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Abstract

Background: Despite pharmacological treatment, many individuals with multiple sclerosis (MS) continue to
experience symptoms and medication side effects. Exercise holds promise for MS, but changes in brain structure
following exercise have not been thoroughly investigated, and important cognitive and psychosocial variables are
rarely primary outcomes. The aim of this pilot study was to investigate whether a 12-week exercise intervention
would improve white matter integrity in the brain, or cognition, symptoms of fatigue, and depressed mood for
individuals with relapsing-remitting MS (RRMS).

Method: Thirteen participants completed 12 weeks of speeded walking. Baseline and post-intervention testing
included 3T diffusion tensor imaging (DTI) to assess white matter and neuropsychological testing to assess
cognition, fatigue, and mood. Image pre-processing and analyses were performed in functional magnetic
resonance imaging of the Brain Software Library.

Results: Post-intervention, there were no significant changes in white matter compared to baseline. Post-
intervention, individuals with RRMS performed significantly better on the Symbol Digit Modalities Test (SDMT),
reported fewer perceived memory problems, and endorsed less fatigue. Performance was not significantly different
on Trails or Digit Span, and there were no significant changes in reports of mood.

Conclusion: Although 12 weeks of speeded walking did not improve white matter integrity, exercise may hold
promise for managing some symptoms of RRMS in the context of this study population.
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Feasibility
What uncertainties existed regarding the feasibility?

e Would individuals with RRMS who meet the study’s
eligibility criteria be able to complete a 12-week ex-
ercise intervention?

e Given the lack of exercise interventions in MS that
include brain imaging as an outcome measure, can a
novel brain imaging method (such as DTI) be used
to examine white matter microstructure pre- and
post-exercise?

What are the key feasibility findings?

e Eligible individuals with RRMS were able to
complete the 12-week exercise intervention, with a
mean adherence of 98.29%.

e DTI data was acquired pre- and post-intervention
for 13 participants. Microstructural white matter al-
terations in the brain were not detected post-
intervention using DTI, but imaging findings may be
limited by a small sample size. Additionally, func-
tional brain changes were not examined in the
current study.

What are the implications of the feasibility findings for

the design of the future study?

e It was feasible for individuals with RRMS who met
the study’s eligibility criteria to complete the 12-
week exercise intervention.

e Future studies with larger sample sizes that employ
a multi-modal imaging approach (e.g., include func-
tional MRI alongside DTT) may further clarify the
extent to which DTI is an effective means of track-
ing the efficacy of exercise interventions for individ-
uals with RRMS. Multi-modal imaging approaches
would also provide additional information about
functional changes in the brain.

Background

Multiple sclerosis (MS) is a chronic inflammatory dis-
ease characterized by focal white matter degeneration
and changes in gray matter volume. Given that the le-
sions associated with MS can be distributed throughout
the central nervous system, individuals with MS often
experience a constellation of sensory, motor, and cogni-
tive symptoms, as well as issues with fatigue and mood
[1]. Because there is currently no cure for MS, and indi-
viduals are typically diagnosed in early adulthood, most
individuals require treatment for the majority of their
lives [2]. Pharmaceuticals are often prescribed for long-
term medical management, but these are costly and have
variable effectiveness with possible unwanted side effects
[3, 4]. Thus, there is a critical need for the implementa-
tion of low-cost and side effect-free behavioral interven-
tions to help with symptom management.
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In addition to medical management, exercise holds
promise for individuals with MS. Exercise has shown
benefits in the prevention of cognitive decline in aging
populations [5] and in the management of other types of
neurological disorders, such as Parkinson’s disease and
Alzheimer’s disease [6, 7]. Importantly, exercise
interventions can be accessible (e.g., can be completed
without expensive equipment; available to diverse socio-
economic populations) and are non-invasive [8].

To date, several reviews and meta-analyses have
looked at the clinical impact of exercise interventions for
individuals with MS. These studies have provided early
evidence that exercise interventions have modest effects
on improving some MS symptoms [9, 10]; however, the
primary outcomes of these studies have largely been
confined to physical measures (e.g., walking, strength,
mobility). There is preliminary evidence that exercise
may contribute to small improvements in cognition [11],
fatigue [8, 12], and mood [13], but these cognitive and
psychosocial variables were often not the primary out-
come measures.

Currently, a significant limitation in the literature re-
lates to the lack of investigations on changes in brain
structure that may result from exercise interventions
and relate to improved symptoms of MS. Indeed, the use
of neuroimaging techniques, such as magnetic resonance
imaging (MRI), to examine the neural effects of exercise
in individuals with MS has been identified as a major
gap in the literature [14, 15]. MRI is a non-invasive,
safely repeatable technique that allows for the examin-
ation of brain structure and is typically used in the as-
sessment and diagnosis of MS [16]. One landmark study
performed by Leavitt and colleagues [17] found that the
12-week stationary cycling (3 times per week) contrib-
uted to the increased hippocampal volumes, increased
resting-state functional connectivity, and improved
memory performance.

To date, very few studies have examined diffusion ten-
sor imaging (DTI) metrics pre-post exercise interven-
tion. DTI is a type of MRI scan that measures water
diffusion in the brain to provide indices of white matter
integrity [18, 19]. DTT’s sensitivity to detect microstruc-
tural characteristics of white matter makes it an ideal
tool to examine possible neuroprotective effects of exer-
cise on individuals with MS [20].

In preparation for a larger study, the goal of this pilot
study was to examine whether the implementation of a
12-week speeded walking exercise intervention would
improve white matter integrity (as measured by DTI),
cognition, or symptoms of fatigue and depressed mood
for individuals with relapsing-remitting MS (RRMS).
Secondary objectives were related to the feasibility of the
pilot trial (e.g., would eligible individuals with RRMS
complete the exercise intervention? Can DTI be used to
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examine white matter microstructure pre- and post-
exercise?)

Methods

Recruitment

Participants were recruited from the local health author-
ity’s permission to contact program. The permission to
contact program connects eligible researchers with indi-
viduals who have declared an interest in participating in
research. Interested participants contacted the research
team via telephone or email, and they were assessed for
eligibility. Based on the largest sample available within
both funding and access to MRI constraints, 16 individ-
uals were recruited

Sample size

Sample size was based on the largest sample available
both within funding and access to MRI constraints and
is consistent with than previous MRI-based intervention
studies involving individuals with MS [17, 27].

Participants

Participants were eligible if they were diagnosed with
RRMS, at least 19 years of age, fluent in English, able to
walk without assistance or rest for at least 300 m (con-
sistent with Expanded Disability Status Scale score of 4.5
or less), and able to complete study tasks (e.g., exercise
intervention, neuropsychological testing) independently.
Exclusion criteria included having any MRI contraindi-
cations (e.g., metal implants, pacemakers), claustropho-
bia, and any comorbid neurological disorders. All
participants attended pre- and post-intervention MRI
and interview appointments, where neuroimaging,
neuropsychological testing, and self-report measures
were completed.

Imaging data acquisition

DTI data were collected by a trained MRI technician
with one of the study team members present at West
Coast Medical Imaging (Victoria, BC) on a 3T GE Signa
Pioneer MRI scanner pre- and post-intervention. The
images were acquired with an EPI sequence, axially, with
the following parameters: TR = 8000 ms, TE = 101 ms,
flip angle = 90, 52 slices, voxel size = 1.4 x 14 x 2.0
mm. There were 48 images acquired for each scan: 45
diffusion-weighted images (b = 1000 s/mm?) and 3 non-
diffusion-weighted images (b = 0 s/mm?). The acquisi-
tion took approximately 6 min.

Neuropsychological testing and self-report measures

Appointments took place at the University of Victoria.
Neuropsychological and self-report measures were
administered by a trained graduate student in clinical
neuropsychology. Pre- and post-intervention
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neuropsychological testing was conducted using the
Symbol Digit Modalities Test (SDMT) [21], Trail Mak-
ing Test [22], and Digit Span [23] to assess cognition.
Participants also completed pre- and post-intervention
self-report measures to assess perceived cognitive impair-
ment (attention/concentration, retrospective memory,
prospective memory, and planning/organization; Per-
ceived Deficit Questionnaire; PDQ) [24] fatigue (Modified
Fatigue Impact Scale; MFIS) [24, 25], and mood (Beck De-
pression Inventory 2nd edition, BDI-II) [26].

Speeded walking intervention

The exercise intervention, based on a treadmill walking
intervention in a previous pilot trial [27], involved inde-
pendent speeded walking three times per week at in-
creasing intervals (15 to 35 min) over the course of 12
weeks (36 sessions total). Participants wore activity mon-
itors (Fitbits) to time their sessions, ensure they were
reaching a target heart rate zone of at least 50% of max-
imum predicted heart rate, and encourage adherence.
They also logged their walking activity on an exercise
tracking form provided to them. Participants were asked
not to stop any consistent exercise (e.g., weekly class) in
which they were already engaged, nor begin any new ex-
ercise that was unrelated to the study. Individuals with
MS were not receiving any concurrent physiotherapy
during the study period. Participants were asked to re-
port any adverse events to the study team.

Data analyses

Changes in DTI metrics (fractional anisotropy; FA, mean
diffusivity; MD, axial diffusivity; AD, and radial diffusiv-
ity; RD), neuropsychological performance, and MS
symptoms from pre- to post-intervention were exam-
ined. Image pre-processing and analysis was performed
using FMRIB Software Library [28]. Eddy Correct was
used to correct for eddy current distortions and head
movement. Next, brain extraction tool was used to re-
move the non-brain tissue, and then, brain-extracted im-
ages were visually inspected to confirm only non-brain
tissue was removed [29]. FA maps were generated using
DTIfit and input into Tract-Based Spatial Statistics
(TBSS) [30], followed by randomise with threshold-free
cluster enhancement. This was repeated for MD, AD,
and RD.

Non-imaging group-level demographic and inferential
statistical analyses were performed in R Studio. The as-
sumption of normality was assessed using the Shapiro-
Wilk test. Deviations from normality were observed for
Trails A (W=.793, p=.006), Trails B (W=.866, p=.046),
Digit Span (W=.825, p=.014), BDI-II (W=.865, p=.045),
PDQPlanning&Organization (W:'8221 P:~013): but not for
SDMT (W=.921, p =.257), MFIS (W=.983, p=.990), PDQ
(W=.930, p = .341), PDQusiention (W= 974, p = .939),
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PDQProspectiveMemory (W =912, p= 194), PDQRetrospective»
Memory (W=.879, p =0.068). Thus, non-parametric
Wilcoxon signed-rank tests (Trails A, Trails B, Digit
Span, BDI-II, and PDQpianning&Organization) and paramet-
ric paired Student ¢ tests (SDMT, MFIS, PDQ, PDQ ten-
tions and PDQProspectiveMemory, PDQRetrospectiveMemory) and
were used to compare post-intervention scores to pre-
intervention scores on neuropsychological tests and self-
report measures. Corresponding 95% confidence
intervals were also calculated for mean paired differences
(paired sample ¢ tests) and Hodges-Lehmann Estimate
(Wilcoxon signed-rank tests). Normed (for age, educa-
tion, and sex where available) neuropsychological test
scores were used.

Results

Participants

Sixteen individuals with RRMS were recruited for the
study, but three individuals withdrew prior to study
completion. Remaining participants included 10 females
and 3 males with RRMS (mean age= 58.76 + 11.07
years). Please see Table 1 for further demographic infor-
mation. One female’s imaging data was omitted from the
DTI analysis due to missing post-intervention scans. Re-
cruitment occurred in June 2018. Data collection took
place from August 2018 to November 2018. Participants
adherence was 98.29% (mean sessions completed =
35.38 + 0.77 out of a total of 36 sessions). No adverse
events were reported to the study team.

DTI

Post-intervention there were no significant changes in
any of the DTI metrics, including FA, MD, AD, or RD
(p<0.05, corrected for multiple comparisons), compared
to baseline. Extracted mean FA, MD, AD, and RD values
are reported in Table 2.

Cognition, fatigue, and mood
Post-intervention, individuals with RRMS performed sig-
nificantly better on the SDMT. Additionally, individuals
with RRMS perceived fewer prospective memory prob-
lems (PDQ) and reported fewer symptoms of fatigue
(MFIS) compared to pre-intervention (Table 3).
Post-intervention performance on Trails A, Trails B,
and Digit Span was not significantly different than pre-

Table 1 Participant demographics

Age (mean * SD) 58.76 + 11.07 years

Education (mean + SD) 15.15 + 2.08 years
10 females, 3 males

21.03 £ 16.06 years

Gender
Time since diagnosis (mean + SD)
Treated for depression (percent) 0%

Co-morbid psychiatric condition (percent) 0%
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Table 2 Pre- and post-intervention DTl metrics, including mean
fractional anisotropy (FA), and mean, axial, and radial diffusivity
(MD; AX; RD; mm?/s)
Pre-intervention DTl metrics
FA MD AX RD FA MD AX RD
0436 000081 0.00121 0.00061 0429 000081 0.00119 0.00061
0499 0.00075 0.00119 0.00053 0510 0.00073 0.00117 0.00051
0.508 0.00070 0.00112 0.00049 0493 0.00071 0.00112 0.00051
0.520 0.00070 0.00115 0.00048 0.517 0.00071 0.00116 0.00049
0483 0.00075 0.00118 0.00054 0479 0.00075 0.00117 0.00054
0.00075
0.00075
0.00073
0.00077
0.00076
0.00073
0.00075
0.00075

Post-intervention DTI metrics

0.503
0495
0498

0.00122
0.00119
0.00117

0.00052
0.00053
0.00051

0.505
0482
0497

0.00074
0.00075
0.00074

0.00119
0.00119
0.00117

0.00051
0.00054
0.00052
0477
0477
0.516

0.00120
0.00118
0.00119

0.00055
0.00054
0.00050

0463
0470
0.508

0.00078
0.00076
0.00073

0.00119
0.00117
0.00117

0.00057
0.00055
0.00050
0489
0492

0.00119
0.00118

0.00053
0.00053

0477
0486

0.00076
0.00075

0.00118
0.00117

0.00054
0.00053

intervention performance. There were also no significant
changes in reports perceived problems with attention,
retrospective memory, or planning (PDQ) or mood
(BDI-II) post-intervention compared to pre-intervention
(See Table 3).

Discussion

This study investigated whether 12 weeks of speeded
walking would significantly improve white matter integ-
rity in the brain, cognition, or symptoms of fatigue and
depressed mood for individuals with RRMS. It also
examined the feasibility of the current pilot trial to be
expanded for a future study. Following 12 weeks of
speeded walking, individuals with RRMS performed bet-
ter on a cognitive measure involving processing speed,
reported fewer perceived prospective memory problems
and significantly less fatigue. There were no changes in
white matter integrity, as measured by DTIL Overall, it
was feasible for individuals with RRMS to complete the
12-week exercise intervention with excellent adherence.
There were also no adverse events reported.

Brain changes

MS is characterized by demyelination and degeneration
of axons, and the use is MRI is integral in clinical assess-
ment and diagnosis [16, 31]. The current pilot study did
not observe any white matter changes in individuals with
RRMS following 12 weeks of speeded walking, as
assessed using DTIL. Although there were not significant
improvements in white matter integrity, there were also
no significant declines in white matter integrity, as may
be expected in a demyelinating disorder such as MS
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Table 3 Pre- and post-intervention performance on neuropsychological tests and self-report measures
Pre- Intervention Scores Post-Intervention Scores
Neuropsychological . . Difference*
Tests Mean Median SD Range Mean Median SD Range (95% CI)

-14.7

SDMT 48.23 55 22.54 16-94 62.92 61 22.02 32-97 (-22.8 10 -6.58)
. -0.50

Trails A 69 82 31.20 4-95 74.92 82 20.27 25-96 (-19.0 to 10.0)
. 3.50

Trails B 64.85 81 35.10 .07-97 54.77 58 37.38 .07-98 (-12.0 t0 36.0)
. -13.0

Digit Span 41.31 50 20.98 5-75 48.77 50 29.66 2-91 (-39.5 to 12.5)

Self-Report . . Difference*
Measures Mean Median SD Range Mean Median SD Range (95% CT)

6.77

MFIS 3231 30 14.86 14-59 25.53 29 12.75 7-42 (.026 to 13.5)
3.00

BDI-1I 8.54 5 8.46 0-28 5 3 4.36 0-13 (:0.50 to 10.0)
2.08

PDQ 20.92 22 9.11 6-35 18.85 20 9.65 3-33 (2,17 to 6.33)
0.62

PDQAdtention 7.23 7 3.24 2-13 6.62 7 3.33 1-12 (:0.99 t0 2.22)
1.08

PDQPmspectiveMemory 4.54 5 2.07 1-7 3.46 3 1.98 0-7 (024 tol 91)
-0.07

PDQRetrospectiveMemory 4.85 S 2.12 1-9 4.92 4 247 1-8 (—148 to 133)
1.00

PDQPlanmng&Organizalion 431 5 2.81 1-8 3.85 4 3.18 0-10 (-200 to 400)

"Represents mean difference (for parametric paired Student t-tests; grey rows) and Hodges-Lehmann estimate (for non-parametric Wilcoxon

signed-rank tests; white rows).

[31]. Indeed, several studies have observed longitudinal
changes in DTI metrics in individuals with MS. Onta-
neda and colleagues [32] observed significant increases
in AD in enhancing and chronic lesions over 4 years of
follow-up. Additionally, Kolasa and colleagues [33]
found increases in FA and AD and decreases in RD in
regions of the corpus callosum over 4 years of follow-up.

Changes in brain structure and function following ex-
ercise interventions, specifically, have not yet been thor-
oughly investigated in individuals with MS [15].
Although there have only been a few pilot trials [17, 27]
even fewer have used DTI. Recently, Tavazzi and col-
leagues [34] used TBSS, among other imaging measures,
to assess any differences in DTI metrics in 29 individuals
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following 4 weeks of rehabilitation exercises for MS that
involved resistance or endurance training. Similar to
our findings, there were no changes in any DTI met-
rics. Interestingly, they observed increased functional
connectivity in the precentral and post-central gyrus
at the end of the 4 weeks, but these findings did not
hold at a second follow-up 3 months later. Future re-
search in this area would benefit from the use of
multi-modal imaging approaches, including functional
MRI, DTI, and other structural imaging methods (e.g.,
T1 and FLAIR scan), to gain a more complete under-
standing of possible changes in the brain resulting
from exercise intervention.

Cognition

Up to 70% of individuals with MS experience reductions
in cognition, especially for tasks that involve information
processing, executive function, and memory [35-37].
The current study found that individuals with RRMS
performed significantly better on the SDMT following
12 weeks of speeded walking, but not Trails or Digit
Span. The SDMT is considered the measure of choice
for MS as it has shown to be sensitive to declines in cog-
nition observed in MS and has correlated well with other
measures of disease progression, such as atrophy and le-
sion burden [38, 39]. To date there are mixed findings
on the impact of exercise on cognition in MS [11]; while
some studies have found exercise improved performance
on the SDMT [40] other studies have found no such re-
lationship [17, 41]. As in other psychosocial outcomes,
this heterogeneity is possibly attributed to methodo-
logical issues, such as diversity in exercise interventions,
and cognition not included as a primary outcome [11].

Fatigue

Fatigue is among the most commonly reported symp-
toms of MS [42, 43]. The current study found that indi-
viduals reported significantly less fatigue after 12 weeks
of speeded walking. This result is consistent with find-
ings from other meta-analyses [12]. It is possible that ex-
ercise decreases pro-inflammatory cytokines, which are
thought to be related to fatigue [6, 44]. Still, there is het-
erogeneity in findings, perhaps due to the variability in
exercise interventions, ranging from endurance to
strength training to mixed methods as well as fatigue be-
ing included as a secondary outcome measure [8].

Mood

Low mood is a common symptom of MS, and up to 50%
of individuals diagnosed with MS have experienced de-
pression at some point in their lifetime [45, 46]. The
current study did not find evidence for significant reduc-
tions in reports of depressed mood following 12 weeks
of speeded walking. However, it is important to consider
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that this result may be particular to our study given that
at baseline, the majority of participants reported minimal
symptoms of depression. It is possible that the impact of
exercise on mood may only be evident in individuals
with more severe levels of depression. For example, in a
meta-analysis, Dalgas and colleagues [13] found that the
studies that demonstrated positive impacts of exercise
on mood in MS had participants with higher baseline
levels of depression.

Study limitations and future directions

As a pilot trial, the current study is limited by a small
sample size, which is comprised exclusively of individ-
uals with RRMS subtype, as has been common in re-
search to date [8]. The current study did not detect any
structural white matter changes in the brain following
the exercise intervention; this may be due, in part, to a
limited sample size, but could also be influenced by add-
itional factors (e.g., that the intensity or duration of the
exercise was insufficient). Future research would benefit
from larger samples that also include individuals with
progressive forms of MS to help clarify this, as well as
determine whether imaging, cognitive, and psychosocial
outcomes are influenced by MS subtype. Future studies
may also benefit from increasing the intensity of the pre-
scribed aerobic exercise, as tolerated by individuals with
MS, in accordance with activity recommendations for in-
dividuals with MS [47, 48].

The current pilot study also employed a within-
persons pre-post design. As research in this area ex-
pands beyond pilot trials, the inclusion of additional
control groups (i.e., individuals with MS who resume ac-
tivity as normal) is needed to determine the extent to
which exercise may impact the typical progression of
pathological changes that occur in MS.

There are also a number of participant characteristics
that may be unique to our participant sample. For ex-
ample, it is also notable that some of our participants
were already fairly active. Future research may choose to
selective recruit sedentary participants to assess whether
exercise has a greater impact for these individuals. Add-
itionally, the majority of our participants were not cogni-
tively impaired at baseline; many performed at or above
the 50th percentile. Thus, future research may wish to
specifically recruit individuals with cognitive impairment
to better assess the impact of exercise on individuals
with cognitive impairment.

Furthermore, the extent to which the observed im-
provements in fatigue and some aspects of cognition
may be long lasting is unclear. It is possible that these
improvements may eventually plateau, or otherwise
decline across time. Thus, it would be useful for future
research to track participants longitudinally over a num-
ber of years, with frequent follow-up appointments.
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Additionally, follow-up studies could use a design that
captures change over time prior to the intervention, so
this change can be compared to change over the course
of the intervention. Importantly, given the traditional
focus on physical measures (e.g., walking, strength, mo-
bility) future exercise research trials should consider in-
cluding frequently observed psychosocial and cognitive
symptoms as primary outcome measures. Additionally,
given the importance of patient-oriented research, future
research studies may benefit from the inclusion of min-
imal clinically important difference scores, which reflect
perceived benefits from the patient [49].

Lastly, although the current study did not detect any
structural white matter changes in the brain following
the exercise intervention, it did not investigate whether
any functional changes in the brain took place or
whether there were changes in gray matter. There is pre-
liminary evidence from other pilot trials that exercise in-
terventions have contributed to increased resting state
functional connectivity in the thalamo-cortical regions
[50]. Thus, future research would benefit from a multi-
modal imaging approach that also include functional ap-
proaches such as functional MRIL It is notable that DTI
may have limited clinical use for tracking the efficacy of
exercise interventions for RRMS. Thus, multi-modal re-
search may also further clarify the extent to which DTI
is an effective means of tracking the efficacy of exercise
interventions for people with RRMS.

Conclusions

Following the implementation of a 12-week walking ex-
ercise intervention, individuals with RRMS performed
significantly better on a measure of information process-
ing speed, perceived fewer prospective memory prob-
lems, and reported fewer problems with fatigue. White
matter integrity did not significantly decrease or in-
crease. Together, this suggests that although there is not
enough evidence to suggest speeded walking is repara-
tive, 12 weeks of speeded walking holds promise for
managing some symptoms for individuals with RRMS.
The findings of this study should be interpreted within
the context of the study design and limited study
population.
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