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Abstract: Flavor is one of the main factors involved in consumer meat-purchasing decision and use
of natural antioxidants in animal feeding had a great appeal for consumers. The aim of this trial is
to evaluate the effect of Pinus taeda hydrolyzed lignin (PTHL) feed addition on oxidative stability,
volatile compounds characteristics, and sensory attributes of 35 days dry-aged beef steaks. Forty
steer six months old were randomly divided into a control group (CON; n = 20) and an experimental
group (PTHL; n = 20). Both groups were fed ad libitum for 120 days with the same TMR and only the
PTHL group received PTHL supplement. Samples of LT muscle were removed from carcasses and
dry aged for 35 days at 2 ◦C, 82% of humidity, and 0.4 m/s of ventilation and then analyzed. Meat
of CON group showed lower yellowness (p < 0.01) and higher TBARS (p < 0.01) values. Moreover,
CON meat showed higher volatile aldehydes and lower sulfur compounds (p < 0.01), with higher
unpleasant odor (p < 0.05) and meaty odor (p < 0.01) score revealed by sensory assessors. PTHL
inclusion in beef diet delayed the oxidative mechanisms in 35 days dry-aged steaks, resulting in an
improved colorimetric, volatolomic, and sensory profile.

Keywords: beef; meat aging; volatile compounds; sensory profile; oxidative profile; polyphenols

1. Introduction

Beef is an important source of high biological value proteins, vitamins, and micronutri-
ents for human nutrition. Consumer acceptability is affected by some aspect of meat quality
like tenderness, color, juiciness, and cooking meat flavor and aroma [1,2]. In particular,
consumers tend to prefer tender meat with natural taste and aroma [3]. Flavor is one of
the main factors involved in the purchasing decision [4], representing the food sensory
impression of taste and smells combined, and is also influenced by other factors able to
affect the individual flavor perception, such as tenderness and juiciness [5].

In past years, the interest of consumers toward dry-aged steaks has strongly increased
due to their flavor that arises during aging [6]. The flavor and taste precursors of meat
products derive from the thermal transformation of non-volatile compounds in raw meat,
like amino acids, peptides, reducing sugars, vitamins, and nucleotides [3]. On this side,
many factors as breed, sex, age, animal feeding, meat ageing, and cooking method can
influence taste and aroma [7,8]. Moreover, fatty acid composition, intramuscular fat content,
and oxidative stability influence the texture, juiciness, taste, and consequently flavor [9], as
well as meat shelf-life [10].
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With a view to a circular economy, the inclusion of agricultural by-products in rumi-
nant feeding could have an important environmental and social impact [11], furthermore,
the high presence of bioactive compounds in vegetal matrices makes by-products very inter-
esting for the improvement of the nutritional properties, as well as of the chemical-physical
and sensory characteristics of beef. Plants are widely considered as the main source of natu-
ral antioxidant like polyphenolic compounds (flavonoids, tannins, and phenolic acids) [12].
Their presence in meat can delay the lipids and proteins oxidation, thus protecting the
product from deterioration [13]. Many experimental trials focused on the use of some
antioxidants in ruminants’ nutrition and their effects on meat quality, fatty acids profile,
and oxidative stability [14–17]. In general, antioxidant diet addition is considered a good
strategy for delaying the lipid oxidation in meat, improving its shelf-life, but contradictory
results have been often reported. Conflicting results could be due to the different types of
antioxidants used (i.e., variability of vegetal origin and bioactive compounds) and/or to
different aging conditions investigated. One of these antioxidants is Pinus taeda hydrolyzed
lignin (PTHL), derived from Pinus taeda, known as loblolly pine, a very common species of
tree in the Northern America. It is a mixture of polyphenols obtained by the hydrolyzation
of lignin from the above mentioned tree species, that proved to have positive effect on
animal welfare and gas emission [18] and on beef meat slices quality during 14 aging
days [14]. The present study deals with the influence of this antioxidant on meat quality
over a longer aging time. In particular, it aimed to determine color stability, oxidative
status volatile compounds, and sensory characteristics of steaks from dry-aged beef loins
over 35 days of retail display.

2. Materials and Methods
2.1. Animals and Sampling

The research for animal testing was approved by the Ethics Committee for animal
testing (CESA) (process number 2-X/17). Forty Limousine steers six months old were
included in the trial. The experimental design was the same described by Maggiolino,
Lorenzo, Quiñones, Latorre, Blando, Centoducati, Dahl and De Palo [18]. All beefs were
randomly assigned to two groups of 20 animals each. Each group was in a separated pen,
equipped with automatic waterers. One was the experimental group (PTHL) and the other
one the control group (CON). All animals were ad libitum fed with the same total mix
ration (TMR) (Table 1) for 120 days, until slaughtering procedures at 10 months of age.

Table 1. TMR ingredients and nutrient composition (g/kg on dry matter basis) fed to all animals for
120 days.

Ingredients

Wheat straw 150
Ground maize 440
Soybean meal solvent 44% protein 140
Ground barley 125
Wheat bran 110
Hydrogenated triacylglyceride from palm oil 10
Mineral/vitamin supplement 25

Nutrient Composition

Dry matter 867.3
Organic matter 852.2
Crude protein 159.2
Crude fiber 92.2
NDF 256.1
ADF 101.3
ADL 26.3
Ether extract 39.4
Ash 40.1

NDF, neutral-detergent fiber; ADF, acid-detergent fiber; ADL, acid-detergent lignin.
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The PTHL group received the Pinus taeda hydrolyzed lignin additive (PTHL, Oxyphenol®,
I-Green, Padua, Italy).

The chemical composition of Pinus taeda hydrolyzed lignin and its antioxidant activity
were calculated [19,20] and are reported in Table 2.

Table 2. Composition and antioxidant activity of Pinus taeda hydrolyzed lignin (Oxyphenol®) fed to
beef steers for 120 days.

Components (g/kg)

Vanillin 264
Eriodictyol 34
Quercetin 27
Isorhamnetin 16
Rosmarinic acid 14
Quercetin rhamnoside 139
Methyl gallate rutinoside 423
Epigallocatechin-3-methylgallate 15
Ferulic acid derivatives 67

Antioxidant activity (µmol TE g−1 DW)

TEAC 23.9
ORAC 122.44

TE, trolox equivalents; DW, dry weight; TEAC, trolox equivalent antioxidant capacity; ORAC, oxygen radical
absorbance capacity.

The PTHL group received 35 g/day beef each during the 90 days of the trial and
70 g/day beef each for the last 30 days [14]. It was orally administered to each beef in
the self-locking head gate in the feeding front when TMR was unloaded, as described by
Maggiolino, Lorenzo, Salzano, Faccia, Blando, Serrano, Latorre, Quiñones and De Palo [14].

After slaughtering (1099/2009EC; EC 2009), carcasses were chilled at 4 ◦C for 24 h.
Subsequently, samples of LT muscle from the 13th and the 15th thoracic vertebra were
removed from the left half carcass of each animal and dry aged for 35 days in an aging room
at 2 ◦C, 82% of humidity, and 0.4 m/s of ventilation. Then the aging meat was analyzed.

2.2. Colorimetric Analysis

Before color measurements, muscles were freshly cut and allowed to bloom directly
in contact with air for 20 min. Colorimetric parameters (L*, a*, and b*) were measured
as described by Gálvez et al. [21], using a Minolta CR-300 colorimeter (Light Source D65,
Minolta Camera Co., Osaka, Japan). Measurements were collected from a 0◦ viewing
angle with A-pulsed xenon arc lamp, with a reading surface of 8-mm diameter. They were
performed in three different points of each sample and, on each point, three measurements
were performed rotating the detector system by 90◦ compared to the previous one, for a
total of nine measurements for each sample. The mean values were considered for statistical
analysis. Chroma = (a2 + b2)1/2 and hue (◦) = tan−1 (b/a) were calculated according to De
Palo et al. [22].

2.3. Water Holding Capacity (WHC), Warner Blatzer Shear Force (WBSF), Cooking Loss, and pH

Water-holding capacity was determined as described by De Palo et al. [23] using the
centrifugation method. A meat sample of 0.3 g was centrifuged at 30,000× g for 1 h. After
centrifugation, the samples were dried and weighed again, and the centrifugation loss was
calculated as the difference in weight before and after centrifugation.

The Warner–Braztler Shear Force was performed following procedure described by
Gálvez, Maggiolino, Domínguez, Pateiro, Gil, De Palo, Carballo, Franco and Lorenzo [21].
Meat samples were cooked placing vacuum package bags in a water bath with automatic
temperature control (JP Selecta, Precisdg, Barcelona, Spain) at 85 ◦C to an internal tem-
perature of 75 ◦C, measured with a copper constantin fine-wire thermocouple fixed in the
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geometrical center of the sample (Model 5SCTT-T-30-36; Omega Engineering Inc., Norwalk,
CT, USA). Three pieces of meat of 1 × 1 × 4 cm (height × width × length) were removed
parallel to the muscle-fiber direction. Samples were completely cut using a WB shear blade
with a triangular slot-cutting edge (1-mm thickness) at a cut speed of 20 cm/min and a
load of 50 N using an Instron 1140 apparatus (Instron, High Wycombe, UK). After cooking,
same samples were cooled and the percentage of cooking loss was calculated as described
by De Palo et al. [24].

For pH recording a portable pH meter with shaped glass electrode was used to easily
penetrate meat (Carlo Erba pH 710; Carlo Erba Reagenti, Milano, Italy). It was automatically
calibrated for muscle temperature and using solutions with 4 and 7 pH values (Crison,
Lainate, Italy) [25].

2.4. Thiobarbituric Acid Reactive Substances (TBARS), Hydroperoxides, and Protein
Carbonyls Analyses

For TBARS and hydroperoxides analysis, 5 g and 2 g respectively of raw meat were
previously minced and placed in a 50-mL tube and then homogenized with 15 mL deionized
distilled water (DDW). The TBARS were determined as reported by Tateo et al. [26].

Hydroperoxides determination was performed according to De Palo et al. [27].
Protein carbonyls determination was performed as reported by De Palo et al. [28].
Briefly, a 2 g meat sample was previously homogenized in 20 mL of 0.15 M KCl for

2 min. Two aliquots of homogenate (50 µL each) were added with 1 mL 10% TCA and then
centrifuged at 1200× g for 3 min at 4 ◦C to measure protein oxidation. One aliquot was
used as standard adding 1 mL of 2 M HCl solution. The second one was added with 1 mL
of 2 M HCl containing 10 mM 2,4-dinitrophenyl hydrazine (DNPH).

2.5. Superoxide Dismutase, Catalase and Glutathione Peroxidase Activity Evaluation

Samples (2 of 400 mg) of raw meat were homogenized in a tissue homogenizer 4 mL
saline at 4 ◦C. After centrifugation at 4 ◦C for 20 min at 7000× g, the supernatant was
separated and analyzed for the antioxidant enzyme activity determination. Superoxide
dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), and glutathione peroxidase (GPx,
EC1.11.1.9.) activity was measured as described by Maggiolino et al. [29]. The SOD activity
was determined from its ability to inhibit the epinephrine autoxidation. One SOD unit is
defined as the enzyme quantity necessary to inhibit the rate of epinephrine autoxidation
by 50% [30]. The CAT was measured according to the absorbance decreasing of H2O2 at
240 nm (e = 40 M−1 cm−1). One unit of enzyme activity is defined as the amount of enzyme
that is required to degrade 1 micromole of H2O2 in 1 min. The GPx activity was measured
following the GSH oxidation rate by tert-butyl hydroperoxide, catalyzed by GPx [31].

2.6. Volatile Compounds (VOC) Analysis

Five grams meat samples were (Delonghi, Mod. CG660, Treviso, Italy) at 130–150 ◦C
until 70 ◦C at core was reached. Temperature was measured with a copper constantin
fine-wire thermocouple fixed in the geometrical center of the sample (Model 5SCTT-T-30-
36; Omega Engineering Inc., Norwalk, CT, USA) as described by Maggiolino et al. [32].
Then, samples were minced using a commercial grinder (Moulinex/Swan Holding Ltd.,
Birmingham, UK), and analyzed. The volatile compounds were extracted by solid-phase
micro-extraction (SPME) as described by Natrella et al. [33]. The samples were weighed
(1 ± 0.05 g) into 20 mL vials, closed by a rubber septum and an aluminum cap. All samples
were added with internal standard (82 ng 2-octanol) to perform a semi-quantitation and
loaded into an autosampler Triplus RSH (Thermo Fisher Scientific, Rodano, Italy).

2.7. Sensory Analysis

The sensory analysis test was performed by a panel composed of twelve trained
assessors. They were selected according to their sensory acuity according to the British
Standards Institution (BSI, 1993) methods. The meat samples for sensory analysis were
cut into slices (about 2 cm thin) and cooked as described above for VOCs determination.
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After removing fat and connective tissue, the muscle was cut into about 2 cm3 pieces, then
wrapped in pre-labelled foils and placed in a heated incubator until offered to the assessors.
The samples tasting order designs were based on what was reported by MacFie et al. [34]
aiming to balance the carryover effects between samples.

The panel test was organized in eight different sitting sessions for each panelist, in
which five samples were tasted. In total each panelist received 40 samples (two samples for
each of the 20 beef steers). A sensory panel software was used to randomize the samples
order presentation for each assessor. Tested samples were scored on a 1–10 point scale for
tenderness (1 = extremely tough to 10 = extremely tender), juiciness (1 = extremely dry to
10 = extremely juicy), overall assessment (1 = extremely disliking to 10 = extremely licking),
sweetness, unpleasant taste, meaty odor, and unpleasant odor, (1 = extremely weak to
10 = extremely strong).

2.8. Statistical Analysis

The data set was tested for normal distribution and variance homogeneity (Shapiro-
Wilk). Each beef muscle represented an experimental unit. The data set was subjected
to analysis of variance (ANOVA) using the GLM by SAS software [35], according to the
following model:

yi = µ + αi + Ti + εij,

where yij represents all the previous cited patterns as dependent variables; µ is the overall
mean; αi is the constant of the beef random effect; T was the effect of the ith inclusion of the
Pinus taeda hydrolyzed lignin in the diet (i = 1, 2) and εij was the error term. The significance
was set at p < 0.05, and the results were expressed as means and mean standard error.

3. Results

The effects of Pinus taeda hydrolyzed lignin diet addition on colorimetric parameters,
tenderness, and meat properties are reported in Table 3.

Table 3. Effect of Pinus taeda hydrolyzed lignin diet addition on colorimetric and rheological parame-
ters of beef meat dry aged for 35 days (n = 20 samples for each experimental group).

PTHL CON SEM p-Value

Colorimetric Parameters

Lightness (L*) 40.58 44.02 0.65 0.0044
Redness (a*) 12.44 11.05 0.43 0.4843
Yellowness (b*) 1.42 −2.48 0.14 <0.0001
Chroma 10.88 10.54 0.55 0.3594
Hue angle (radians) 0.07 −0.12 0.01 0.0004

Tenderness and Meat Properties

WBSF (N) 44.56 42.15 1.23 0.5821
Cooking Loss (%) 38.45 40.15 3.52 0.3992
WHC (%) 81.41 74.33 2.05 0.0444
pH 5.57 5.61 0.02 0.6124

PTHL, Pinus taeda hydrolyzed lignin group; CON, control group; SEM, standard error of the mean; WBSF, warner
Blatzer Shear Force; WHC, water holding capacity.

Yellowness and Hue angle presented higher (p < 0.01) mean values in PTHL meat
than CON group. On the contrary, CON meat showed higher lightness values (p < 0.01).
Moreover, the higher WHC was reported for PTHL meat (p < 0.05). However, no differences
were observed for redness, WBSF, cooking loss, and pH (p > 0.05).

Table 4 shows oxidative parameters and enzyme activities in meat from animals of
the PTHL and CON groups.
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Table 4. Effect of Pinus taeda hydrolyzed lignin diet addition on oxidative parameters and enzyme
activity of beef meat dry aged for 35 days (n = 20 samples for each experimental group).

PTHL CON SEM p-Value

Oxidative Parameters

TBARS 0.48 0.71 0.02 0.0005
Hydroperoxides 0.32 0.33 0.01 0.4788
Protein Carbonyls 2.61 6.53 0.04 0.2881

Enzyme Activity

Superoxide dismutase (U/mg protein) 35.32 37.43 2.02 0.4662
Catalase (U/mg protein) 3.93 4.05 0.08 0.3145
Glutathione peroxidase (µmol NADPH ox/mg protein) 0.13 0.09 0.008 0.0010

PTHL, Pinus taeda hydrolyzed lignin group; CON, control group; SEM, standard error of the mean.

TBARS showed higher (p < 0.01) values in CON group, whereas enzyme activity
of glutathione peroxidase resulted higher (p < 0.01) in PTHL meat. Hydroperoxides
and protein carbonyls concentrations, as well as SOD and CAT activities did not show
differences between experimental groups (p > 0.05).

The effect of the PTHL dietary supplementation on the VOC profile is shown in Tables 5–8.
Table 5 describes the VOC groups. Hydrocarbons, aromatic hydrocarbons, and alde-

hydes have higher concentrations in meat from CON group (p < 0.01), that showed lower
sulfur compounds (p < 0.01). Particularly, aromatic hydrocarbons and carboxylic acids
indicated that decane, 2,2 dimethyl resulted lower in amounts in CON meat (p < 0.01),
instead eicosane, 2-methyl-, nonadecane 2-methyl (p < 0.01), and octane (p < 0.05) had
higher concentrations (Table 6). The aromatic hydrocarbon m-xylene showed lowest values
in PTHL (p < 0.01). Moreover, PTHL meat showed lower values of butanoic (p < 0.05), hep-
tanoic (p < 0.01), octanoic (p < 0.01), and nonanoic acid (p < 0.01) compared to CON. Volatile
aldehydes and ketones are reported in Table 7. Among aldehydes group, butanal 2-methyl,
benzaldehyde 3-ethyl (p < 0.05), butanal, 3-methyl-, pentanal, hexanal, heptanal, heptanal
2-methyl, nonanal (p < 0.01) recorded higher concentrations in CON group. With regard
to ketones, 2,3 pentanedione (p < 0.01) and 2-butanone (p < 0.05) had lower amounts in
meat from PTHL group, that also showed greater 1-hepten-3-one values (p < 0.01). Table 8
shows the effect of dietary supplementation with PTHL in volatile alcohols, furans, sulfur
compounds, and pyrazines. As to alcohols, 2-propanol (p < 0.01) and 1-hexanol (p < 0.05)
resulted higher in meat from CON group, disulphide dimethyl (p < 0.01) resulted greater
in PTHL meat.

Results of sensory evaluation of meat from both the experimental groups are reported
in Table 9.

Table 5. Effect of Pinus taeda hydrolyzed diet addition on total hydrocarbons, aromatic hydrocarbons,
carboxylic acids, aldehydes, ketones, alcohols, furans, sulfur compounds, and pyrazines of beef meat
dry aged for 35 days (n = 20 samples for each experimental group). Results are expressed as ng/g
of meat.

Volatile Compound (Total) PTHL CON SEM p-Value

Hydrocarbons 449.74 724.41 20.90 <0.0001
Aromatic hydrocarbons 62.70 116.13 7.23 <0.0001
Carboxylic acids 210.13 300.40 30.90 0.0555
Aldehydes 2095.51 4646.21 324.68 <0.0001
Ketones 1021.62 1347.09 130.45 0.0968
Alcohols 404.78 448.40 38.36 0.4331
Furans 6.03 7.96 2.14 0.5336
Sulfur compounds 22.35 10.55 1.56 <0.0001
Pyrazines 11.34 11.95 0.66 0.5224

PTHL, Pinus taeda hydrolyzed lignin group; CON, control group; SEM, standard error of the mean.
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Table 6. Effect of Pinus taeda hydrolyzed lignin diet addition on hydrocarbons, aromatic hydrocarbons,
and carboxylic acids of beef meat dry aged for 35 days (n = 20 samples for each experimental group).
Results are expressed as ng/g of meat.

Volatile Compound PTHL CON SEM p-Value

Hydrocarbons

heptane, 2,2,4,6,6-pentamethyl 33.65 26.63 4.78 0.3149
hexane, 3,3,4,4-tetrafluoro- 13.76 16.99 2.09 0.2913
2,2,7,7-tetramethyloctane 61.86 56.32 6.33 0.5445
Octane 25.20 49.15 7.82 0.0459
nonadecane 2-methyl 104.91 223.51 20.27 0.0008
eicosane, 2-methyl- 133.60 312.25 14.49 <0.0001
decane, 2,2 dimethyl 76.76 39.56 3.55 <0.0001

Aromatic Hydrocarbons

o-xylene(benzene, 1,2-dimethyl-) 25.83 42.84 6.64 0.0888
m-xylene(benzene, 1,3-dimethyl-) 19.61 56.96 1.95 <0.0001
ethylbenzene 17.25 16.32 1.41 0.6463

Carboxylic Acids

hexanoic acid 51.50 27.35 8.46 0.0657
butanoic acid 42.32 76.38 11.01 0.0439
heptanoic acid 7.65 25.03 8.64 0.0005
octanoic acid 10.99 38.33 4.19 0.0003
nonanoic acid 29.22 63.31 6.94 0.0031
ethanoic acid 68.45 69.99 23.22 0.9631

PTHL, Pinus taeda hydrolyzed lignin group; CON, control group; SEM, standard error of the mean.

Table 7. Effect of Pinus taeda hydrolyzed lignin diet addition on aldehydes and ketones of beef meat
dry aged for 35 days (n = 20 samples for each experimental group). Results are expressed as ng/g
of meat.

Volatile Compound PTHL CON SEM p-Value

Aldehydes

butanal, 2-methyl- (butyraldehyde, 2-methyl-) 29.35 52.77 5.82 0.0117
butanal, 3-methyl- (isovaleraldehyde) 20.80 45.52 3.93 0.0004
pentanal 95.95 236.64 21.67 0.0003
hexanal (n-caproaldehyde) 1709.88 3924.47 309.94 0.0001
heptanal 42.48 120.66 12.16 0.0003
heptanal, 2-methyl- 30.11 78.05 4.45 <0.0001
benzaldehyde 41.32 43.27 4.29 0.7516
Benzaldehyde, 3-ethyl- 8.08 12.16 1.04 0.0138
nonanal 48.48 70.56 3.77 0.0008
octanal 59.04 53.73 4.94 0.4586
Acetaldehyde 10.02 8.37 1.70 0.5051

Ketones

2-octanone 113.07 90.46 7.79 0.0568
5-hepten-2-one, 6-methyl- 14.64 13.60 2.57 0.7795
2,3 butanedione (biacetyl) 193.06 277.50 47.24 0.2244
acetone (2-propanone) 113.19 114.78 24.08 0.9634
1-hepten-3-one 10.38 4.54 0.78 <0.0001
3-nonanone 2.60 3.40 0.42 0.2030
2-heptanone 25.20 20.09 6.26 0.5720
acetol (2-propanone, 1-hydroxy) 3.57 3.26 0.46 0.6440
3-acetyl-1H-pyrroline 5.21 4.94 0.65 0.7668
2,3 - pentanedione 4.75 16.93 0.83 <0.0001
2-butanone 38.94 75.12 9.09 0.0125
acetoin (2-butanone,3-hydroxy-) 503.18 729.13 90.91 0.0979

PTHL, Pinus taeda hydrolyzed lignin group; CON, control group; SEM, standard error of the mean.
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Table 8. Effect of Pinus taeda hydrolyzed diet addition on alcohols, furans, sulfur compounds, and
pyrazines of beef meat dry aged for 35 days (n = 20 samples for each experimental group). Results
are expressed as ng/g of meat.

Volatile Compound PTHL CON SEM p-Value

Alcohols

1-butanol, 3-methyl- 53.13 43.14 6.76 0.3116
1-pentanol 81.93 88.44 18.21 0.8037
2-heptanol, 2,6-dimethyl- 13.92 17.04 1.75 0.2243
2-propanol 45.12 46.14 7.34 0.9231
2-propyl-1-pentanol 19.09 19.07 2.75 0.9951
2-propanol, 1-(2-methoxypropoxy) 40.50 74.45 4.65 <0.0001
ethanol 34.87 47.72 4.35 0.0531
1-hexanol, 2-ethyl- 43.66 57.86 4.56 0.0428
carbitol 3.21 3.61 0.47 0.5587
1-penten-3-ol 5.35 5.08 0.52 0.7157
1-octen-3-ol (amyl vinyl carbinol) 50.99 30.63 11.89 0.2434
eucalyptol 13.00 15.22 2.65 0.5630

Furans

furan, 2-pentyl- 6.03 7.96 2.14 0.5336

Sulfur Compounds

dimethyl sulfoxide 2.81 1.92 0.46 0.1868
disulfide, dimethyl 19.54 8.63 1.57 0.0002

Pyrazines

methylpyrazine 3.30 3.70 0.31 0.3727
PTHL, Pinus taeda hydrolyzed lignin group; CON, control group; SEM, standard error of the mean.

Table 9. Effect of pinus taeda hydrolyzed diet addition on sensory evaluation of beef meat dry aged
for 35 days (n = 20 samples for each experimental group).

Sensory Profile PTHL CON SEM p-Value

Tenderness 7.78 7.55 0.06 0.4478
Juiciness 7.75 7.04 0.03 0.0392
Sweetness 6.52 6.67 0.04 0.2122
Unpleasant taste 3.35 3.65 0.06 0.1558
Unpleasant odor 4.45 5.12 0.04 0.0281
Meaty odor 6.68 7.54 0.05 0.0015
Overall assessment 7.75 7.05 0.06 0.0043

PTHL, Pinus taeda hydrolyzed lignin group; CON, control group; SEM, standard error of the mean.

4. Discussion

Color is the main attribute that influences consumer purchase and acceptability of
meat [36] and it has become an important factor for the meat industry and manufacturer
to pay attention to [37]. Moreover, it is widely known to be affected by aging, but the
mechanisms by which it is affected under retail display conditions are overall unknown [6].
Our results showed that Pinus taeda hydrolyzed lignin supplementation affects colorimetric
parameters of 35-days dry-aged beef. Although redness and chroma were not affected, the
antioxidant addition led to lower lightness values and higher yellowness and hue values
after 35 dry-aging days. The lower lightness could be explained by less light reflection
and this should be linked to the moisture loss [6,38], and to the different water-holding
capacity. During aging there is a muscular fibers breakdown that can let the water pass
from the intracellular to the extracellular districts, influencing the meat reflectance and
consequently lightness and water-holding capacity [39]. It could be supposed that this
happened with lower intensity in meat of animals fed with antioxidant addition. In fact,
meat from these animals was characterized by higher water-holding capacity. Previous
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studies [14], although conducted on meat slices and not on entire cuts (as in the present
trial is) and with a shortest aging time (15 days), reported no effect of antioxidants dietary
supplementation on meat lightness nor redness, but a great effect on yellowness. Similarly,
considering these two last parameters, our results reported that at 35 days, on a fresh
cutting surface, yellowness values resulted higher in meat of animals fed with Pinus taeda
hydrolyzed lignin. Red meat is characterized by different oxidation processes that involve
multiple substrates and affect colorimetric parameters. Haem pigment, the most important
compound affecting meat redness [40], is believed to be linked also to lipid peroxidation,
serving as a catalyst to these reactions [41]. Lipid oxidation itself is one of the most
important processes affecting meat yellowness. Probably, the antioxidant activity exerted
by the polyphenols characterizing the Pinus taeda hydrolyzed lignin was able to reduce
meat oxidation, decreasing the yellowness after aging [42]. This is an important result from
both the consumers’ and sellers’ point of view, in fact researchers reported that b* values
are positively correlated with consumer meat appreciation whereas redness is negatively
correlated to it [43].

The pH values did not showed differences due to polyphenols addition, and the
values observed were those usually reported in aged beef meat [44]. It is well known
that the ultimate pH can affect meat quality, particularly rheological parameters such as
water-holding capacity and cooking losses [45], but the lack of differences and the optimal
values reached after 35 days could be related to the lack of differences in cooking loss,
although WHC was slightly affected. Tenderness was not affected by polyphenols addition,
since our values can be considered good ones for 35 days-aged beef steaks [46].

The Pinus taeda dietary supplementation is associated with the production of meat
characterized by lower TBARS levels, similarly to what is reported by other authors [42], but
no differences were observed for other oxidative catabolites. It was reported that dietary
polyphenols inclusion in ruminants can affect fatty acid metabolism and its metabolic
pathways, influencing the lipid oxidation [14,45]. This result can be related to the higher
glutathione peroxidase activity observed. This enzyme is one of the in vivo cell defense
systems against oxidative damage [47] and polyphenols dietary addition seems to enhance
it, probably improving some anti-oxidative defense equipment [42] resulting also in best
meat color stability and a reduced oxidative catabolites production [14].

Raw meat is weakly flavored, as the heat process during cooking provides a wide num-
ber of volatile compounds and intermediate products, produced through Maillard reaction,
lipid oxidation, and/or vitamin degradation [3,7], enhancing meat flavor development and
aroma generation. Our trial resulted in a total of 55 volatile compounds, identified after the
grill cooking process. They are classified as hydrocarbons (n = 7), aromatic hydrocarbons
(n = 3), carboxylic acids (n = 6), aldehydes (n = 11), ketones (n = 12), alcohols (n = 12), furans
(n = 1), sulfur compounds (n = 2), and pyrazines (n = 1).

As reported by current literature in beef, lamb, pork, and equids meat, aldehy-
des are the predominant chemical group after cooking process and hexanal is the most
abundant [8,26,29,32,48–52]. Hexanal is responsible of the meat meaty, grassy, and fatty
odors, and is positively correlated with consumers’ sensory evaluation. Meat derived
from animals fed with PTHL addition is characterized by lower aldehydes release, and
also by lower concentration of hydrocarbons and aromatic hydrocarbons. These last
VOCs families have less impact on meat flavor, probably also due to their relatively high
odor threshold values [53]. The lower volatile aldehydes content can be due to the re-
duction of the rate of lipid and protein oxidation and, consequently, the decreasing of
production of precursor, main end products, and chemical group composition of volatile
compounds [11,54,55]. Moreover, pentanal, that is associated to rancid off-flavor (metal-
lic, green, earthy, beany) [56], is less produced from meat from the PTHL groups. This
could potentially have a good impact on the sensory evaluation, reducing the off-flavors,
considering the low flavor thresholds that characterized aldehydes.

Butanoic acid and other carboxylic acids, as ethanoic acid, can arise from amino acids
fermentation by Strickland reaction [9]. However, although these acids are released in
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lower quantities by PTHL meat, they are generally poorly produced. In the same way,
sulfur compounds have low concentrations, although they are higher in samples from the
PTHL group. Some authors reported that these compounds were found to be desirable in
relation to cooked beef flavor [57]. The sulfur-containing compounds should be produced
by the degradation of sulfur amino acids, such as cysteine and methionine [7]. Alcohols can
be secondary products of lipid oxidation, and among these, 2-propanol and 1-hexanol were
affected by dietary PTHL supplementation, showing lower values. These are considered
responsible for resin, flower and green aroma [58], and the lower presence of these in
PTHL meat could indicate a decrease in lipid oxidation with a potential positive effect on
sensory evaluation.

Pinus taeda hydrolyzed lignin affected some sensory patterns. Both samples from
PTHL and CON groups, at 35 days of ageing, had an overall positive evaluation by asses-
sors. Meat from animals fed with polyphenols addition resulted juicier, probably due to
differences in WHC that, although minimal, might have been able to affect assessors’ juicy
perception. Moreover, the differences observed in the VOCs amount release may have im-
pacted the meat aroma evaluation. Aldehydes had great impact on sensory evaluation [59],
and differences in hexanal production, the most abundant VOC, characterized by relatively
low perception thresholds and perceived as meaty odor, should be responsible of the differ-
ences in meaty odor evaluation. Although meaty odors showed higher sensory test scores
in the meat from CON group, it must be underlined that this meat was scored with higher
unpleasant odor scores. Probably, the higher pentanal production can also have affected
this sensory evaluation because of its high correlation with rancid off-flavor [56]. Despite
these contrasting results, meat obtained with PTHL dietary supplementation resulted in a
better overall assessment score.

5. Conclusions

The inclusion of Pinus taeda in beef diet delayed the oxidative pathways in 35 days dry-
aged steaks. Particularly, an increase of glutathione peroxidase activity was observed in
the PHTL meat, which, consequently, resulted in a better oxidative stability and a positive
increase of yellowness. Moreover, the addition of PTHL improved the profile of volatile
compounds and sensory panel evaluation. Although hexanal production is inhibited,
also off-flavor volatile compounds generation as pentanal is reduced. Furthermore, beef
obtained by animals supplemented with PTHL resulted in better juiciness and overall
assessment score. Our results showed that use of natural substances with high antioxidant
activity can be considered an effective tool for the improvement of meat quality and of
oxidative stability.
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