organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4*R**,5*R**)-2-(4-Methoxyphenyl)-1,3dioxolane-4,5-dicarboxamide

Chun-Lei Lv,^{a,c,b} Jian-Hui Chen,^b Yu-Zhe Zhang,^{a,b} Ding-Qiang Lu^a* and Ping-Kai OuYang

^aSchool of Pharmaceutical Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China^a, ^bXinchang Pharmaceutical Factory, Zhejiang Medicine Co. Ltd, Xinchang 312500, People's Republic of China, and ^cCollege of Materials Science and, Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: ludingqiang@126.com

Received 9 January 2012; accepted 19 January 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.135; data-to-parameter ratio = 13.3.

In the title compound, $C_{12}H_{14}N_2O_5$, the five-membered 1,3dioxolane ring has a twisted conformation. In the crystal, N- $H \cdots O$ and $C-H \cdots O$ hydrogen bonds link the molecules into a two-dimensional network lying parallel to the *ab* plane. There are also $C-H \cdots \pi$ interactions present in the crystal structure.

Related literature

For the importantce of (2*S*,3*S*)-diethyl-2,3-*O*-alkyltartrate analogues in the synthesis of platinum complexes with antitumor activity, see: Kim *et al.* (1994), and for their importance as intermediates in organic synthesis, see: Pandey *et al.* (1997). For the synthesis of the title compound, see: Ates-Alagoz & Buyukbingol (2001). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data $C_{12}H_{14}N_2O_5$ $M_r = 266.25$ Orthorhombic, $P2_12_12_1$ a = 6.9620 (14) Å ů ž

Z = 4

b = 10.727 (2) Å

c = 16.932 (3) Å

V = 1264.5 (4) Å³

 $wR(F^2) = 0.135$ S = 1.002297 reflections

Table 1

Refinement

Mo $K\alpha$ radiation

Data collection

Enraf-Nonius CAD-4

(North *et al.*, 1968) $T_{\min} = 0.978, T_{\max} = 0.989$

2615 measured reflections

 $R[F^2 > 2\sigma(F^2)] = 0.041$

Absorption correction: ψ scan

diffractometer

 $\mu = 0.11 \text{ mm}^{-1}$

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C2-C7 ring.

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1^{i}$	0.86	2.21	3.063 (3)	174
$N1 - H1B \cdots O5^n$	0.86	2.22	2.994 (4)	149
$N2 - H2A \cdots O4^{iii}$	0.86	2.13	2.984 (4)	169
$C7 - H7A \cdots O4^{iv}$	0.93	2.57	3.491 (4)	170
$C9 - H9A \cdots Cg2^{v}$	0.98	2.83	3.737 (3)	154

T = 293 K

 $R_{\rm int} = 0.035$

reflections

173 parameters

 $\Delta \rho_{\text{max}} = 0.16 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min}$ = -0.16 e Å⁻³

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

2297 independent reflections 1939 reflections with $I > 2\sigma(I)$

3 standard reflections every 200

H-atom parameters constrained

intensity decay: 1%

Symmetry codes: (i) x, y - 1, z; (ii) x + 1, y, z; (iii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) x, y + 1, z; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank Liu Bo Nian from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2367).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Ates-Alagoz, Z. & Buyukbingol, E. (2001). *Heterocycl. Commun.* 7, 455–460. Enraf–Nonius (1989). *CAD-4 Software*. Enraf–Nonius, Delft, The Netherlands.

- Harms, K. & Wocadlo, S. (1995). *XCAD4*. University of Marburg, Germany. Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B. & Park, J. G. (1994). *J. Med. Chem.* **37**, 1471–1485.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o558 [doi:10.1107/S1600536812002401]

(4R*,5R*)-2-(4-Methoxyphenyl)-1,3-dioxolane-4,5-dicarboxamide

Chun-Lei Lv, Jian-Hui Chen, Yu-Zhe Zhang, Ding-Qiang Lu and Ping-Kai OuYang

Comment

Antitumor platinum drugs are some of the most effective anticancer agents currently available. (2*S*,3*S*)-Diethyl-2,3-*O*-alkyltartrate analogues are starting materials for the synthesis of platinum complexes with antitumor activity (Kim *et al.*, 1994), and are also important intermediates in organic synthesis (Pandey *et al.*, 1997). As part of our studies of the synthesis and characterization of such compounds, we herein report on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The five-membered 1,3-dioxolane ring (O2,O3,C8-C10) has a twisted conformation on bond O2-C8.

In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds link the molecules to form two-dimensional networks lieing parallel to the ab plane (Table 1 and Fig 2). There are also C-H··· π interactions present in the crystal structure (Table 1).

Experimental

The title compound was synthesized according to the published procedure (Ates-Alagoz & Buyukbingol, 2001). A mixture of (2*S*,3*S*)-diethyltartrate (500 mg, 2.43 mmol), 4-methoxybenzaldehyde (331 mg, 2.43 mmol), anhydrous copper(II) sulfate (776 mg, 2.86 mmol), and one drop of methane sulfonic acid in anhydrous toluene (8 ml) was stirred at room temperature for 8 h. Anhydrous Magnesium sulfate (30 mg) was added to the reaction mixture, which was then stirred for a further 20 min. Then a colourless precipitate was obtained by evaporation and dried in vacuo (Yield 83%). The obtained colourless product (654 mg, 2 mmol) was dissolved in 40 ml anhydrous ethanol, then a current of dry ammonia (dried by calcium cholride) was passed into the reaction mixture at room temperature for 4 h. The reaction mixture was then filtered and the resulting product was evaporated to dryness. Pure compound was obtained by crystallization from ethanol. Block-like yellow crystals of the title compound, suitable for X-ray diffraction, were obatined by slow evaporation of a solution in methanol after four weeks.

Refinement

The NH and C-bound H-atoms were included in calculated positions and treated as riding atoms: N-H = 0.86 Å, C-H = 0.93, 0.98 and 0.96 Å for CH(aromatic), CH(methine), and CH₃ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C,N)$, where k = 1.5 for CH₃ H-atoms, and k = 1.2 for all other H-atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 945 Friedel pairs were merged and Δf " set to zero.

Computing details

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software* (Enraf–Nonius, 1989); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software

used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound, showing the atom-numbering and displacement ellipsoids drawn at the 30% probability level.

Figure 2

The crystal packing diagram of the title compound viewed along the a axis, with the N-H…O and C-H…O hydrogen bonds shown as dashed lines.

(4R*,5R*)-2-(4-Methoxyphenyl)-1,3-dioxolane-4,5-dicarboxamide

Crystal data	
$C_{12}H_{14}N_2O_5$	F(000) = 560
$M_r = 266.25$	$D_{\rm x} = 1.399 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 25 reflections
a = 6.9620 (14) Å	$\theta = 9 - 12^{\circ}$
b = 10.727 (2) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 16.932 (3) Å	T = 293 K
$V = 1264.5 (4) Å^3$	Block, yellow
Z = 4	$0.20 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Enraf–Nonius CAD-4 diffractometer	2297 independent reflections 1939 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.035$
Graphite monochromator	$\theta_{\rm max} = 25.3^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 8$
Absorption correction: ψ scan	$k = 0 \rightarrow 12$
(North <i>et al.</i> , 1968)	$l = -20 \rightarrow 20$
$T_{\min} = 0.978, T_{\max} = 0.989$	3 standard reflections every 200 reflections
2615 measured reflections	intensity decay: 1%
Refinement	
Refinement on F^2	Hydrogen site location: inferred from

Remember on F	frydrogen site location. interred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.098P)^2]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
2297 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
173 parameters	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.024 (5)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.7648 (3)	0.69904 (17)	0.91700 (13)	0.0480 (5)
N1	0.6002 (4)	-0.0645 (2)	0.84147 (17)	0.0547 (7)
H1A	0.6483	-0.1329	0.8591	0.066*
H1B	0.6746	-0.0050	0.8266	0.066*
C1	0.9569 (4)	0.7107 (3)	0.9441 (2)	0.0572 (8)
H1C	0.9933	0.7970	0.9441	0.086*
H1D	1.0410	0.6649	0.9098	0.086*
H1E	0.9665	0.6781	0.9968	0.086*
O2	0.4731 (3)	0.17224 (15)	0.81276 (11)	0.0394 (5)
C2	0.6867 (4)	0.5817 (2)	0.91351 (15)	0.0369 (6)
N2	-0.0220 (4)	0.2673 (2)	0.76177 (16)	0.0544 (7)
H2A	-0.1036	0.2865	0.7256	0.065*
H2B	0.0432	0.3249	0.7848	0.065*
03	0.2168 (3)	0.23134 (17)	0.88371 (11)	0.0417 (5)

C3	0.7876 (4)	0.4738 (3)	0.93091 (17)	0.0436 (7)
H3A	0.9146	0.4776	0.9477	0.052*
O4	0.2966 (3)	-0.13078 (18)	0.85712 (14)	0.0524 (6)
C4	0.6951 (4)	0.3598 (3)	0.92277 (17)	0.0440 (7)
H4A	0.7617	0.2870	0.9348	0.053*
O5	-0.0843 (3)	0.0617 (2)	0.75178 (15)	0.0587 (6)
C5	0.5076 (4)	0.3515 (2)	0.89740 (15)	0.0383 (6)
C6	0.4100 (4)	0.4611 (3)	0.88108 (18)	0.0439 (7)
H6A	0.2829	0.4574	0.8643	0.053*
C7	0.4980 (4)	0.5755 (3)	0.88927 (17)	0.0449 (6)
H7A	0.4302	0.6482	0.8785	0.054*
C8	0.4199 (4)	0.2252 (3)	0.88635 (16)	0.0394 (6)
H8A	0.4601	0.1701	0.9294	0.047*
C9	0.3416 (4)	0.0725 (2)	0.80307 (15)	0.0358 (6)
H9A	0.3170	0.0612	0.7465	0.043*
C10	0.1557 (4)	0.1216 (2)	0.84279 (16)	0.0389 (6)
H10A	0.1077	0.0600	0.8807	0.047*
C11	0.4124 (4)	-0.0509 (2)	0.83725 (17)	0.0404 (7)
<u>C12</u>	0.0032 (4)	0.1493 (2)	0.78190 (16)	0.0413 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0442 (11)	0.0306 (10)	0.0693 (13)	-0.0077 (9)	-0.0037 (9)	-0.0019 (9)
N1	0.0415 (14)	0.0295 (12)	0.093 (2)	-0.0034 (11)	-0.0067 (13)	0.0148 (14)
C1	0.0528 (19)	0.0486 (17)	0.070 (2)	-0.0190 (15)	-0.0076 (16)	0.0023 (16)
O2	0.0413 (11)	0.0243 (9)	0.0527 (10)	-0.0038 (8)	0.0054 (8)	0.0005 (8)
C2	0.0417 (15)	0.0281 (12)	0.0409 (13)	-0.0032 (12)	0.0013 (12)	-0.0011 (11)
N2	0.0564 (16)	0.0378 (13)	0.0689 (16)	0.0055 (12)	-0.0172 (14)	-0.0031 (12)
O3	0.0378 (10)	0.0356 (10)	0.0516 (11)	-0.0051 (8)	0.0018 (8)	-0.0084 (8)
C3	0.0383 (15)	0.0389 (15)	0.0537 (16)	-0.0010 (13)	-0.0111 (13)	0.0007 (12)
O4	0.0461 (12)	0.0288 (10)	0.0824 (14)	-0.0100 (9)	-0.0044 (11)	0.0089 (10)
C4	0.0453 (16)	0.0313 (14)	0.0554 (16)	0.0033 (13)	-0.0119 (13)	0.0029 (12)
O5	0.0483 (11)	0.0446 (12)	0.0833 (16)	-0.0088 (11)	-0.0161 (11)	-0.0066 (11)
C5	0.0448 (15)	0.0303 (12)	0.0398 (13)	-0.0030 (13)	-0.0042 (12)	0.0002 (10)
C6	0.0374 (14)	0.0341 (14)	0.0601 (17)	-0.0025 (12)	-0.0069 (13)	-0.0002 (12)
C7	0.0414 (15)	0.0285 (12)	0.0647 (17)	0.0025 (13)	-0.0014 (15)	0.0017 (12)
C8	0.0439 (15)	0.0314 (13)	0.0428 (14)	-0.0021 (12)	-0.0029 (12)	0.0058 (12)
C9	0.0380 (13)	0.0281 (12)	0.0413 (13)	-0.0038 (12)	-0.0020 (12)	0.0024 (11)
C10	0.0408 (15)	0.0274 (13)	0.0484 (14)	-0.0065 (11)	0.0033 (13)	0.0015 (11)
C11	0.0412 (15)	0.0261 (13)	0.0541 (16)	-0.0052 (12)	-0.0042 (13)	-0.0018 (11)
C12	0.0329 (12)	0.0352 (14)	0.0557 (16)	-0.0010 (13)	0.0008 (13)	-0.0032 (12)

Geometric parameters (Å, °)

01—C2	1.373 (3)	C3—C4	1.388 (4)
01—C1	1.420 (4)	С3—НЗА	0.9300
N1-C11	1.317 (4)	O4—C11	1.224 (3)
N1—H1A	0.8600	C4—C5	1.378 (4)
N1—H1B	0.8600	C4—H4A	0.9300

C1—H1C	0.9600	O5—C12	1.230 (3)
C1—H1D	0.9600	C5—C6	1.386 (4)
C1—H1E	0.9600	C5—C8	1.498 (4)
O2—C9	1.417 (3)	C6—C7	1.378 (4)
O2—C8	1.419 (3)	С6—Н6А	0.9300
C2—C7	1.378 (4)	C7—H7A	0.9300
C2—C3	1.386 (4)	C8—H8A	0.9800
N2—C12	1.323 (4)	C9—C11	1.527 (4)
N2—H2A	0.8600	C9—C10	1.551 (4)
N2—H2B	0.8600	С9—Н9А	0.9800
O3—C8	1.416 (3)	C10—C12	1.509 (4)
O3—C10	1.430 (3)	C10—H10A	0.9800
C2—O1—C1	117.9 (2)	С5—С6—Н6А	119.4
C11—N1—H1A	120.0	C6—C7—C2	119.8 (3)
C11—N1—H1B	120.0	С6—С7—Н7А	120.1
H1A—N1—H1B	120.0	С2—С7—Н7А	120.1
01—C1—H1C	109.5	O3—C8—O2	104.6 (2)
01—C1—H1D	109.5	O3—C8—C5	111.7 (2)
H1C—C1—H1D	109.5	O2—C8—C5	111.4 (2)
O1—C1—H1E	109.5	O3—C8—H8A	109.7
H1C—C1—H1E	109.5	O2—C8—H8A	109.7
H1D—C1—H1E	109.5	С5—С8—Н8А	109.7
C9—O2—C8	103.63 (19)	02—C9—C11	113.7 (2)
01	115.7 (2)	O2—C9—C10	103.43 (19)
01	123.8 (2)	C11—C9—C10	113.6 (2)
C7—C2—C3	120.4(3)	02—C9—H9A	108.6
C12 - N2 - H2A	120.0	C11 - C9 - H9A	108.6
C12 $N2$ $H2R$	120.0	C10-C9-H9A	108.6
H2A—N2—H2B	120.0	03-C10-C12	112.2 (2)
C8 - O3 - C10	105 9 (2)	03-C10-C9	104.0(2)
$C_{2} - C_{3} - C_{4}$	118.6 (3)	$C_{12} - C_{10} - C_{9}$	101.0(2) 1109(2)
$C_2 - C_3 - H_3 A$	120.7	O3-C10-H10A	109.9
C4-C3-H3A	120.7	C12— $C10$ — $H10A$	109.9
C_{5} C_{4} C_{3}	121.8 (3)	C9-C10-H10A	109.9
C_{5} C_{4} H_{4}	119.1	O4 - C11 - N1	109.9 124 1 (3)
$C_3 - C_4 - H_{4A}$	119.1	04 $-C11$ $-C9$	124.1(3) 1199(2)
C_{4} C_{5} C_{6}	119.1	N1 C11 C9	115.9(2)
$C_{4} = C_{5} = C_{6}$	118.2(3)	$N_{-C1} = C_{2}$	113.9(2)
$C_{4} - C_{5} - C_{8}$	110.9(2) 1220(2)	05 - C12 - N2	123.9(3) 118.8(2)
$C_{0} = C_{0} = C_{0}$	122.9(2) 121.2(3)	$N_2 = C_{12} = C_{10}$	1172(2)
C7 C6 H6A	121.2 (5)	N2-C12-C10	117.2 (2)
С/—СО—НОА	119.4		
C1-01-C2-C7	178.0 (3)	C4—C5—C8—O2	-81.2(3)
C1 - O1 - C2 - C3	-3.5 (4)	C6—C5—C8—O2	96.9 (3)
01-C2-C3-C4	-177.9(3)	C8-O2-C9-C11	-90.3 (3)
C7—C2—C3—C4	0.5 (4)	C8—O2—C9—C10	33.4 (2)
C2—C3—C4—C5	0.5 (4)	C8-03-C10-C12	-135.0(2)
C3—C4—C5—C6	-1.1 (4)	C8-03-C10-C9	-15.0(3)
	× /	· · · · · · · · · · · · · · · · · · ·	

C3—C4—C5—C8	177.2 (3)	O2—C9—C10—O3	-11.4 (3)
C4—C5—C6—C7	0.5 (4)	C11—C9—C10—O3	112.3 (2)
C8—C5—C6—C7	-177.6 (3)	O2—C9—C10—C12	109.4 (2)
C5—C6—C7—C2	0.5 (4)	C11—C9—C10—C12	-126.9 (2)
O1—C2—C7—C6	177.5 (3)	O2—C9—C11—O4	155.4 (3)
C3—C2—C7—C6	-1.0 (4)	C10—C9—C11—O4	37.5 (4)
C10—O3—C8—O2	36.7 (3)	O2—C9—C11—N1	-26.2 (4)
C10—O3—C8—C5	157.3 (2)	C10—C9—C11—N1	-144.1 (3)
C9—O2—C8—O3	-44.4 (2)	O3—C10—C12—O5	-168.2 (3)
C9—O2—C8—C5	-165.1 (2)	C9—C10—C12—O5	76.0 (3)
C4—C5—C8—O3	162.3 (2)	O3—C10—C12—N2	14.7 (4)
<u>C6–C5–C8–O3</u>	-19.6 (4)	C9—C10—C12—N2	-101.1 (3)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C2–C7 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1A···O1 ⁱ	0.86	2.21	3.063 (3)	174
N1—H1 <i>B</i> ···O5 ⁱⁱ	0.86	2.22	2.994 (4)	149
N2—H2A···O4 ⁱⁱⁱ	0.86	2.13	2.984 (4)	169
C7— $H7A$ ···O4 ^{iv}	0.93	2.57	3.491 (4)	170
C9—H9 A ··· $Cg2^{v}$	0.98	2.83	3.737 (3)	154

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*+1, *y*, *z*; (iii) -*x*, *y*+1/2, -*z*+3/2; (iv) *x*, *y*+1, *z*; (v) -*x*+1, *y*-1/2, -*z*+3/2.