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Distributed lag effects and 
vulnerable groups of floods on 
bacillary dysentery in Huaihua, 
China
Zhi-Dong Liu1,2,*, Jing Li1,2,*, Ying Zhang3, Guo-Yong Ding4, Xin Xu1,2, Lu Gao1,2, Xue-Na Liu1,2, 
Qi-Yong Liu2,5 & Bao-Fa Jiang1,2

Understanding the potential links between floods and bacillary dysentery in China is important to 
develop appropriate intervention programs after floods. This study aimed to explore the distributed lag 
effects of floods on bacillary dysentery and to identify the vulnerable groups in Huaihua, China. Weekly 
number of bacillary dysentery cases from 2005–2011 were obtained during flood season. Flood data and 
meteorological data over the same period were obtained from the China Meteorological Data Sharing 
Service System. To examine the distributed lag effects, a generalized linear mixed model combined 
with a distributed lag non-linear model were developed to assess the relationship between floods and 
bacillary dysentery. A total of 3,709 cases of bacillary dysentery were notified over the study period. The 
effects of floods on bacillary dysentery continued for approximately 3 weeks with a cumulative risk ratio 
equal to 1.52 (95% CI: 1.08–2.12). The risks of bacillary dysentery were higher in females, farmers and 
people aged 15–64 years old. This study suggests floods have increased the risk of bacillary dysentery 
with 3 weeks’ effects, especially for the vulnerable groups identified. Public health programs should be 
taken to prevent and control a potential risk of bacillary dysentery after floods.

Floods are the most common type of natural disaster globally. On average, floods and other hydrological events 
had accounted for over 50% of the natural disasters between 2001 and 2010 in the world1. Floods are expected to 
increase in frequency and intensity due to rising sea levels and more frequent and extreme precipitation events2. 
Hunan, located in the basin of Yangtze River, is a flood-prone province in China. Persistent and heavy rainfall 
caused several floods from 2005–2011 in Huaihua City of Hunan Province3.

Bacillary dysentery, a diarrheal disease caused by ingestion of water or food contaminated by different species 
of Shigella bacteria, remains a major public health problem in some developing countries4. In China, 237,930 new 
cases of bacillary dysentery were reported in 2011, which ranked fourth among the national notifiable diseases 
from the Chinese National Notifiable Disease Report. Hunan is one of the most seriously affected provinces in 
the Yangtze River Region. Huaihua city, which located in the west of Hunan, had 5,414 cases from 2005–20115.

The association between floods and bacillary dysentery is not clear. Some epidemiologic evidence suggests 
that floods are positively associated with diarrheal diseases, such as dysentery, cholera, and paratyphoid fever6,7. 
During the flood in the Midwestern United States in 2001, Wade et al. found 1.29 times increase in the incidence 
of gastrointestinal symptoms8. A significant positive association between floods and diarrhea was reported by 
Heller et al. in Brazil9. A study from Henan of China revealed that floods were significantly associated with dys-
entery10. However, a study from Mozambique revealed that there was no outbreak of dysentery after the flooding 
in 200011. Another study also found no clear evidence of excess mortality or diarrhea risk during or after flooding 
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after controlling for pre-flood rate differences and seasonality12. More research is needed to elucidate the potential 
risk of bacillary dysentery related to floods. Research linking floods to bacillary dysentery in China is limited. 
The effect of the floods on bacillary dysentery in Huaihua remains unknown. This study aimed to investigate 
the distributed lag effects on bacillary dysentery related to floods and identify the vulnerable groups. Results 
will contribute to a better understanding of the health impacts of floods and provide more evidence to support 
decision-making for the prevention and control of bacillary dysentery after floods.

Results
Description of the disease and meteorological data. A total of 3,709 cases of bacillary dysentery were 
notified in the study area over the study period. Table 1 presents the descriptive statistics for weekly bacillary 
dysentery cases in different categories from 2005–2011 in the flood season of Huaihua. There were more cases 
in male living in rural areas. Most of the bacillary dysentery cases were children and farmers. Patients aged 0–4 
and 15–64 accounted for approximately 76% of all bacillary dysentery cases. Figures 1 and 2 show the time-series 
distribution of weekly bacillary dysentery cases and weekly mean temperature, weekly mean relative humidity 
and weekly cumulative precipitation in the flood season from 2005–2011. The average number of weekly bacil-
lary dysentery cases was 20 (range: 2–50). The average values of weekly mean temperature, weekly mean relative 
humidity and weekly cumulative precipitation were 24 °C (range: 10–31 °C), 73% (range: 58–84%) and 28 mm 
(range: 0–153 mm), respectively. Fourteen flood events were recorded during the study period.

Association between floods and bacillary dysentery. The risk ratios (RRs) of floods on the risk of 
bacillary dysentery from the DLNM model were presented in Table 2. Results showed that bacillary dysentery 
was associated with floods significantly at lag 1 (RR =  1.32, 95% CI: 1.12–1.56), but there was no significant asso-
ciation between bacillary dysentery and floods at other lag periods. The cumulative effects of floods on bacillary 
dysentery were presented in Fig. 3. After controlling for precipitation, temperature, relative humidity, seasonality 
and long-term trends, floods were associated with bacillary dysentery significantly with a cumulative RR value 
at lag 0–2 weeks equal to 1.52 (95% CI: 1.08–2.12). The effect of floods on bacillary dysentery at lag 1 was similar 
for females (RR =  1.32, 95% CI: 1.06–1.65) and males (RR =  1.30, 95% CI: 1.06–1.61). But the cumulative effects 

Category Mean ± SD Min P25 Median P75 Max

Gender

 Males 11.33 ±  6.11 1 7 10 15 30

 Females 8.49 ±  4.58 0 5 8 11 30

Age (years)

 0–4 6.16 ±  3.49 0 3 6 8 19

 5–14 2.42 ±  2.31 0 1 2 3 15

 15–64 8.87 ±  5.17 0 5 8 12 23

 65+ 2.37 ±  1.90 0 1 2 3 11

Occupation

 Farmers 7.50 ±  15.51 0 4 7 10 24

 Students 2.33 ±  2.60 0 1 2 3 22

 Children 6.58 ±  3.69 0 4 6 8 21

 Works 1.83 ±  1.57 0 1 2 3 7

 Others 1.58 ±  1.54 0 0 1 2 7

Total 19.62 ±  9.38 2 12 19 25 50

Table 1.  Description of weekly bacillary dysentery cases from April to September in Huaihua, China, 
2005–2011.

Figure 1. The weekly distribution of bacillary dysentery cases during study period from 2005 to 2011 in 
Huaihua, China. Weeks with flood is indicated as a dashed line.
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at lag 0–2 weeks were significant in females (RR =  1.65, 95% CI: 1.06–2.56), while not in males (RR =  1.35, 95% 
CI: 0.88–2.07). The most vulnerable age group was 15–64 years old group (RR at lag 1 =  1.39, 95% CI: 1.12–1.72). 
Farmers appeared to be more vulnerable than workers, children, students and other occupations.

Sensitivity analyses. Sensitivity analyses were conducted to check whether our coefficient estimates were 
robust. The effects changed little when using the full-year data instead of the data in flood season (Supplementary 
Figure S1). When changing df (2–8) for precipitation, relative humidity, time and week of year, we found that the 
effect estimates at lag 1 period did not change substantially (Supplementary Figure S2). Similar effects of floods 
on bacillary dysentery were observed when using different models (e.g. single lag model, unconstrained DLNM 
model, and constrained DLNM model) (Supplementary Figure S3). Supplementary Figure S4 shows that model 
residuals were independent over time with a normal distribution. Supplementary Figure S5 is the ACF and PACF 
plots of residuals, which showed that there was no apparent autocorrelation of model residuals.

Discussion
In recent years, bacillary dysentery has been recognized as a significant infectious disease related to climate 
change. Our study has quantified the lagged and cumulative effects of floods on the risk of bacillary dysentery 
in Huaihua, China using a distributed lag non-linear model. After controlling for the meteorological factors, 

Figure 2. Weekly mean temperature (A) weekly mean relative humidity (B) and weekly cumulative 
precipitation (C) during study period from 2005–2011 in Huaihua. Weeks with flood is indicated as a dashed 
line in (C).
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seasonality and long-term trend, results indicate that floods may play an important role in the epidemic of bac-
illary dysentery. Although this study is based on Huaihua city only, the real impact of bacillary dysentery due 
to floods might be much greater, given the large population at risk and frequent floods in China. From 2000–
2010 floods has affected more than 1.7 billion people in China. The direct economic losses caused by floods was 
approximately 1.39 trillion yuan. People at risk of floods may increase due to the rapid urbanization in China13. 
The results from this study might be applicable to most city in south and east China, because climates in those 
places were similar with that in Hunan.

An increased risk of diarrheal disease following floods has been reported all over the world. During the 1993 
flooding in Brazil, the flooding was significantly associated with diarrhea9. A German study also showed that the 
major risk factor for diarrhea was contacting with floodwater14. A study from Anhui of China indicated floods 
were significantly associated with an increased risk of infectious diarrhea15. However, limited number of studies 
have examined the effects of floods on bacillary dysentery10,16.

In our study, results of the DLNM show that floods were associated with an increased risk of bacillary dys-
entery with 3 weeks’ effects after adjustment for meteorological factors, seasonality and long-term trend. However, 
the underlying mechanisms by which floods influences the bacillary dysentery are not yet clear. The probability of 
ingesting water or food contaminated by Shigella is likely to increase during floods. A study in Pakistan indicated 
that twenty percent of the drinking water samples collected during flood period were contaminated with Shigella 
and other enter pathogens including Vibrio cholera, Salmonella, Staphylococcus aureus and others17. Other studies 
also showed that contamination of drinking water was associated with water-borne disease outbreaks such as 
dysentery, cholera, hepatitis A, typhoid fever, and other gastrointestinal diseases after floods18,19.

Continuous precipitation during floods can mobilize pathogens and transport them into the aquatic envi-
ronment, increasing the microbiological agents on surface water19. Floods can also destroy the sewage systems 
and waste-disposal systems, washing contaminants into drinking water. These may cause the local water quality 
seriously deteriorated and lead to a lack of clean water and food supply. As a result, the transmission of enteric 
pathogens and communicable diseases may increase during floods20. A study in Bangladesh also showed the 
flooding-induced breakdown of sanitary conditions is likely the principal mediator of the effect of climate on the 
infectious disease21.

Our study also found that the effect of floods on bacillary dysentery in the group of 15–64 was significant. This 
may because that people aged 15–64 years old participated in more relief work and engaged the reconstruction 
work more frequently than the other groups, leading to a higher exposure in the flood period. Farmers appeared 

Category Lag0 Lag1 Lag2 Lag3 Lag4 Lag0–2

Total 1.09(0.88,1.35) 1.32(1.12,1.56)* 1.06(0.89,1.25) 0.85(0.71,1.02) 1.02(0.86,1.20) 1.52(1.08,2.12)*

Gender

 Males 1.00(0.75,1.31) 1.30(1.06,1.61)* 1.04(0.84,1.29) 0.84(0.67,1.05) 1.04(0.85,1.27) 1.35(0.88,2.07)

 Females 1.18(0.89,1.55) 1.32(1.06,1.65)* 1.06(0.85,1.33) 0.88(0.69,1.11) 0.96(0.77,1.20) 1.65(1.06,2.56)*

Age (years)

 0–4 1.00(0.74,1.37) 1.21(0.96,1.53) 0.99(0.78,1.26) 0.85(0.66,1.09) 0.82(0.64,1.05) 1.20(0.75,1.94)

 5–14 1.17(0.73,1.88 1.31(0.85,2.01) 1.07(0.72,1.60) 0.66(0.42,1.04) 1.08(0.75,1.57) 1.64(0.74,3.64)

 15–64 1.03(0.78,1.37) 1.39(1.12,1.72)* 1.02(0.81,1.27) 0.84(0.66,1.05) 1.08(0.88,1.34) 1.46(0.94,2.27)

 65+ 0.98(0.55,1.73) 1.22(0.79,1.87) 1.35(0.90,2.01) 1.20(0.79,1.82) 1.09(0.73,1.63) 1.61(0.68,3.78)

Occupation

 Farmers 0.85(0.60,1.20) 1.42(1.11,1.82)* 1.02(0.79,1.32) 0.80(0.60,1.05) 1.07(0.83,1.37) 1.23(0.73,2.08)

 Students 1.58(0.99,2.52) 1.17(0.73,1.87) 1.07(0.69,1.66) 0.71(0.44,1.14) 1.05(0.71,1.57) 1.99(0.86,4.61)

 Children 0.98(0.72,1.33) 1.21(0.96,1.53) 0.97(0.77,1.23) 0.88(0.69,1.12) 0.87(0.69,1.10) 1.15(0.72,1.84)

 Works 0.92(0.57,1.50) 1.07(0.72,1.58) 1.26(0.89,1.79) 0.87(0.58,1.28) 0.90(0.62,1.30) 1.25(0.58,2.67)

 Others 1.59(0.91,2.81) 1.52(0.98,2.36) 1.30(0.83,2.05) 1.18(0.77,1.80) 1.28(0.84,1.97) 3.16(1.29,7.77)*

Table 2.  The risk ratios of floods on bacillary dysentery at various lag weeks from the DLNM models in 
Huaihua, China. * p <  0.05.

Figure 3. The cumulative effects of floods on bacillary dysentery in Huaihua, China from 2005 to 2011. 
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to be more vulnerable than workers, children, students and other occupations. Kirsch et al. also demonstrates 
significantly worse impact and a slower recovery for rural area after the flood22. A possible reason is that rural 
areas usually have poor sanitation and medical conditions. Farmers usually do not have access to a flush toilet and 
probably not to clean water after floods, which may increase the risk of bacillary dysentery. Davis et al. found that 
rural communities are faced with a myriad of health care disparities, each posing as a barrier to timely response 
and complete recovery from a disaster, including insufficient public health infrastructure and disproportionate 
access to adequate medical care23.

It is not clear whether the difference between genders was caused by different behaviors to flood responses. A 
possible explanation is that during floods females may not only participated in the reconstruction work, but also 
prepare the food and water, care for the elderly and children. Psychological stress from increased responsibilities 
may cause fatigue and increased vulnerability to diseases during and after floods. Lowe et al. also found that the 
psychological and physiological health effects of floods appear disproportionately borne by females, elderly and 
children during floods24.

Urban areas around the world have expanded rapidly in recent years25. Nearly half of the urban expansion is 
projected to take place in Asia, especially in China which was highly prone to flooding from rivers and coastal 
surge26. Rapid urbanization in China has an adverse impact on urban hydrological processes, particularly in 
increasing the urban flood risks13. A study in Indonesia showed that urban expansion drives large increases in 
flood risk27. In the rapidly urbanized China cities, urban floods may cause health risks such as breaks out of infec-
tious diseases by causing sewer water overflow and flushing foul water to public area, especially for the immigrant 
rural workers with poor sanitation and health services.

Limitations of our study should be acknowledged. Firstly, some confounding factors, such as the degree of 
flood disaster and different population immune levels could not be included in our study. Secondly, we could only 
obtain the weekly disease data while the daily data may be a better choice for the analysis of lag effects. Thirdly, we 
only focused on one city. The results might not be generalizable to other areas, particularly for those places with 
different climates.

In conclusion, this study provides evidence that floods may play an important role in the epidemic of bacillary 
dysentery in study area. People aged 15–64 years old, females, and farmers appeared to be more vulnerable than 
the others. Our findings have significant implications for developing local strategies to prevent and reduce bacil-
lary dysentery given more floods have been predicted in the future due to climate change.

Methods
Study area and period. The study was conducted in Huaihua a city located along the Yaun River, a tributary 
of the Yangtze River, in the Hunan province between latitudes 25°54′ and 29°00′N and longitudes 108°48′ and 
111°06′E (Fig. 4). The city is generally characterized by a subtropical humid monsoon climate with an annual 
average temperature of 16.4 °C and an annual average rainfall of 1600 mm. Huaihua has an area of 27,564 square 
kilometers and a population of 4.74 million in 2010. Given the seasonal distribution of floods and bacillary dys-
entery in Huaihua, periods between April and September (i.e. the flood season) from 2005–2011 were chosen as 
the main study periods.

Data collection and management. Disease surveillance data. Weekly number of bacillary dysentery 
cases from 2005–2011 were obtained from the National Notifiable Disease Surveillance System (NDSS). The defi-
nition of bacillary dysentery, according to the NSDD, is a group of the human diseases that are caused by Shigellae, 
accompanied by fever, abdominal pain, tenesmus and bloody or mucus stool as the typical clinical presentation. 
In this study, all bacillary dysentery cases were defined based on the diagnostic criteria and principles of manage-
ment for dysentery (GB 16002–1995), issued by the Ministry of Health of the People’s Republic of China28. Only 
the cases confirmed both clinically and by laboratory tests, including microscopic examination and biochemical 
identification, were included in our study. In China, bacillary dysentery is a statutory notifiable category B infec-
tious disease. According to the National Communicable Disease Control Act, physicians in hospitals must report 
every case of bacillary dysentery to the local health authority. The local health authority must report these cases to 
the next level of the organization within 24 h29. The Direct Network Report system for infectious diseases has been 
established and applied well since Jan 1, 2004 in China30. Therefore, it is believed that the degree of compliance 
with disease notification over the study period was consistent.

Figure 4. Location of the study area in Hunan province, China. The map was generated using ArcGIS 10.2 
(Environmental Systems Research Institute, Redlands California, America) Available at: http://www.esri.com/
software/arcgis/arcgis-for-desktop.

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
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Floods and meteorological data. Floods is defined as an extreme climate event with flooding and geological haz-
ards such as debris flow, landslide after local or regional heavy rain process, it must fulfill at least one of the follow-
ing criteria: (1) Ten or more people reported killed. (2) 50000 or more hectares of farmland reported damaged. (3) 
Cause a direct economic loss of 100 or more million Chinese yuan. Flood data was extracted from the Yearbooks 
of Meteorological Disasters in China, which recorded the occurrence time, number of deaths, damaged areas, and 
economic loss of floods3.

Weekly meteorological data over the same period were obtained from the China Meteorological Data Sharing 
Service System (http://cdc.cma.gov.cn/). The meteorological variables included weekly cumulative precipitation, 
weekly average temperature, and weekly average relative humidity.

Statistical analysis. A generalized linear mixed model (GLMM) combined with a distributed lag non-linear 
model (DLNM) was applied to quantify the distributed lag effects of floods on bacillary dysentery, with weekly 
counts of bacillary dysentery as the dependent variable and floods as the independent variable adjusted for 
potential confounders. A quasi-Poisson regression was used to deal with the over dispersion of Poisson distri-
bution. Generalized linear mixed model combined with distributed lag non-linear model is widely used in time 
series studies examining temperature, air pollution and health outcomes31–33. To control for confounder, in study 
design, time series analysis of diseases and extreme weather events such as heat wave or extreme precipitation 
event was usually conducted in a period when most extreme event occurred34,35. For our study, we chose the flood 
season (April-September) as our study period because almost all floods occurred in this period. The natural cubic 
spline used in GLMM is a flexible and effective technique for adjustment for nonlinear confounding effects of 
seasonality, long-term trends, and weather variables. The main advantage of DLNM is that it allows the model to 
describe the lag structure of exposure–response relationships, which in turn provides an estimate of the cumula-
tive effect and delayed effect36.

Potential confounders. To control for any long term trend, we used a natural cubic spline with three degrees of 
freedom (df) for time. We used a natural cubic spline with four df for week of year (woy) to control for any sea-
sonal trend37. Previous studies have reported that temperature, precipitation and humidity, which linked to the 
replication, persistence, and transmission of pathogens in the environment, were associated with diarrheal dis-
eases38–40. Therefore, we used a smooth function of natural cubic spline with three df in DLNM for mean temper-
ature, cumulative precipitation and relative humidity to adjust for potential effects of these meteorological factors.

Lags. Due to the delayed environmental transport of pathogens and delayed onset of clinical symptoms, mor-
bidity of bacillary dysentery was expected to peak several days after the occurrence of floods. For example, a study 
from China reported floods can significantly increase the risk of dysentery within one month10. Thus, the asso-
ciation in our model was explored across a 4-week lag. Models which allowed for lagged exposure effects can be 
divide into the single lag model, unconstrained DLNM model and the constrained DLNM model. The selection 
of our final model was based on the distribution of lagged effects, not the index of model fitting. We chose the 
constrained DLNM model for two reasons. Firstly, all the lagged predictors can be simultaneously entered in the 
model. Secondly, after imposing some constraints on the effect estimates for the different lags, collinearity was 
significantly reduced. Therefore, fewer parameters need to be estimated, and associations at individual lags could 
be estimated with a greater precision41.

The main analysis was conducted with a distributed lag model to evaluate the lag effects and cumulative effects 
of floods on bacillary dysentery. Distributed lag models, widely utilized in air pollution studies and temperature 
studies, provide a systematic way to investigate the distribution of effects over time31,42,43. We constrained model 
coefficients using the lag number to fit a natural cubic spline function to reduce collinearity36. This model can 
estimate the delayed and cumulative effect of floods on the morbidity of bacillary dysentery over the entire lag 
period simultaneously (Model 1):

Model 1:

∑ ∑α γ= β + + +

+ + + +
=

−
=

−Y Floods Temperature ns Precipitation

ns Humidity ns Woy ns Time Lag res

log[E( )] ( , 3)

( , 4) ( , 4) ( , 3) ( , 1)

t
p

p t p
q

q t q
0

4

0

4

1

2 3 4

where Yt denoted the weekly number of bacillary dysentery cases at time t. Floods were a categorical variable 
including non-flooded or flooded weeks and represented by 0 and 1, respectively. The αp was the effect estimate 
of the floods p days before the day of illness. The γq was the effect estimate of temperature q days before the day 
of illness. The ns1(Precipitation, 3), ns2(Humidity, 3), ns3(Woy, 4), and ns4(Time, 3) were natural cubic splines of 
weekly cumulative precipitation, weekly average relative humidity, week of year, and time, respectively, which 
were designed to control the effects of meteorological factor, seasonality, and long-term trend. The Lag (res, 1) was 
the first-order lagged variable of the model residual error designed to control the autocorrelation.

Sensitivity analysis. As effect estimates vary with different choices of model selections and parameters specifica-
tion, we conducted the following sensitivity analyses:

(1) using the full-year data instead of the data in flood season; (2) varying the df (2–8) for week of year to 
adjust for seasonality; (3) varying the df (2–8) for time to adjust for long-term trend; (4) changing the df (2–8) for 
relative humidity; (5) using different methods to evaluate the estimates, single lag model, unconstrained DLNM 
model, and constrained DLNM model (using the lag number to fit a polynomial function)41.

http://cdc.cma.gov.cn/
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The level of statistically significance was set at 0.05 (two-tailed). Analyses were conducted using “dlnm” pack-
age37 in R 3.1.3 (R Foundation for Statistical Computing, Vienna, Austria).
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