103,110,137,138]. FOXO3a upregulation
by metformin is particularly interesting given FOXO3a’s ability to induce MAPK-dependent
expression of the mitochondrial genome to support mitochondrial metabolism. In fact,
activation of FOXO3a has been shown to be necessary for metformin’s pro-apoptotic and
chemosensitizing effects in multiple tumor models by allowing metformin to promote
mitochondrial biogenesis while simultaneously inhibiting complex I activity [137,138]. It is
these multifaceted aspects of metformin that make it a unique drug and encourages further
elucidation of its anti-cancer mechanism of action to identify optimal drug combinations to
effectively target cancer cells.

3.3. Immunomodulatory Effects of Metformin

More recently, metformin has been found to exhibit antitumor activity through regulation
of the immune response to cancer. Multiple studies have found metformin can decrease pro-
grammed death-ligand 1 (PD-L1) on tumor cells through both AMPK-dependent [139–141]
and AMPK-independent [142,143] mechanisms, resulting in enhanced cytotoxic T lympho-
cyte activity. However, this anti-PD-L1 activity may be tissue-dependent. In a NSCLC
model, the inverse was found to be true in which LKB1-overexpression actually increased
PD-L1 in an AMPK-dependent fashion [144]. As a result, LKB1-intact NSCLC tumors could
be sensitized to anti-PD-1 antibodies with metformin whereas no obvious suppression
from metformin was observed in LKB1-deficient tumors [144].

Metformin may also act directly on cytotoxic T cells to augment their anti-cancer
activity. Metformin administration induces interferon-gamma (IFN-γ) production in CD8+
tumor infiltrating lymphocytes in multiple solid tumor models [145–147]. Furthermore,
metformin inhibited accumulation and suppressive activity of myeloid-derived suppressor
cells, which are a major immunosuppressive cell type that inhibits T-cells and promotes
tumor immune escape [145,148]. Interestingly, metformin is detrimental to CD19-chimeric
antigen receptor-modified T cells as it inhibits proliferation and cytotoxicity while inducing
apoptosis via AMPK activation and downstream suppression of mTOR [149]. Thus, the
T-cell targeting properties of metformin may be context- and cancer subtype-dependent.

In addition to T cell regulation, metformin can enhance natural killer (NK) cell cyto-
toxicity of human cervical cancer cells by altering tumor cell surface expression of NK-cell
ligands via the PI3K/AKT pathway, leading to increased NK cell activation [106]. Fur-
thermore, direct exposure of NK cells to metformin enhances their cytolytic activity and
increases NK cell tumor infiltration independently of AMPK [150]. Metformin also directly
and indirectly modulates macrophage-targeting of tumor cells. Metformin represses CD47
gene expression in a miRNA-708-dependent manner to allow macrophage phagocyto-
sis of breast cancer stem cells [105]. Furthermore, metformin modulates expression of
macrophage-related cytokines, thereby suppressing the ability of cancer cells to promote
the protective macrophage 2 phenotype and promoting the anti-cancer macrophage 1
phenotype in an AMPK/NF-κB-dependent manner [151,152].

3.4. Epigenetic Regulation of Metformin

Epigenetic mechanisms, such as hypermethylation of tumor suppressor genes, general
hypomethylation of the genome, and alterations in histone posttranslational modifica-
tions, play a role in tumorigenesis and therapy resistance [153]. Recent studies indi-
cate that metformin can target cancer cells through epigenetic modifications. Metformin-
activated AMPK has been demonstrated to increase global DNA methylation in colon,
breast, and endometrial cancer cells [154–156]. Altered DNA methyltransferase (DNMT)
activity by metformin also contributed to anti-cancer activity by regulating long non-
coding RNAs [157,158]. In two studies, metformin has been found to regulate epigenetics
specifically through targeting the oncometabolite 2-hydroxyglutarate (2HG) [159,160]. Inter-
estingly, in one study this was through the traditional route of targeting IDH1/2 mutations
in endometrial cancer [160]. In another study, the 2HG oncometabolite was found to be
elevated in breast cancer in vitro and in vivo in the absence of IDH1/2 mutations [159].
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Metformin specifically inhibited 2HG production in this model through knockdown of
phosphoglycerate dehydrogenase in an AMPK-dependent manner leading to anti-cancer
activity [159]. Additional work has demonstrated that metformin can also suppress epige-
netic modifier, enhancer of zeste homolog 2 (EZH2), in its anti-cancer activity in prostate
adenocarcinoma and neuroendocrine tumors [161,162]. Metformin can also target histone
acetylation to antagonize melanoma progression [163].

4. Conclusive Remarks

Preclinical studies have consistently demonstrated antineoplastic effects of metformin.
Additionally, observational and epidemiological studies have reported lower incidence
and mortality rates of cancer in patients taking metformin. However, these results have
translated to modest benefits in clinical trials, which may be attributed to several hy-
potheses that can guide future research. The inherent limitations of observational and
retrospective study designs can be a source of potential bias leading to an overestimation
of the benefits of metformin in patients. Moreover, while preclinical models have been
key in characterizing the antineoplastic mechanisms of metformin, they suffer from sev-
eral limitations that impact their translation to the clinic. Some authors have argued that
metformin concentrations used in preclinical studies were significantly higher than the
plasma concentrations reached in clinical trials [10]. Additionally, in vivo models require
optimization to recapitulate tumor heterogeneity, including cancer stem cells [164], and the
immuno- and micro-environments to better predict clinical results [165].

Of note, many of the relevant clinical trials either recruited a small number of patients
or enrolled patients with an advanced cancer stage, both of which can confound results. To
optimize the design of clinical trials, additional research is required to identify key factors
(both patient- and tumor-related) that affect metformin sensitivity. For example, the insulin-
lowering effect of metformin is thought to contribute to its anti-cancer activity, which
suggests that patients with hyperinsulinemia or tumors expressing the insulin receptor,
LKB1, or TSC2 may benefit most from metformin [166].
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