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Identification of Topological 
Network Modules in Perturbed 
Protein Interaction Networks
Mihaela E. Sardiu1, Joshua M. Gilmore1,†, Brad Groppe1,‡, Laurence Florens1 & 
Michael P. Washburn1,2

Biological networks consist of functional modules, however detecting and characterizing such modules 
in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here 
we used an advanced mathematical approach named topological data analysis (TDA) to interrogate 
two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by 
isolating complexes after protein complex components were deleted from the genome. In the second, 
we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with 
a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network 
modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define 
TMNs as proteins that occupy close network positions depending on their coordinates in a topological 
space. TNMs provide new insight into networks by capturing proteins from different categories 
including proteins within a complex, proteins with shared biological functions, and proteins disrupted 
across networks.

Protein interaction networks are dynamic systems. They differ depending on cellular context and under different 
conditions. Perturbing protein complexes and protein interaction networks is a valuable way to study protein 
complex dynamics. For example, in S. cerevisiae, one effective way to perturb a protein interaction network is to 
study protein complexes in genetic deletion backgrounds1–4. In a recent study of mammalian protein complexes, 
the authors found variable members of complexes in different cell types and suggest paralogue switching as an 
important mechanism of protein complex control5. In diseases like cancer, altered networks due to mutation is 
an area of active study6. In one study, an analysis of a mutant EGFR interactome in lung cancer cell lines facili-
tated the identification of compounds that could overcome drug resistance7. A recent large scale analysis found 
widespread disruption of protein interactions by human disease-associated missense mutations8. Differential 
protein interaction network analysis leads to new insights into biology9, and methods continue to be developed 
to facilitate such analyses10.

One major challenge in the study of perturbed protein interaction networks is how to visualize and analyze 
this data in order to gain deeper insights into the organizational principles of such networks. One promising and 
emerging approach for analyzing large scale datasets is topological data analysis (TDA)11. TDA functions as a 
geometric approach for analyzing multidimensional complex data and to identify key features of the data which 
may not be apparent with traditional methods. TDA has been successfully used in very diverse areas of research 
like gene expression profiling on breast tumors12, identification of different types of diabetes13, viral evolution14, 
spinal cord and brain injury15, disease response to pathogens16, human recombination17 voting behavior of the 
members of the US House of Representatives11, and characteristics of NBA basketball players via their perfor-
mance11. We have used TDA to study the conservation of human and yeast chromatin remodeling networks18 and 
the associations of the uncharacterized WDR76 protein with DNA damage and chromatin remodeling proteins19.

In this body of work, we investigated the capabilities of TDA for the analysis of perturbed protein interaction 
networks from two different species. First, we generated a deletion network dataset of the INO80 complex in S. 
cerevisiae. INO80 is a conserved protein complex with important biological roles in transcription, chromatin 
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structure, DNA replication and DNA repair20–23. For the analysis of the INO80 perturbed network, we affinity 
purified wild-type protein complexes and compared them to the affinity purification of protein complexes when 
certain components of the INO80 complex were deleted from the strain analyzed. We next reanalyzed a human 
histone deacetylase (HDAC) protein interaction network centered on the Sin3 complex that was perturbed with 
the HDAC inhibitor suberoylanilide hydroxaminic acid (SAHA)24. SAHA is an important human therapeutic 
having been approved for treatment of patients with progressive, persistent, or recurrent cutaneous T-cell lym-
phoma25,26, and SAHA is also the subject of many additional cancer clinical trials27. TDA greatly facilitated the 
organization of associated proteins in clusters and created a novel visual representation of the interaction net-
works. In our analysis of both networks we were able to rapidly identify biologically relevant modules using TDA. 
Surprisingly, these modules could contain proteins with different features like proteins in a complex, proteins with 
distinct biological functions, or proteins altered by the system. Capturing these classes of proteins would typically 
require multiple different computational approaches asking a specific question. Here, we term these modules 
Topological Network Modules (TNMs), which are proteins that occupy close network positions depending on 
their coordinates in a topological space.

Results
Quantitative Proteomic Analysis of the Disrupted S. cerevisiae INO80 Complex. To begin 
our investigation into the topology of perturbed protein interaction networks, we first carried out a quantita-
tive proteomic analysis of the S. cerevisiae INO80 protein interaction network. Yeast INO80 consists of ten evo-
lutionarily conserved subunits orthologous to the human INO80 complex and five yeast specific subunits22,23. 
Here, we affinity purified the proteins associated with all five yeast specific subunits and nine of the ten con-
served subunits. Replicates were also performed in our analysis which resulted in a total of 31 purifications 
(Supplementary Table S1A). Identification of proteins was accomplished using multidimensional protein iden-
tification technology (MudPIT)28. The relative abundance of proteins was obtained from spectral counts and are 
represented by dNSAF values29. All 15 subunits of the INO80 complex were identified in a reproducible manner 
in these affinity purifications (Supplementary Figure S1A–O and Supplementary Table S1A). Then, we applied 
hierarchical clustering30 on the core proteins using their relative abundance in order to investigate the possible 
organizational interactions generated from wild-type, i.e. unperturbed, affinity purifications (Fig. 1A). Four yeast 
specific subunits (IES5, IES3, IES1, and NHP10) were clustered together in a separate group apart from the ort-
hologous proteins indicating that yeast specific proteins form a module within the INO80 complex (Fig. 1A). 
However, the orthologous proteins were dispersed throughout the hierarchical dendogram.

Next, we analyzed the complex using a genetic deletion approach that we have previously used to study the 
modular architecture of the Rpd34 and SAGA networks in S. cerevisiae3. In this approach, we analyzed protein 
interactions of complexes after deleting individual genes in a complex from the genome of S. cerevisiae. Here, 
we deleted six subunits positioned in different possible modules of the INO80 complex and purified the result-
ing complexes via the TAP-tagged Ino80, Arp8, Ies2 or Ies6 subunits. Specifically, we analyzed eleven deletion 
strains, namely INO80-TAP IES4Δ, INO80-TAP ARP8Δ, INO80-TAP ARP5Δ, INO80-TAP IES2Δ, INO80-TAP 
IES5Δ, INO80-TAP NHP10Δ, ARP8-TAP ARP5Δ, ARP8-TAP IES2Δ, IES2-TAP IES4Δ, IES2-TAP ARP8Δ, 
and IES6-TAP IES4Δ (Supplementary Table S1B). Including replicates, a total of 23 affinity purifications from 
deletion strains were analyzed. The relative abundance, as estimated by dNSAF values, and reproducibility of 
detection observed for the 15 INO80 subunits in each of the deletion strains were compared to the corresponding 
wild-type affinity purifications (Supplementary Figure S1A–K).

Hierarchical clustering of the deletion network derived from the six perturbed complexes purified via 
INO80-TAP revealed three modular patterns (Fig. 1B). Deletions of the IES4 or ARP8 genes both resulted in 
the loss or significant decrease in the recovery of each other, as well as of the Arp4 and Act1 subunits (Fig. 1B 
and Supplementary Figure S1A/D), hence defining the Arp8 module. Similarly, complexes purified from the 
IES2-TAP IES4Δ, IES6-TAP IES4Δ and IES2-TAP ARP8Δ strains were affected in the detection of the Arp8 
module components (Supplementary Figure S1B/C/E). Next, the Arp5 module was defined as containing Arp5 
and Ies6 since deletion of ARP5 led to the loss of the Ies6 subunit (Fig. 1B and Supplementary Figure S1H). 
Additional analyses conducted on ARP8-TAP ARP5Δ showed that Arp5 and Ies6 were both lost from the com-
plex (Supplementary Figure S1I), adding validation to the identity of the Arp5 module. Both of these subu-
nits were also lost when the IES2 gene was deleted (Fig. 1B and Supplementary Figure S1F–G) suggesting that 
Ies2 likely brings the Arp5 module to the larger Ino80 complex. Finally, deleting NHP10 and IES5 (Fig. 1B and 
Supplementary Figure S1JK) resulted in the loss or significant decrease in the levels of the S. cerevisiae specific 
Nhp10, Ies1, Ies3 and Ies5 components, hence defining a third structural module.

In addition to these three modules, we also noticed another group of proteins (Taf14, Rvb1/2, Ies2, and Ino80) 
that were not severely altered by any of the deletions (all five subunits are present in all purifications; Fig. 1B and 
Supplementary Figure S1A–O), indicating that it is appropriate to treat them as interacting proteins outside of 
these modules. This result can be explained by the fact that three of these proteins (Taf14, Rvb1 and Rvb2) are 
also associated with at least one complex outside of the INO80 complex. For example, Rvb1 and Rvb2 are shared 
by at least three complexes (INO80, NuA4, and SWR) and Taf14 is also a component of several DNA-interacting 
complexes. Thus, these proteins are modular by definition to be accessible to other complexes. In the case of the 
Ino80 protein, a structural study revealed its potential role as a scaffold protein31. Overall, our analysis of the 
deletion network and the modularity of the S. cerevisiae INO80 complex were in agreement with prior structural 
and biochemical analyses31–33.

Identifying Topological Modules in the INO80 Deletion Network. As we have shown previously, 
Topological Data Analysis (TDA) has proven useful to rapidly organize and mine affinity purification datasets18,19, 
which led us to investigate what insights it could provide with a deletion network dataset. Proteomics datasets 
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generated from the analysis of INO80 wild-type and genetic deletions were used to construct a TDA network of 
the extended INO80 disrupted interactions. In this case, all of the proteins detected in our samples were consid-
ered for the statistical analysis, not just the core components of the INO80 complex. First, wild-type data was 
compared against a negative control dataset to ensure that non-specific proteins were not included in the analysis 
(Supplementary Table S2A). Second, QSPEC34 was used on this filtered protein list to calculate fold change ratios 
between spectral counts measured in wild-type and genetic deletions and determine significant changes in pro-
tein levels between these two datasets (Supplementary Table S2B). We retained only proteins that had a significant 
QSPEC log2 fold-change of − 2 or less, which corresponds to a fold change of 4 or higher, in at least one of the 
mutants. The final group of 196 proteins passing this criteria comprised the subunits of the INO80 complex and 
proteins outside the complex (Supplementary Table S2C). We then subjected these proteins to TDA11 to deter-
mine the spatial positions of protein nodes and build a perturbed topological network (Fig. 2A).

We next asked what the shared features of proteins in this network were. Resolution and gain settings were 
selected to break the network into distinct modules (Fig. 2B). By exploring geometric relationships in a topologi-
cal manner, we discovered biologically meaningful information. As shown in Fig. 2B, eight large groupings of pro-
tein nodes that we termed topological network modules (TNMs) were identified with distinct characteristics. For 
example, TNM 1 contained information where multiple complexes were joined and TNM 2 contained proteins 
enriched in GTPase and ATPase activities and the components of the yeast specific NHP10 module (Ies1, Ies3, 
Ies5, and NHP10). In contrast to TNMs 1 and 2, we identified isolated nodes as well as completely disconnected 

Figure 1. Hierarchical clustering of INO80 complexes in wild type and genetic deletion backgrounds. (A) A 
total of 14 different subunits of the Ino80 complex were used as baits for the TAP purification and then analyzed 
by MudPIT and dNSAF label-free quantitation. Hierarchical clustering of the 31 total analyses is shown with 
dNSAF values as input. Proteins that are yeast specific are in red, while proteins that are orthologous to human 
proteins are in black. (B) The INO80 complexes from seven different deletion strains were purified using Ino80 
as the TAP-tagged subunit and analyzed by MudPIT. Four biological replicates of wild type INO80-TAP are 
clustered with four biological replicates of INO80-TAP IES4Δ, four biological replicates of INO80-TAP ARP8Δ, 
four biological replicates of INO80-TAP ARP5Δ, three biological replicates of INO80-TAP IES2Δ, one analysis 
of INO80-TAP IES5Δ, and one analysis of INO80-TAP NHP10Δ. The proteins belonging to the ARP8, ARP5, 
and NHP10 modules are in blue, green and red, respectively, while proteins that were not significantly altered 
by the mutants are in black. In both (A) and (B), the color intensity represents protein abundance with bright 
yellow displaying highest abundance and black indicating that the protein was not detected in a particular 
purification.
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Figure 2. Topological Data Analysis of the INO80 deletion network. (A) TDA was used to analyze the fold-
change ratios of 149 proteins detected from the AP-MS analysis of the INO80 deletion strains. Panel (A) represents 
a complete view of the network, while on the right side (B) the network is separated into eight modules. Filters 
with correlation metric were used such as resolution and gain were set at 30 and 3.0x eq. in (A), and 45 and 3.0x 
eq. in (B). (C,H) Individual TNMs, highlighted in white in the corresponding right panel, are mapped onto the 
main network, highlighted in red in the corresponding left panel. TNMs were numbered in order to emphasize 
their locations within the topological network structure. In (A–H), protein nodes are colored based on the metric 
PCA2. Color bar: red: high values, blue: low values. Node size is proportional to the number of proteins in the 
node.
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nodes in TNM 8 (Fig. 2B). TNMs 6 and 7 are two of the isolated nodes consisting of subunits of the ARP5 and 
ARP8 structural modules, respectively (Fig. 2B). We observed that when we deleted subunits of the ARP5 module 
only a small number of proteins were altered, mostly subunits of the ARP5 module, and hence these nodes were 
connected outside the main TDA structure. However, in addition to the ARP5 module, two known interacting 
partners, Eno2 and Fba135, were also identified in close space with the ARP5 module. Interestingly, Rvb1 and 
Rvb2 are located in close proximity to the subunits of the ARP5 module, showing agreement with the results 
obtained from Tossi et al.31. This shows that our topological method properly identifies the correct structural 
modules with the INO80 complex. Furthermore, this network structure can highlight nodes of higher or lesser 
connections and suggests how distinct biological complexes are joined. For example, we could see that modules 
with larger number of nodes are more central in the network.

We next sought to map where each of these individual modules was located on the full topological network 
shown in Fig. 2A. To do so, we superimposed each module onto the complete topological network. Remarkably, 
each module mapped to a distinct location in the complete topological network. TNM 1 was located at the tail 
end of the network (Fig. 2C), followed by TNM 2 which was located in the upper flare of the network (Fig. 2D). 
TNMs 3–5 were positioned on the lower flare of the network (Fig. 2E). TNMs 6 and 7 were located outside the 
main network (Fig. 2F,G), and TNM 8 consisted of disconnected proteins that were distributed throughout the 
network (Fig. 2H). TNM 8 is particularly interesting since it consisted of proteins that were altered in most 
mutants. For example, two components of the SWI/SNF complex, Snf12 and Swi3, were proteins that showed a 
significant change in all the mutants (TNM 8, Supplementary Table S3), demonstrating a link between the INO80 
and SWI/SNF complexes.

We performed pathway analysis using WebGestalt36, and molecular function enrichment analysis using 
DAVID37 annotation tools, on the altered proteins in TNMs 1 and 2. The analyses revealed notable pathways and 
molecular function alteration (Fig. 3A,B). Pathways perturbed in TNM 1 were related to mRNA surveillance and 
the proteasome, for example (Fig. 3A). In contrast, pathways perturbed in TNM 2 were related to the phagosome, 
for example (Fig. 3B). Both modules show significant connection to the biosynthesis of secondary metabolites 
pathway (Fig. 3A,B). A closer look at the molecular function enrichment revealed ATP binding, ATPase activity, 
GTP binding and GTPase activity were in particularly enriched within modules (Fig. 3A,B). Next, we assessed the 
interactions in these two modules searching for overlaps with interactions in the Biogrid database38. We found 81 
interactions between proteins in the TNM 1 and 57 interactions in the TNM 2 suggesting that these proteins are 
important elements for these functional relevant classes (Fig. 3C and D). Taken together these results suggest that 
protein complexes, pathways and protein interactions between these modules tend to be unstable in response to 
perturbation of the INO80 protein interaction network.

TNMs 1 and 2 contained the most proteins and were analyzed using ConsensusPathDB39 to deter-
mine the enrichment of protein complexes. TNM 1 showed enrichment for several complexes such as RSC 
(p-value =  0.0019, q-value =  0.004064), T- complex (p-value =  0.000207, q-value =  0.004064), and CCR-NOT 
(p-value =  0.008 and q-value =  0.0103). TNM 2 showed an enrichment for the RFC heteropentamer complex 
(p-value =  0.0014, q-value =  0.00279). TNMs 1 and 2 were further analyzed using GeneMANIA40 to examine 
their biological significance. TNM 1 showed enrichment for several complexes such as RSC (FDR: 4.33e-18), 
T- complex (FDR: 4.65e-9), and CCR-NOT (FDR: 9.32e-5). This group of proteins in TNM 1 were altered by 
mutants corresponding to the ARP8 and NHP10 modules of INO80 (Fig. 3E), suggesting possible shared bio-
logical function of these protein complexes with the two structural modules. TNM 2 showed a strong enrich-
ment (FDR: 5.39e-10) for ATPase activity. This group of proteins in TNM2 displayed a significant change in the 
mutants corresponding to the NHP10 module (Fig. 3F). The NHP10 structural module itself was identified in this 
group, showing agreement with the topological result.

On the basis of these findings we constructed a map of the structural modules within the INO80 complex 
(Fig. 4A). The composition of the INO80 complex corresponds to the structural modularity of the INO80 com-
plex analyzed using cryo-electron microscopy31. However, cryo-electron microscopy does not provide insights 
into the larger network beyond the core protein complex. Here, we built a model of the complete topological 
network with the modules of this network and biological functions mapped onto the network (Fig. 4B). The 
INO80 structural submodules and the localization of GeneMANIA biological functions were mapped onto their 
general location in the network (Fig. 4B). This represents a new way of visualizing a perturbed protein interaction 
network.

Our analysis suggests the presence of topological network modules (TNMs) that are distinct from the stand-
ard definition of a module, which would be a group of proteins within an individual complex. TNMs are proteins 
that occupy close network positions depending on their coordinates in a topological space. TNMs can capture 
proteins from several different contexts. For example, TNMs can contain proteins from a complex (like TNM 6), 
proteins enriched for a shared biological function (like TNM 2), or proteins outside the complex disrupted in 
the deletion network (like TNM 8). In contrast to GO analysis, for example, TDA is hence capable of capturing 
multiple distinct features within a network.

Comparison to Other Clustering Methods. We next sought to replicate the results performed through 
TDA analysis by applying two wildly used clustering approaches. K-means and hierarchical clustering analyses 
were performed on the QSPEC34 ratios. To a large extent, both methods replicate the submodules of the INO80 
complex, however the rest of the modules were not significantly superimposable with those of TDA (Supplem
entary Figures S3 and S4 and Supplementary Table S4). To emphasize this discrepancy, we focused on TNM 2 
where most of the proteins have a significant fold change between wild-type and INO80-TAP NHP10Δ  and 
ARP8-TAP ARP5Δ  genetic mutants. Thus these altered proteins should be located near the NHP10 submodule. 
Only 14 proteins overlapped with cluster 2 (i.e. this cluster has the largest overlap) generated by the K-means 
method (Supplementary Table S4). Proteins in TNM 2 were also spread out in the resulted hierarchical clustering 
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(Supplementary Figure S3). This shows that separating proteins in large AP-MS data using single-dimensional 
space is still representing a challenge. Conventional algorithms such as hierarchical clustering or k-means are not 
ideal on large datasets where hundreds of prey proteins are associated with a much smaller number of samples. 
Furthermore, the organized TNMs are easier to interpret, the method automatically chooses an optimal number 
of clusters, prey proteins are assigned to single or multiple clusters and the connection between clusters can be 
determined. For this reason, TDA is a valuable tool for analyzing and visualizing large amount of data. Given that 
large data will continue to be generated, automatic procedures are needed to visualize and organize these data sets 
and avoid subjective intervention as much as possible.

Topological Network Modules in a Human Drug Network. To further investigate the existence of 
TNMs in protein interaction networks, we reanalyzed a human histone deacetylase (HDAC) network centered 
on the Sin3 complex perturbed with the HDAC inhibitor suberoylanilide hydroxaminic acid (SAHA)24. In 2006, 
SAHA (Vorinostat) was approved for treatment of patients with progressive, persistent, or recurrent cutaneous 
T-cell lymphoma25,26, and SAHA is also the subject of many additional cancer clinical trials27. We and others have 

Figure 3. Overall model of the INO80 deletion network. Enrichment Analysis (A) and (B) Altered protein 
interactions in TNMs 1 and 2 were searched for biological pathways and molecular functions enrichment 
using WebGestalt36 and DAVID37 annotation tools. The top 4 enriched terms in biological pathways and MF 
as indicated by their significant p-values are illustrated in (A) and (B). (C) and (D) Network visualization of 
the overlap interactions within TMNs 1 (C) and 2 (D) and Biogrid database38. The protein networks were built 
using Cytoscape51. Changes in abundance of proteins within TNMs 1 and 2. (E) Proteins in TNM1 were plotted 
using their corresponding fold-ratios in the four mutants of the NHP10 and ARP8 modules. (F) Proteins in 
TNM2 were plotted using their corresponding fold-ratios in the two mutants of the NHP10 module.
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studied the effect of SAHA on human Sin3 complexes to elucidate the mechanism of action of this drug beyond 
the simple inhibition of HDAC activity24,41,42.

We applied TDA to investigate the interactions when the Sin3 complex is exposed to SAHA by analyzing 
the six previously reported affinity purifications obtained from cells in the presence and absence of the drug. 
The proteins that demonstrated significant change between DMSO- and SAHA-treated samples are provided 
in Supplementary Table S5. Z-scores obtained from QSPEC34 were used in the construction of a topological 
network (Fig. 5A). Next, we selected resolution and gain settings to break apart the TDA network into TNMs 
(Fig. 5B). Subunits of the Sin3/HDAC complex were distributed in each of these eight identified TNMs. TNM 1 
contained Rbbp4, Rbbp7 and Hdac2, which are core components of the complex, along with 25 additional pro-
teins (Supplementary Table S6). TNM 2 contained many subunits of the Sin3 complex including Sin3A, Hdac1, 
Sin3B, Sap130, Arid4B, Bachh1, and Bbx, and proteins involved in DNA repair (Supplementary Table S6). TNM 
2 contained proteins that were particularly affected by SAHA treatment of Sap30 and Sap30L affinity purified 
complexes24. This module includes the direct interaction between Sin3A and Hdac143. TNM 3 included proteins 
that were affected by the drug when Brms1 and Brms1L were used as baits24, which were Sap130, Suds3, Sap30L, 
Sap30, Fam60A, Foxk1 and Arid4B (Supplementary Table S6). Brms1, Brms1L, Ing1 and Ing2 are each distrib-
uted in different TNMs (Supplementary Table S6), which is consistent with the observation that Brms1-Brms1L 

Figure 4. Construction of a low-dimensional structure of the INO80 complex. (A) Proteins were assembled 
based on the clustering results. Here we illustrated the relationship between proteins in the ARP5 and 
ARP8 modules and the display the final assembled complex. Red corresponds to the proteins in the NHP10 
submodule, blue corresponds to the proteins in the ARP8 module and the ARP5 module was colored in green. 
Proteins that were not significantly altered by the mutants are colored in grey. The size of the inset circles 
corresponds to the molecular weights of the proteins illustrated. (B) Ino80 structural modules were mapped 
onto the overall network module generated by TDA. In addition, the localization of biological functions 
provided by GeneMANIA40 was mapped onto their general location of the TDA network.
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and Ing1-Ing2 are mutually exclusive pairs24. The isolation of Ing2 (Fig. 5B) from the rest of the subunits of the 
complex is in agreement with the observation that the recovery of this subunit is greatly reduced when all baits are 
exposed to SAHA drug and it shows that Ing2 is a critical component of the complex24,42.

As with our analysis of our INO80 deletion network dataset, we next mapped the eight TNMs of the Sin3/
SAHA network onto the full TDA network (Fig. 6). Again, we found that each module mapped onto a distinct 
location of the overall TDA network (Fig. 6A–E). However, in the Sin3/SAHA network there is a distinct circular 
pattern of TNMs compared to the INO80 network: each TNM is linked to at least one other TNM, but some 
TNMs are not connected to each other. For example, TNM 1 is linked to TNM 2 and TNM 5 but not to TNMs 
3 and 4. Unlike in a hierarchical clustering, where there is no obvious relationship between clusters, here links 
that bridge TNMs could be examined in details offering a new way to exploit the topological feature of protein 
interaction networks.

Discussion
Large scale datasets are increasingly generated in many disciplines. New and improved methods are continually 
needed to accelerate analysis of such large scale datasets and to generate new insights into the system being ana-
lyzed. In addition, network perturbation is an important tool to gain insights into the resiliency of a network, how 
information flows through a network, and what is the effect of a disruption on a network. However, the challenge 
remains regarding how to efficiently and effectively analyze such datasets. A google image search for a term like 
‘network analysis’ reveals many images that are represented with large numbers of nodes that are connected by 
individual lines that then grow into large ‘hairball’ like representations. Such images and analyses can be useful 
in many disciplines for finding new connections in a network, however they lack the ability to provide deeper 
insights, for example, regarding how groups of nodes behave in a network.

The use of TDA to analyze very diverse network types, ranging from NBA basketball players11 to human recom-
bination17, is growing and proving highly valuable11–17. We have previously used hierarchical clustering approaches 
to study protein interaction networks and perturbed protein interaction networks3,4,30,44. However, one significant 

Figure 5. Topological Data Analysis of the SAHA-perturbed Sin3 network. A reanalysis of the effect of 
SAHA on six affinity purifications from Sardiu et al.24 was conducted. Z-scores from QSPEC34 were used to 
build a topological network (A). In (B), the description of the eight modules identified is shown with the list 
of proteins belonging to each TNM provided as Supplementary Table 6. Filters with norm correlation metric 
were used (resolution 20, gain 3.0x eq. in A), and resolution 30, gain 3.0x eq. (in B). Proteins are colored based 
on the metric PCA1. Color bar: red: high values, blue: low values. Node size is proportional with the number of 
proteins in the node.
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Figure 6. Topological Network Modules in the SAHA-perturbed Sin3 network. In a further analysis of the 
data presented in Fig. 5, individual topological network modules, highlighted in white in the right panels, are 
mapped onto the main network, highlighted in red in the left panels. In this figure we illustrate the location and 
the connection between TNM 1 (A), TNM 2 (B), TNM 3 (C), TNM 4 (D), and TNMs 5–6 (E) within the Sin3-
drug network. Filters with norm correlation metric were used (resolution 30, gain 3.0x). Proteins are colored as 
in Fig. 5.
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weakness of these studies was the reduction of the dataset to focus on a limited number of components in an indi-
vidual protein complex, rather than taking a broader view of all the proteins in the dataset. We have recently turned 
to TDA to facilitate our analyses of protein interaction network datasets by investigating the conservation of a chro-
matin remodeling network18 and to analyze the associations of a new protein involved in DNA damage18.

In this study, we used TDA to analyze perturbed protein interaction networks. First, we compared the data 
generated from an analysis of intact INO80 protein complexes compared to disrupted INO80 protein complexes 
in S. cerevisiae. Here, the disruption was the analysis of protein complexes where individual components of the 
complex were deleted from the S. cerevisiae strain. Using standard methods of analysis, we were able to determine 
the relative abundance of proteins in the complexes and how each disruption affected the complex. The mod-
ularity of the complex captured using this approach was in strong agreement with prior focused studies of the 
INO80 complex31. TDA revealed an overall network shape as a flare and individual modules mapped onto distinct 
portions of this flare. What was most revealing in this network was that TDA not only captured the structural 
modularity within the complex but also captured modularity in the entire network. We named such modules top-
ological network modules (TNMs). The TNMs in the disrupted INO80 network captured proteins from different 
categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted 
across networks. We next applied TDA to the analysis of a previously published perturbed human protein inter-
action network where the HDAC inhibitor SAHA was used to disrupt the human Sin3 protein interaction net-
work24. In this case, TDA revealed a distinctly different shaped network than the INO80 network. Here the Sin3/
SAHA network was a circular shape with distinct TNMs again mapping onto distinct portions of the network. 
However, in this circular shape TNMs were more clearly separated from each other.

There is growing interest in the importance of investigating network dynamics9. Reasons for this included 
the extensive disruptions in protein interactions by human genetic disorders8 with a clear interest in studying 
the effects of mutations on altered networks6. As more perturbed protein interaction networks become available, 
analyzing these datasets with advanced mathematical tools like Topological Data Analysis will likely provide new 
insights into these systems. We expect that topological network modules will be found in most if not all perturbed 
network analyses leading to new insights into network organization.

Methods
Affinity purifications and mass spectrometry. All yeast cells were grown in YPD to an absorbance of 
OD600 1.5–2.0. TAP was performed as previously described18,45. To analyze the purified protein complexes, TCA-
precipitation, LysC/Trypsin digestion, and multidimensional protein identification technology (MudPIT) analy-
ses were performed as previously described28. RAW files were converted to the ms2 format using RAWDistiller 
v. 1.0, an in-house developed software. The ms2 files were subjected to database searching using SEQUEST (ver-
sion 27 (rev.9))46. Tandem mass spectra of proteins purified from S. cerevisiae were compared to 11677 amino acid 
sequences consisting of 5880 non-redundant S. cerevisiae protein sequences obtained from the National Center for 
Biotechnology (2009-10-27 release). Randomized versions of each non-redundant protein entry were included in 
the databases to estimate the false discovery rates (FDR)47. All SEQUEST searches were performed with a static mod-
ification of + 57 Daltons added to cysteine residues to account for carboxamidomethylation, and dynamic searches 
of + 16 Daltons for oxidized methionine. Spectra/peptide matches were filtered using DTASelect/CONTRAST48. In 
this dataset, spectrum/peptide matches only passed filtering if they were at least 7 amino acids in length and fully 
tryptic. The DeltCn was required to be at least 0.08, with minimum XCorr value of 1.8 for singly-, 2.0 for doubly-, 
and 3.0 for triply-charged spectra, and a maximum Sp rank of 10. Proteins that were subsets of others were removed 
using the parsimony option in DTASelect on the proteins detected after merging all runs. Proteins that were identi-
fied by the same set of peptides (including at least one peptide unique to such protein group to distinguish between 
isoforms) were grouped together, and one accession number was arbitrarily considered as representative of each pro-
tein group. Quantitation was performed using label-free spectral counting. The number of spectra identified for each 
protein was used for calculating the distributed normalized spectral abundance factors (dNSAF)29. NSAF v7 (an 
in-house developed software) was used to create the final report on all non-redundant proteins detected across the 
different runs, estimate false discovery rates (FDR), and calculate their respective distributed Normalized Spectral 
Abundance Factor (dNSAF) values. The mass spectrometry dataset used in this study has been deposited at https://
massive.ucsd.edu/ with the MassIVE ID: MSV000079138.

Statistical analysis. INO80 dataset. First, data generated from the wild-type was compared with control sam-
ples. In this case, due to the large number of missing points in the control dataset, we calculated the fold change 
between the average dNSAF values in wild-type Ino80 and the average dNSAF values in the controls for all detected 
proteins. All the proteins that were having a fold ratio of four or greater were considered specific proteins. These 
proteins were next used for the analysis. To address the question of whether any differences were observable between 
the wild-type and mutant samples, we calculated first the fold changes between the respective purifications using the 
QSPEC statistical framework (version 1.2.2. QSPEC) using the web submission at http://www.nesvilab.org/qspec.
php/. The spectra counts and the length of each protein were used as input for the QSPEC software. Generally, the 
model is based on a Poisson model with hierarchical Bayesian estimation as described in refs 34 and 49. Proteins 
with a log2 fold change of − 2 or less (i.e. proteins present a significant decrease in the spectra counts in the mutants 
when compared with the wild-type) were considered for our next analysis. A total of 196 proteins passed the criteria. 
Sin3 dataset. Z-scores and FDR obtained from QSPEC were used to determine the significance change between 
DMSO- and SAHA-treated samples. Proteins with a Z-score greater than or equal to 2 and a FDR less than or equal 
to 0.05 in at least one bait were considered significant for the analysis. In a normal distribution, a Z-score of 2 is 
equivalent to a p-value of 0.02 (p-value <  0.05), a widely used significance threshold.

https://massive.ucsd.edu/
https://massive.ucsd.edu/
http://www.nesvilab.org/qspec.php/
http://www.nesvilab.org/qspec.php/
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Topological data analysis. The input data for TDA are represented in a bait–prey matrix, with each column 
corresponding to purification of a bait protein and each row corresponding to a prey protein: values are spectral 
counts for each protein. A network of nodes with edges between them is then created using the TDA approach 
based Ayasdi 3.0 Cure 3.0 software (AYASDI Inc., Menlo Park CA)11,12,50. Nodes in the network represent clusters 
of proteins. Nodes in the figures are colored based on the metric PCA1 and PCA2. Two types of parameters are 
needed to generate a topological analysis: First is a measurement of similarity, called metric, which measures the 
distance between two points in space (i.e. between rows in the data). Second are lenses, which are real valued 
functions on the data points. Lenses could come from statistics (mean, max, min), from geometry (centrality, 
curvature) and machine learning (PCA/SVD, Autoencoders, Isomap). In the next step the data is partitioned. 
Lenses are used to create overlapping bins in the data set, where the bins are preimages under the lens of an inter-
val. Overlapping families of intervals are used to create overlapping bins in the data. Metrics are used with lenses 
to construct the Ayasdi 3.0 output. There are two parameters used in defining the bins. One is resolution, which 
determines the number of bins; higher resolution means more bins. The second is gain, which determines the 
degree of overlap of the intervals. Once the bins are constructed, we perform a clustering step on each bin, using 
single linkage clustering with a fixed heuristic for the choice of the scale parameter. This gives a family of clusters 
within the data, which may overlap, and we will construct a network with one node for each such cluster, and we 
connect two nodes if the corresponding clusters contain a data point in common.

For the INO80 yeast dataset, we used correlation metric and two types of lenses (principal and secondary met-
ric singular value decomposition). Resolution and gain were set to 30 and 3.0x eq. for Fig. 2A. In order to deter-
mine the structural modularity of the INO80 complex (i.e. generate more bins) we set the resolution to 45 with 
gain 3.0x eq. (Fig. 2B). In the case of the Sin3-drug network dataset, two types of lenses (Neighborhood Lenses 1 
and 2) with norm correlation metric were used. Resolution 20 with gain 3.0x eq. were used to generate Fig. 5A of 
the entire network and resolution 30 with gain 3.0x eq. were set to generate the modules in Fig. 5B.

Metric equations:
The correlation distance between two points is given by the Pearson correlation and is given by:
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= ∑ − ∑ ∑
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Norm correlation is defined as:
NormCorr =  1 −  (X′, Y′) where X′ and Y′ are the variance normalized version of X and Y.

Clustering Analysis. In order to gauge the relationship between proteins we applied the hierarchical cluster-
ing algorithm using the Ward method and Pearson Correlation as described previously44 using INO80 ratio 
fold changes. We applied k-means clustering to the INO80 ratio fold changes obtained from QSPEC34 using 
Hartigan-Wong algorithm and iter.max =  500000. To determine the best partition of our data we continuously 
increased the number of clusters. The result showed that the optimal number of clusters was obtained when k= 8, 
after carefully inspecting all the clusters and their silhouette (Supplementary Figure S4). All computations were 
run using R environment using k-means function (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/
kmeans.html) for the partition and daisy function to compute all the pairwise dissimilarities (distances from 
Euclidean) between observations in the data set for the silhouette.
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