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Abstract

The accurate identification of the route of transmission taken by an infectious agent through a host population is critical to
understanding its epidemiology and informing measures for its control. However, reconstruction of transmission routes
during an epidemic is often an underdetermined problem: data about the location and timings of infections can be
incomplete, inaccurate, and compatible with a large number of different transmission scenarios. For fast-evolving
pathogens like RNA viruses, inference can be strengthened by using genetic data, nowadays easily and affordably
generated. However, significant statistical challenges remain to be overcome in the full integration of these different data
types if transmission trees are to be reliably estimated. We present here a framework leading to a bayesian inference
scheme that combines genetic and epidemiological data, able to reconstruct most likely transmission patterns and infection
dates. After testing our approach with simulated data, we apply the method to two UK epidemics of Foot-and-Mouth
Disease Virus (FMDV): the 2007 outbreak, and a subset of the large 2001 epidemic. In the first case, we are able to confirm
the role of a specific premise as the link between the two phases of the epidemics, while transmissions more densely
clustered in space and time remain harder to resolve. When we consider data collected from the 2001 epidemic during a
time of national emergency, our inference scheme robustly infers transmission chains, and uncovers the presence of
undetected premises, thus providing a useful tool for epidemiological studies in real time. The generation of genetic data is
becoming routine in epidemiological investigations, but the development of analytical tools maximizing the value of these
data remains a priority. Our method, while applied here in the context of FMDV, is general and with slight modification can
be used in any situation where both spatiotemporal and genetic data are available.
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Introduction

Predicting the most likely transmission routes of a pathogen

through a population during an epidemic outbreak provides

valuable information, which can be used to inform intervention

strategies and design control policies [1,2]. In principle,

studying transmission routes during past epidemics is likely to

be broadly informative of how the same pathogens spread

through similar populations in future outbreaks. Estimating a set

of connected transmission routes from a single case is

synonymous with estimating the transmission tree correspond-

ing to the outbreak. Uncovering the transmission routes

between individual hosts or other relevant infectious units (for

example farms or premises) can provide valuable epidemiolog-

ical information, such as the factors associated with source and

target individuals, dissemination kernels and transmission

modes. Unfortunately, reconstructing these transmission trees

with available data can be an exceptionally hard task, as the

problem is typically underdetermined: the precise number of

cases is often unknown, and dates and times of infections are

rarely known with precision, making it difficult to distinguish

between a large number of alternative scenarios [3].

With knowledge of location and timing of disease incidence it is

possible to sample transmission trees that are consistent with the

space-time data, and when these samples of trees share emergent

statistical or structural properties, they can lead to epidemiological

insights. For example, Haydon et al. [4] generated transmission

trees corresponding to the 2001 Foot-and-Mouth Disease Virus

(FMDV) epidemics in the UK, and used these trees to estimate the

reproductive number during different weeks of the epidemic.

These trees could be pruned to investigate the consequences of

different or earlier interventions on the final size of the epidemics.

However, the data were consistent with very large numbers of
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different trees and so the approach was not suited to identifying

with confidence ‘‘who infected who’’.

For pathogens with high mutation rates that fix mutations

across their genome during the course of a single outbreak, genetic

data can provide critical additional information regarding the

relationships between isolates. The last few years have witnessed a

revolution in our ability to generate genomic data relatively

cheaply and in an automatised fashion [5]. Pathogen genome

sequences collected during epidemics, if sufficiently diverse, can

then be used to discriminate between alternative transmission

routes.

Several attempts to reconstruct transmission pathways have

tried to combine genetic and other epidemiological data, many by

adding spatial or temporal information to the process of

phylogenetic reconstruction [6–11]. However, Jombart et al. point

out that a ‘‘phylogenetic’’ approach attempts to infer hypothetical

common ancestors among the sampled genomes, and may not be

appropriate for a set of genomes containing both ancestors and

their descendants [12]. Cottam et al. [13] identified a large set of

transmission trees that were consistent with available genetic data,

and ranked the likelihood of these trees using data on their relative

timings, to find the most likely transmission tree. Ypma et al. [14]

moved this approach forward by constructing an inference scheme

that uses spatial, temporal and genetic data simultaneously, but

assumed these data are independent of each other. Genetic and

epidemiological data are evidently correlated, and a rigorous

inference scheme should estimate the likelihood of a transmission

tree accounting for these correlations.

In this work, we present a novel framework, based on a bayesian

inference scheme, able to reconstruct transmission trees and

infection dates of susceptible premises, integrating coherently

genetic and spatiotemporal data with a single model and likelihood

function. Our scheme uses epidemiological data (times of reporting

and removal from the susceptible population of infected, spatially-

confined hosts, their locations, and estimates of the age of an

infection based on clinical signs) together with pathogen sequences

obtained from infected hosts to estimate transmission trees and

infection dates during outbreaks. The genetic information is

incorporated considering the probability distribution of the

number of substitutions between sequences during the time

durations separating them, and computing the likelihood of

observing these sequences for a given transmission tree and the

estimated infection dates. Each host generates an isotropic

infectious potential responsible for transmission between hosts,

whose strength is estimated from the data; the dynamical

progression of the disease, from latency to infectiousness is part

of the estimation scheme (for a visual representation see Fig. 1).

As an illustration of the method, we concentrate on the case of

FMDV, an infectious disease affecting cloven-hoofed animals,

which has severely affected the UK in 2001 and, on a smaller scale

but still contentiously, in 2007. The infectious agent is single-

stranded, positive-sense RNA virus, belonging to the genus

Aphthovirus in the Picornaviridae family, and its small genome

(8.2 kb) is easily sequenced. Its high substitution rate (m&2:10{5

per nt per day as measured over part of the 2001 UK epidemic

[13]), implies that the number of mutations accumulate during

infection of host individuals on a single premise is sufficient to be

reasonably confident of distinguishing between infected premises.

Upon infection by FMDV, a host individual first experiences a

non-infectious latent period with lesions appearing on peripheral

epithelia subsequently. The virus can spread through aerosol

dispersal, on fomites, or through direct contact. Importantly, a

visual exam of the clinical state of the lesions on infected hosts can

provide valuable information about the age of the infection. For

this application, premises comprising populations of spatially-

confined hosts will be considered as the unit of infection (the

centroids of premises will be used as geographical coordinates),

and complete FMDV genomes sampled from each premise will be

used for the inference; the removal of a premise from the

population corresponds to its culling. As the time course of FMDV

infection within an individual host follows empirically charac-

terised distributions [13], when transmission events are inferred

between premises infected at very different times and therefore

with correspondingly long and unrealistic apparent latency

durations, we interpret these as an indication of the presence of

one or more unsampled infected premises, that epidemiologically

linked the observed premises.

After testing our method on simulated data, we considered two

real datasets from two different FMDV epidemics: the 2007 UK

epidemic (8 premises) [15] and the Darlington cluster within the

2001 UK epidemic (15 premises) [13]. For the former case, we

Figure 1. Dynamical model of pathogen transmission between
a source premise j and a receptor premise i. Premises are
considered confined at fixed locations in space. Variables covered by

the grey rectangles are observable. A premise i is infected at time T
inf
i ,

becomes infectious after a latent period Li , is observed at time Tobs
i ,

when a viral sequence Sobs
i is obtained, and is removed from

susceptible population (i.e. loses its ability to infect other premises) at
time Tend

i . When an infected premise is reported, the duration period
from infectiousness to detection, Di , is assessed by experts based on
symptom observation. This assessment is called Dobs

i .
doi:10.1371/journal.pcbi.1002768.g001

Author Summary

In order to most effectively control the spread of an
infectious disease, we need to better understand how
pathogens spread within a host population, yet this is
something we know remarkably little about. Cases close
together in their locations and timing are often thought to
be linked, but timings and locations alone are usually
consistent with many different scenarios of who-infected-
who. The genome of many pathogens evolves so quickly
relative to the rate that they are transmitted, that even
over single short epidemics we can identify which hosts
contain pathogens that are most closely related to each
other. This information is valuable because when com-
bined with the spatial and timing data it should help us
infer more reliably who-transmitted-to-who over the
course of a disease outbreak. However, doing this so that
these three different lines of evidence are appropriately
weighted and interpreted remains a major statistical
challenge. In our paper we present a new statistical
method for combining these different types of data and
estimating trees that show how infection was most likely
transmitted between individuals in a host population.
Because sequencing genetic material has become so
affordable, we think methods like ours will become very
important for future epidemiology.

Transmission Trees from Genetic and Epidemiological Data
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confirmed the role of IP5 as the link between the two phases of the

epidemics, whereas for the latter, our scheme highlights the

presence of premises outside our sample that were part of the

transmission process. While in this paper we discuss results related

to FMDV, our method is in principle general and can be applied

to epidemics generated by other pathogens, for which genetic and

epidemiological data are both available.

Results

Assessment of the method with a test outbreak
Prior to applying our method to real data, we first used our

model to simulate data for an outbreak infecting 20 premises

whose locations are known in a 22611 km area. The model was

fitted to the observable data, that is, for each premise i, the time

Tobs
i at which the virus was detected, a 8000 bp DNA sequence

Sobs
i sampled at Tobs

i , an assessment of the lesion age Dobs
i , and the

time Tend
i at which the premise was culled (see Fig. 1 for a

visualisation). More information on this dataset can be found in

Text S1.

In Fig. 2 (top left), the size of the dots corresponds to the

posterior probabilities of pairwise transmissions, while the circles

represent the true transmissions as they occurred in the simulation.

Fig. 2 (top right) shows the tree with highest posterior probability.

We note that only one true transmission (F3?F11) is not

reconstructed accurately, the algorithm instead identifying

F12?F11. However, the F12?F11 transmission has a high

posterior probability and is included in the tree with the second

highest posterior probability (see Fig. S2). The posterior proba-

bilities for the mean latency duration and the mean transmission

distance include the true values in the 95%-posterior intervals

(bottom panels of Fig. 2). Posterior distributions for other model

parameters and latent variables are provided in the Figs. S3, S4.

In order to test our method for a large dataset, we considered an

upscaled simulation of an outbreak infecting 100 premises. Results

are described in Text S1.

An outbreak with two phases – 2007 FMDV in UK
Having established the validity of the inference scheme, we

applied it to a dataset corresponding to the 2007 outbreak of

FMDV in the UK, which infected 8 premises in Surrey and

Berkshire [15]. Genetic sequences and epidemiological collected

on each premise are available in the Dataset S1 and S2,

respectively. The most likely reconstructed scenario (Fig. 3, top

right) comprises two phases: IP1b was infected by an external

source, and transmitted the virus to the neighbouring premise

IP2b and to IP5 further away; the virus remained contained and

undetected on IP5 until it spread to a closeby premise IP4b; finally

the virus spread from IP4b to the other premises. While the link

made by IP5 between the two phases is highly supported, the

estimation of the other transmissions was more uncertain: within

the two clusters (IP1b, IP2b, IP5) and (IP5, IP4b, IP3b, IP3c, IP6b,

IP7, IP8) several other transmission scenarios have non-negligible

posterior probabilities (Fig. 3, top left and Fig. S5). The mean

estimated latency duration has a posterior median of 14 days and a

95%-credible interval of (6, 49) (as shown in Fig. 3, bottom left);

the long delay between the infection of IP5 and the subsequent

transmissions is responsible for this result (posterior distributions of

latency durations of every premises are shown in Fig. S7). The

long distance between IP5 and its source (IP5 is 18.2 km away

from IP1b) explains the large mean transmission distance (Fig. 3,

bottom right), whose posterior median is 17 km and 95%-posterior

interval is (5,58). Posterior distributions of other model parameters

and latent variables are provided in Figs. S6, S7, while a

phylogenetic tree, based on statistical parsimony tree, implement-

ed in the software package TCS [16] is represented in Fig. S14.

A cluster with independent introductions – 2001 FMDV
in UK (Durham county)

For a more complex scenario, we considered the FMDV

epidemic that occurred in the UK in 2001, and in particular a

group of 12 premises within the so-called ‘‘Darlington cluster’’

(Durham county), for which one virus sequence per premise is

available [13]. This spatial cluster comprises 3 additional premises

that were not epidemiologically linked to the rest of the cluster and

which we exclude (we discuss the choice of the subgroup of

premises in the Text S1). Genetic sequences and epidemiological

data for this cluster can be found in the Datasets S3 and S4,

respectively.

Our method allowed us to reconstruct a transmission scenario

with little ambiguity, accounting for over 99% of the posterior

probability, where premise K plays the role of a hub and only two

chains of transmissions of length greater than two are found (Fig. 4,

top panels). When premises become infectious approximately at

the same time, they have a very low probability of mutual

infection, even if the collected genomes are very close and share

substitutions (premises M and D, or L and E, for example).

Premise K, on the other hand, became infectious very early on and

is then estimated to have seeded the infection to the many

premises that were observed at later times.

Interestingly, some premises infected by the hub share

mutations that are not found on the other premises, suggesting

that different unsampled strains evolved on the hub and went on to

infect distinct clusters of farms (see the statistical parsimony

network in Fig. S14). However, another hypothesis can be

formulated: the virus fixed the common substitutions while

replicating on an unsampled premise, which constitutes a missing

node in the transmission tree. This ‘‘ghost premise’’ went on to

infect the premises we observed. The missing node scenario is

supported by the distribution of the mean latency duration

estimated for this dataset, which has a median of 24 days, and a

95%-posterior interval of (17, 35) (Fig. 4, bottom left). These values

are inconsistent with a typical latency period of FMDV of 5 days

(95% confidence interval of 1–12) [17–19]. In particular, the

premises infected by the hub all display high mean latency values

(Fig. S11). We propose that these unrealistically long latency

periods indicate the existence of missing premises intermediate in

the chain of infection and so in our model, latency should be

considered as an aggregated parameter, corresponding to the the

sum of the real latent period and the time the virus spent on the

unsampled premise. We will return to this point in the Discussion.

The comparison of our results with those found by Cottam et al. on

the same dataset [13] highlights that our method strengthens the

role of infecting hubs in the network (premise K), and therefore

infers a lower number of long transmission chains. Details about

the individual differences between the most likely trees inferred by

the two methods can be found in Text S1, while transmission trees

with higher posterior probabilities and posterior probabilities of

other paramteres can be found in Figs. S9, S10.

Spatial connectivity
The estimates of the transmission kernel for the two real data sets

are similar: the 95%-posterior intervals of the mean transmission

distance (defined as 2a2) overlap, ranging from 5 to 58 km for the

2007 outbreak and ranging from 9 to 72 km for the 2001 epidemic

(Figs. 3 and 4, bottom right panels). On the other hand, the

posterior distributions we obtained are related to the range of

distances covered in the data sets (up to about 24 km for 2007 and

Transmission Trees from Genetic and Epidemiological Data
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16 km for 2001), and cannot be used to extrapolate long distance

transmission events: despite the large values of the mean

transmission distance, the lengths of the average inferred transmis-

sion in the trees with the highest posterior probabilities are 4.3 km

for the 2007 outbreak and 5.8 km for the 2001 epidemic.

Sensitivity of the inference to the uncertainty of lesion
aging

In the inference scheme, we used vague priors for model

parameters. When we estimated the interval from the end of

latency to detection, however, we used a more informative prior,

centered over the estimated lesion age (Eq. (8) in Materials and

Methods). We investigated the effect on the most likely

transmission tree of (i) using a flatter prior (thus believing less

than we did previously in the veterinarian assessment) and (ii)

using a more peaked prior (thus believing in it more). The trees

are illustrated in Fig. S12, and the priors in the Fig. S13. For the

2007 outbreak, the tree differed only by one transmission in case

(i), and by three transmissions in case (ii). Remarkably, in all

cases, the identification of the link between the two phases in IP5

Figure 2. Estimation output for the simulated outbreak. Top left: true transmissions (circles) and posterior probabilities of transmissions (dot
sizes are proportional to probabilities). Top right: tree with the highest posterior probability (solid arrows); Only transmission F12?F11 is not
consistent with the true tree (the true transmission is F3?F11, dashed arrow). Bottom: posterior distributions (histograms) of mean latency duration
(~b1 ; left) and mean transmission distance (~2a2 ; right); dashed lines: true values; dotted-dashed curves: prior distributions; solid lines: posterior
medians; dotted lines: posterior quantiles 0.025 and 0.975.
doi:10.1371/journal.pcbi.1002768.g002

Transmission Trees from Genetic and Epidemiological Data
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maintained a posterior probability of one. For the 2001 epidemic,

the star-like shape (with K as a hub) of the tree was strengthened

in case (i), where premise K now infected 9 premises, while more

chains of length greater than two were inferred in case (ii).

Constraining the inference less around the estimates of the lesion

ages relaxes the timing constraints and increases the weight

accorded to genetic similarity in the transmission inference. As a

result, transmissions mirror more closely the phylogenetic

structure of the dataset, leading to a reduced hub role of premise

K. In conclusion, we remark that the tree structure is robust and

does not crucially depend on the specific choice of the prior for

the values of the time intervals between the end of latency and

detection (lesion ages).

Performance assessed over series of simulations
Our method relies on one approximation: we do not reconstruct

the genomes transmitted at the times of infection, and therefore we

obtain a pseudo-posterior probability for the genetic data, where

the similarity between isolates only depends on the Hamming

distance between the sequences, and not on the full genetic

network (see Materials and Methods for details). We checked

whether the use of a pseudo-posterior distribution led to

Figure 3. Estimation output for the 2007 UK outbreak. Top left: posterior probabilities of transmissions (dot sizes proportional to
probabilities). Top right: tree with the highest posterior probability mapped in space (black arrows). Bottom: posterior distributions (histograms) of
mean latency duration (~b1 ; left) and mean transmission distance (~2a2 ; right); dotted-dashed curves: prior distributions; solid lines: posterior
medians; dotted lines: posterior quantiles 0.025 and 0.975.
doi:10.1371/journal.pcbi.1002768.g003

Transmission Trees from Genetic and Epidemiological Data
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appropriate inference by applying the estimation algorithm to

three series of 100 simulations (one for the test outbreak and two

for the FMDV datasets) generated using our model. For the first

series, we used the parameter values that were used in the test

simulation. For the two other series, we used the posterior medians

of the parameters estimated previously. We were especially

interested in the fraction of correctly predicted pairwise transmis-

sions: for each premise, between 79% and 93% of the simulations

reproduced the source with the highest posterior probability in the

original inference (Table 1). Given the challenging nature of the

data sets (closely spaced premises becoming infectious almost

simultaneously in the test data, and an abnormally long period of

time between infection and transmission between two waves of

infection in the 2007 data), these results suggest the approximation

is performing well. Moreover, the mean of the posterior

probability of each true transmission (the proportion of iterations

in the chain at which a premise is infected by the estimated source)

is also reproduced in about 80% of the cases. Performances vary

slightly across datasets depending on the characteristics of the

epidemics (e.g. number of premises and parameter values), but are

broadly compatible. For example, in the second phase of the 2007

outbreak, several scenarios have high posterior probabilities,

Figure 4. Estimation output for the 2001 UK outbreak (Darlington cluster). Top left: posterior probabilities of transmissions (dot sizes
proportional to probabilities). Top right: tree with the highest posterior probability mapped in space (black arrows). Bottom: posterior distributions
(histograms) of mean latency duration (~b1 ; left) and mean transmission distance (~2a2; right); dotted-dashed curves: prior distributions; solid lines:
posterior medians; dotted lines: posterior quantiles 0.025 and 0.975.
doi:10.1371/journal.pcbi.1002768.g004

Transmission Trees from Genetic and Epidemiological Data
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lowering the fraction of correctly estimated transmissions. Further

performance estimators are listed in Table S1.

Discussion

We propose here a new bayesian inference scheme, with which

we estimate transmission trees and infection dates for an epidemic

outbreak using genetic and epidemiological data. Our scheme is

general, and with slight modification can be applied to rapidly

evolving pathogens affecting spatially-confined hosts. To illustrate

how this approach can be used to generate new insights and

deliver statistically formal measures of confidence (in particular

transmission links), we applied it to the case of an RNA virus

(FMDV) infecting premises whose spatial location is known. The

knowledge of complete viral sequences, timing of reporting and

culling of premises and estimates of the age of an infection made

this case an ideal benchmark. After testing our method on

simulated data (20 premises), we applied it to two pre-existing

datasets: the still disputed 2007 FMDV outbreak in the UK (8

premises) [15] and the Darlington cluster within the larger 2001

epidemic (12 premises) [13]. The method proved successful in

reconstructing the transmission network on the test dataset, and

highlighted the role of IP5 as a relay between the two phases of the

2007 outbreak. The results for the Darlington cluster are

intriguing, as they highlight the likely incompleteness of the

dataset, and suggest the presence of unobserved premises in the

transmission tree. The performance of the algorithm was

evaluated through simulations, which showed the inference

scheme to be consistent and accurate and able to deal successfully

with clusters of infections.

The power of this inference platform relies on a number of

simplifying assumptions. In this application we have made two in

particular that require further consideration. The first postulates

that the epidemics are generated by a single introduction of the

pathogen to a single premise. While this may often be adequate for

small or early stage outbreaks, it is likely to be inadequate for more

complex cases. For example, the Darlington dataset is a small

subset of the 2001 epidemic, in which it was first considered to be

an isolated cluster of infected premises. Previous analysis on the

whole cluster [13] demonstrated two independent introductions.

Trying to estimate ‘‘polyphyletic’’ transmission trees assuming

only a single root would strain this formulation of the model and

lead to unrealistic results. In order to solve this problem, the

MCMC should be able to explore a parameter space where

independent introductions range from one to the number of the

premises (each of them being independently infected by an

external source) and compute their likelihood. Moreover, the

genetic data can be used to discriminate between a situation where

a single external source infects several spatially-confined hosts in a

cluster, and the presence of multiple external sources, charac-

terised by distinct genomes. In practice, we could proceed by (i)

describing the external source(s) as a set of genetic sequences

varying in time (and possibly in space), (ii) specifying the

probability of transmission of the infection from the external

source(s) to any of the premises and (iii) updating the transmission

tree at each iteration of the MCMC by comparing this probability

with the probability of transmission from one of the infectious

premises in the cluster considered.

The second assumption is that the epidemic has been

completely observed and that there are no missing nodes in the

transmission tree. When this assumption is likely to be violated, as

in the case of the Darlington cluster, our method inferred

unrealistically long latency times for some premises, an indication

that a missing intermediate infected premise, where virus might

have replicated extensively, may have been involved in the

transmission chain. This situation is particularly likely in large

epidemics, where perfect knowledge of every case is unlikely, or in

epidemics arising in areas or countries where host or premise

identification is ambiguous and comprehensive collection of data

not feasible. In the 2007 outbreak, where no infected premises

were missing, the premise linking the two phases showed a mean

latency duration of over 25 days. In this case, the observation

results from the real time the virus spent on the farm prior to its

detection and reporting: by the time it was observed, the animals

had started to heal and dating the lesions was more difficult. The

long latency times could also account for the time virus spent in a

non-replicative state (e.g. on fomites): this case would be indicated

by a slow rate of evolution on the premise where the virus is

observed. In conclusion, extended latency times are valuable

‘‘alarm bells’’, as they suggest a discrepancy between the

observations and the actual course of the disease. A substantial

improvement to the scheme would be to include in the inference

additional sources of data, such as the locations of premises that

may have maintained infections that were not detected, or

premises that were infected but were removed prior to being

confirmed as infected. We leave this development for future work.

We only mention here that the solution given in the paragraph

above to deal with multiple introductions could be adapted to deal

with missing premises: any infectious premise could generate a set

of genetic sequences describing possible missing premises. This set

of sequences could then be used to compute a new probability of

transmission from missing premises, to be compared with the

probabilities of transmission from internal and external sources.

We leave this for future work.

Other minor assumptions in our model can be readily eased.

We hypothesized that all premises have the same infection

potential; however, it would be straightforward to make the

infectiousness parameter a1 in the model a function of the specific

characteristic of the premise, like size or composition (for example,

for FMDV sheep are considered to be less infectious than cows,

which are in turn less infectious than pigs [17]). Moreover, we note

that the infectious potential felt by a premise at time t is the sum of

the contributions deriving from all the other premises that are

infectious at that particular time. As unsampled premises could

also contribute to this potential, the temporal dynamics of

infection could be modeled in a more complex manner than the

step function adopted here. The estimation of the age of an

infection from clinical signs is used as a prior distribution in our

scheme: an accurate knowledge of this quantity makes the

inference computationally more efficient, but it is not essential,

and the method can be applied to cases where this quantity is not

available. The model used for the mutations of the virus is very

simple and does not account for the specific characteristiscs of the

FMDV genome, or for some well-known mutation biases (like the

Table 1. Performance of the estimation algorithm over three
series of 100 simulations (test, 2007, 2001).

Criterion Test 2007 2001

Fraction (Sd.) of correct prediction
of PT

0.89 (0.08) 0.79 (0.13) 0.93 (0.06)

Mean (Sd.) of post. prob. of true PT 0.85 (0.08) 0.76 (0.10) 0.93 (0.05)

The criteria used are the fraction (and standard deviation; Sd.) of correct
predictions of pairwise transmissions (PT) and the mean (and Sd.) of the
posterior probabilities of the true pairwise transmission.
doi:10.1371/journal.pcbi.1002768.t001

Transmission Trees from Genetic and Epidemiological Data
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transition/transversion bias observed in [20]: we decided once

more to go for the simplest and more general assumption, while

more detailed and pathogen-specific mutation models could easily

be incorporated in our framework.

Our ‘‘hosts’’ do not necessarily correspond to single animals/

humans but were interpreted in a wider sense as ‘‘infectious units’’.

These units do not constitute a limitation to our method: even in

the case of an infection where the units are individuals, the genetic

divergence between sequencing results from an unknown number

of viral replications in the donor individual post sampling (but

prior to transmission) and in the recipient prior to sampling. In the

case of a higher-order unit of infection, the genetic divergence

between sequences from sequential samples will be just the result

of a larger unknown number of generations.

It is conceivable that multiple pathogen strains circulated on a

single premise remained unsampled and went on to infect other

premises. For example, FMDV is known to generate independent

populations within single animals [20] and different genomes could

circulate on a premise. Ideally, several sequences from each premise

should be obtained and these data incorporated into the model.

Finally, for the specific pathogen considered here, we have used a

fixed substitution rate m for both the Darlington cluster and the

2007 outbreak. Independent estimates obtained for the whole 2001

epidemic [21] and for 2007 outbreak yield very similar values,

which do not change substantially the likelihoods of observing the

sequenced genomes. In other applications, the substitution rate may

be poorly known. In these cases, it could be viewed as an unknown

parameter and estimated in the MCMC simulation.

Computation time is a key element for a method that is

expected to be useful in real-time during an outbreak. The

computation time was strongly reduced by using a conditional

pseudo-distribution of observed sequences Sobs instead of the exact

conditional distribution. Clearly, it would be ideal to run the

Bayesian estimation using the exact conditional distribution of

observed sequences Sobs. To do so, one could incorporate in the

MCMC the unknown transmitted genetic sequences S as

augmented data (see Eq. (3) below), initialize S using for example

statistical parsimony [16] and determine a proposal distribution

for S based on a stochastic algorithm estimating genetic networks

[22]. Unfortunately, this strategy is at present unfeasible on

standard computing resources. However, despite the use of a

pseudo-distribution, the running time of our inference algorithm

strongly increases with the number of premises. We stress that the

main focus of this work was to combine epidemiological and

genetic data in a coherent framework, rather than producing an

optimised code. Basic optimization procedures should dramatical-

ly increase the efficiency of the code. In particular, we suggest

three directions worth pursuing: (i) use a conditional pseudo-

distribution of the genetic sequences which can be computed

faster, but still yielding a good approximation of the posterior

distribution of the unknowns; (ii) parallelize the MCMC [23] and

code it in a lower-level language; (iii) use alternative algorithms,

such as sequential Monte Carlo [24].

Our bayesian inference scheme is a rigorous general platform on

which different models can be implemented and tested. It is a useful

tool that could be used in real time to detect the presence of missing

links in inferred chains of transmission, and to assign confidence

values to each inferred transmission event. The specific model we

chose for FMDV contains a representation of the dynamics of FMD

infections. Different models could be implemented to describe the

dynamics of different pathogens, or the specific characteristics of a

particular outbreak, while still maintaining rigorous estimation based

on genetic and epidemiologic data. Previous work was initiated by

Cottam et al. [13], and significantly extended by Jombart et al. [12]

and Ypma et al. [14]: all these studies considered the likelihood of the

transmission tree J given temporal, spatial and genetic data (here

denoted by the generic vectors T, X and G) as a product of three

independent likelihoods: L(J DT,X,G)&L1(J DT)L2(J DX)L3(J DG).
Cottam et al. assumed a binary (f0,1g) L3 and a uniform L2 (their

estimation does not depend on the location of the premises); Jombart

et al. designed a less ‘‘ad hoc’’ approach by introducing a maximum

parsimony strategy to weight genetic similarity, while spatial and

temporal information were considered only when several possible

ancestors were genetically indistinguishable; finally Ypma et al. had

more complicated forms for these likelihood functions. Our method

can be considered as the ‘‘next step’’ on this road, as we relax the

assumption of independence between the information sources, and

we estimate the likelihood of transmission trees given all the sources of

information simultaneously. Although some specific aspects of our

inference scheme can be refined, expressing the likelihood of a

transmission tree as a joint likelihood, depending on both epidemi-

ological and genetic data, significantly advances this form of analysis.

Materials and Methods

Data sets
The test data sets analyzed in the Results section were simulated

under the model presented below and in Text S1. In these data

sets, the outbreak spread over 20 premises (F1, …, F20), randomly

and uniformly located in a rectangular 20610 km region. Values

of transmission and latency parameters were a~(80,10) and

b~(5,1). Observed sequences had length s~8000 and substitu-

tion rate m~10{4. In Text S1, we analyzed an upscaled test data

set with 100 premises, with the same premise density as above, and

same values for parameters a, b, s and m.

The data corresponding to the 2007 FMDV outbreak in the UK

and to the Darlington cluster within the 2001 epidemic can be found

in Refs. [15] and [13], respectively, and are incudedin the Datasets

S1, S2, S3, S4. In particular, FMDV sequence length was s~8176

and the substitution rate m~2:076|10{5 per nt per day [13].

Observed and unobserved variables
Consider a cluster of I infected hosts (in this case premises)

whose centroids are located at Longitude-Latitude coordinates

X1, . . . ,XI . Let J be the function defining the transmission tree: a

given premise i is infected by a source j~J(i), which consists of

either another premise j[f1, . . . ,Ig, j=i, or an external source

denoted by 0. For each premise, we consider four timing variables

as illustrated by Fig. 1: premise i is infected by J(i) at time T
inf
i , is

infectious at time T
inf
i zLi, where Li is the latency duration for

premise i, is detected as infected at time Tobs
i and is removed from

the infectious population at time Tend
i . The duration from

infectiousness to detection, Di~Tobs
i {(T

inf
i zLi), is assessed by

experts on the base of clinical signs: let Dobs
i denote this

assessment. At time Tobs
i , the pathogen is sampled on premise i

and the genomes are collected for sequencing: let Sobs
i denote the

observed consensus sequence.

Among these variables, only Xi, Tobs
i , Tend

i , Dobs
i and Sobs

i are

observed. The others are latent variables to be reconstructed with

the bayesian inference scheme.

Model structure
In this section we briefly describe the essence of the model. The

complete specification of the model is provided in the following

sections. For a full description of the symbols, we refer to Table 2.
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Our model for the dynamics of an infection takes into account

the dependence between timing, space and genetics. It includes (i)

the delays between infection and observation of infection and (ii)

the difference between transmitted and observed genetic sequenc-

es of the pathogen. The direct acyclic graph (DAG) in Fig. 5 shows

the structure of the model. Upper case letters are used for latent

and observed variables, while Greek letters denote unknown

parameters. Lower case letters are used for fixed parameters.

Observation times Tobs
i and observed consensus sequences Sobs

i

are viewed as response variables. They depend on the transmission

tree and on the temporal dynamics (infection times, latency

durations and detection durations).

The model assumes that the epidemic starts with the infection of

a single premise from an external source. Then, transmissions J(i)

and infection times T
inf
i depend on the infection potential

generated by previously infected premises. The infection potential

depends on the transmission parameters a~(a1,a2), the spatial

location of premises and the times at which infected premises exit

from latency and are removed from the infectious population: an

infected premise j is infectious between T
inf
j zLj and Tend

j , and

the probability of infecting premise i decreases exponentially with

the distance DXj{Xi D. The parameter a2 appears in the

transmission kernel fa2
and quantifies the decrease with distance

of the infection potential of each infectious premise, while a1

quantifies the infection strength of each infectious premise. The

mean transmission length, defined here as 2a2, is a function of the

distances between farms and of the transmission kernel we used.

Latency durations Li and durations from infectiousness to the time

that virus is sampled Di are assumed to be independent. The

distribution of Li is parametrised by its expectation b1 and its

variance b2
2; b~(b1,b2) is the vector of latency parameters. The

distribution of Di is centered around the empirical estimate Dobs
i

but has a variance increasing with Dobs
i , equal to d2Dobs

i , where

d~0:5. The premise index i is sorted with respect to increasing

infection times T
inf
i .

Posterior distribution
We aim to assess the joint posterior distribution

p(J,Tinf ,L,D,hDdata) of the transmission tree J , infection times

Tinf , latency durations L, durations from infectiousness to

detection D, and parameters h~(a,b), given the data. Data are

observed sequences Sobs, pathogen observation times Tobs,

observed durations from infectiousness to detection Dobs, removal

times Tend and premise locations X:

p(J,Tinf , L,D,hDdata)~p(J,Tinf ,L,D,hDSobs,Tobs,Dobs,Tend ,X)

!p(Sobs,TobsDJ,Tinf ,L,D,h,Dobs,Tend ,X)p(J,Tinf ,L,D,hDDobs,Tend ,X)

~p(Sobs DTobs,J,Tinf ,L,D,h,Dobs,Tend ,X)p(Tobs DJ,Tinf ,L,D,h,Dobs,Tend ,X)

|p(J,Tinf DL,D,h,Dobs,Tend ,X)p(L,DDh,Dobs,Tend ,X)p(h),

ð1Þ

where ! means ‘‘proportional to’’ (the multiplicative constant

does not depend on the unknowns (J,Tinf ,L,D,h)). In this

decomposition, (Sobs,Tobs) are viewed as response variables (or

model output), (J,Tinf ,L,D,h) as latent variables and

(Dobs,Tend ,X) as explanatory variables. The term

p(Sobs,TobsDJ,Tinf ,L,D,h,Dobs,Tend ,X) is the complete likelihood

Table 2. Description of symbols used in the model.

Symbol Description

I Number of premises in the cluster

Xi 2D–coordinates of the centroid of premise i

J(i) Source of premise i (J is a function representing the
transmission tree)

T
inf
i Time of infection of premise i (Tinf ~fTinf

i : i~1, . . . ,Ig)

Tobs
i

Time of first observation of the pathogen in premise i

(Tobs~fTobs
i : i~1, . . . ,Ig)

Tend
i Time of removal of premise i (Tend~fTend

i : i~1, . . . ,Ig)

t0 First possible infection time, in this work set to 25

Li Latency in premise i; i become infectious at time T
inf
i zLi

(L~fLi : i~1, . . . ,Ig)
Di Duration from infectiousness to detection satisfying

T
inf
i zLizDi~Tobs

i (D~fDi : i~1, . . . ,Ig)

Dobs
i

Observed duration from infectiousness to detection

(Dobs~fDobs
i : i~1, . . . ,Ig) (estimated by clinicians based on

symptom inspections)

d Fixed parameter measuring the uncertainty of Dobs
i

(V (Di)~d2Dobs
i )

Sobs
i Sequence sampled in premise i at time Tobs

i

(Sobs~fSobs
i : i~1, . . . ,Ig)

s Fixed length of sampled sequences

m Fixed genetic substitution rate per nucleotide per day

M(S,S’) Genetic distance between sequences S and S’

a~(a1,a2) Transmission parameters (source strength and dispersion
parameter)

fa2
Transmission kernel

2a2 is the mean transmission distance (for an exponential kernel)

b~(b1,b2) Latency parameters (mean and standard deviation of latency
durations, respectively)

h~(a,b) Set of unknown parameters

a~(a1,a2) Fixed parameters for the prior distribution of a

b~(b1,b2) Fixed parameters for the prior distribution of b

doi:10.1371/journal.pcbi.1002768.t002

Figure 5. Direct acyclic graph illustrating the dependencies in
the model. Bold letters are used to represent sets of variables, with
one variable per farm, e.g. L~fL1, . . . ,LIg. For a full description of the
symbols, see Table 2.
doi:10.1371/journal.pcbi.1002768.g005
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of the model and the term p(SobsDTobs,J,Tinf ,L,D,h,Dobs,Tend ,X)
is the conditional complete likelihood of the model given

observation times Tobs. In the following sections, we specify the

terms appearing in the last two lines of Equation (1).

Conditional distribution of observed sequences Sobs

Assumptions: (a) there is only one sequence per infected

premise; (b) sequences in all the premises evolve at a constant

rate m (m is the substitution rate per day per nucleotide).

The model for p(SobsDTobs,J,Tinf ,L,D,h,Dobs,Tend ,X) is based

on the probability distribution of the number of substitutions

between two sequences during the evolutionary durations sepa-

rating the sequences. Let M denote the number of substitutions

and D the evolutionary duration (D is the sum of time intervals

computed along the transmission tree). The conditional distribu-

tion of M given D is a Binomial distribution taking into account

the Jukes-Cantor’s correction (see Text S1):

M DD*Binomial s,
3

4
1{ exp {

4

3
mD

� �� �� �
,

and the probability of M given D is:

Pm,s(MjD)~
M

s

 !
3

4
1{ exp {

4

3
mD

� �� �� �M

1

4
z

3

4
exp {

4

3
mD

� �� �s{M

:

ð2Þ

Therefore, p(SobsDTobs,J,Tinf ,L,D,h,Dobs,Tend ,X) does not de-

pend on (L,D,h,Dobs,Tend ,X):

p(SobsDTobs,J,Tinf ,L,D,h,Dobs,Tend ,X)~pm,s(S
obsDTobs,J,Tinf ),

and can be written as a multiple sum of products of binomial

probabilities. The sum is computed over the unknown transmitted

genetic sequences, say S2, . . . ,SI , at time T
inf
2 , . . . ,T

inf
I (the initial

sequence of the root i~1 of the tree is not needed):

pm,s(S
obsjTobs,J,Tinf )~

X
(S2,...,SI )[SI{1

P
I

i~1
Pm,sfM(Sobs

i ,Sprec(i,obs))jD~Tobs
i {T

inf
prec(i,obs)g

� ��

| P
I

i~3
Pm,sfM(Si,S

�
prec(i,inf ))jD~Ti{T�prec(i,inf )g

� ��
:

ð3Þ

In Equation (3), S is the set of all possible sequences (the size of S

is 4s, where s is the length of the sequence); M(S’,S) is the number

of substitutions between S and S’; Pm,sfM(S’,S)DD~T ’{Tg is

the probability given by Equation (2) with M~M(S’,S) and

D~T ’{T . The subscript prec(i,obs) denotes the premise whose

node of infection belongs to the tree path from the root of the tree

to the observation of i (at time Tobs
i ) and whose infection is just

preceding the observation of i. The node of infection of a given

premise k is defined as the point on the tree at which ‘‘the branch

leading to the observation of k’’ and ‘‘the branch leading to the

observation of the infecting premise J(k)’’ diverged. The tree path

from one point of the tree to another is defined as the most direct

path on the graph conncting the two points. If i did not infect any

other premise, then prec(i,obs) is i itself. In the particular case

where i was infected after the observation of the infecting farm J(i)

and J(i) did not infect any other premise between Tobs
J(i) and T

inf
i ’’,

the subscript prec(i,inf ) coincides with J(i), S�prec(i,inf )~Sobs
J(i) and

T�prec(i,inf )~Tobs
J(i). In the most frequent other cases, prec(i,inf )

denotes the premise whose node of infection belongs to the tree

path from the root of the tree to the infection of i (at time T
inf
i ) and

whose infection is just preceding the infection of i; in these cases,

S�prec(i,inf )~Sprec(i,inf ) and T�prec(i,inf )~T
inf
prec(i,inf ). In other words,

the first series of factors in Equation (3) accounts for the

probabilities of the number of substitutions between an observed

sequence and the immediately preceding unobserved, transmitted

sequence, while the second series of factors accounts for the

probabilities of the number of substitutions between each

transmitted sequence and the transmitted or observed sequences

immediately preceding in time. Equation (3) is written in the

Supporting Text S1 (Equation (2)) for the simple transmission tree

drawn in Supporting Fig. S1.

Conditional pseudo-distribution of observed sequences

Sobs

The conditional distribution for Sobs (Eq. (3)) was written as a

distribution depending solely on the genetic distances M(:,:) for

pairs of sequences. However, in each pair, there is at least one

unobserved transmitted sequence. Therefore, exploiting Equation

(3) would lead us to consider extra latent variables (or augmented

data), namely the unobserved sequences S. In order to reduce the

complexity of the posterior, we preferred not to include these extra

latent variables, but rather to use a conditional pseudo-distribution

of Sobs, ~ppm,s(S
obsDTobs,J,Tinf ). In our method,

~ppm,s(S
obsDTobs,J,Tinf ) replaces pm,s(S

obsDTobs,J,Tinf ) which is the

conditional complete likelihood of the model given observation

times Tobs. Thus, ~ppm,s(S
obsDTobs,J,Tinf ) is a conditional complete

pseudo-likelihood given observation times and we refer to it as a

conditional pseudo-distribution. It follows that the posterior

distribution that we assess is actually a pseudo-posterior distribu-

tion.

With index i being sorted with respect to increasing infection

times T
inf
i , pm,s(S

obsDTobs,J,Tinf ) can be written:

pm,s(S
obsjTobs,J,Tinf )~

pm,s(S
obs
1 jTobs,J,Tinf ) P

I

i~2
pm,s(S

obs
i jSobs

1:(i{1),T
obs,J,Tinf ),

ð4Þ

where Sobs
1:(i{1) is the set of observed sequences of premise

1, . . . ,i{1. We considered the sequence Sobs
1 of the first infected

premise as arbitrary. Thus, pm,s(S
obs
1 DTobs,J,Tinf ) was discarded in

the pseudo-distribution. Moreover, to compute exactly

pm,s(S
obs
i DSobs

1:(i{1),T
obs,J,Tinf ) appearing in Equation (4), we should

write this probability as a sum over the unknown transmitted

genetic sequences (as done in Equation (3)). In order to avoid the

inclusion of unknown transmitted sequences as augmented data,

we replaced, for i[f2, . . . ,Ig, the conditional probability

pm,s(S
obs
i DSobs

1:(i{1),T
obs,J,Tinf ) of Sobs

i given past sequences Sobs
j

(j~1, . . . ,i{1) by the product of the conditional probabilities of

Sobs
i given each past sequence Sobs

j (j~1, . . . ,i{1):

P
i{1

j~1
Pm,sfM(Sobs

i ,Sobs
j )DD~DTobs

i {T
inf
div(i,j)DzDTobs

j {T
inf
div(i,j)Dg,
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where Tobs
div(i,j) denotes the infection time at which the chain of

infection leading to i and the chain of infection leading to j

diverged (T
inf
div(i,j) is one of the latent variables in Tinf , also called

‘‘augmented data’’) and D~DTobs
i {T

inf
div(i,j)DzDTobs

j {T
inf
div(i,j)D is the

evolutionary duration separating the observation of Sobs
i and Sobs

j .

Thus, the conditional pseudo-distribution of Sobs satisfies:

~ppm,s(S
obsjTobs,J,Tinf )~

P
I

i~2
P

i{1

j{1
Pm,sfM(Sobs

i ,Sobs
j )jD~

jTobs
i {T

inf
div(i,j)jzjT

obs
j {T

inf
div(i,j)jg

ð5Þ

The right hand side of Equation (5) replaces

p(SobsjTobs,J,Tinf ,L,D,h,Dobs,Tend ,X) in Equation (1). Equation

(5) is written in Equation (3) in Text S1 for the simple transmission

tree drawn in Fig. S1.

We tested another form for pm,s(S
obsDTobs,J,Tinf ), described in

Text S1. The form given by Equation (5) above led to the best

reconstruction of the transmission tree J.

Conditional distribution of pathogen observation times

Tobs

Tobs satisfies the relation Tobs~Tinf zLzD. Therefore, the

conditional distribution of Tobs is simply:

p(TobsDJ,Tinf ,L,D,h,Dobs,Tend ,X)~1(Tobs~Tinf zLzD), ð6Þ

where 1(:) is the indicator function (1(E)~1 if event E occurs,

zero otherwise).

Joint distribution of transmissions J and infection times

Tinf

Assumptions: (a) Only one premise is infected by an external

source, while the others premises in the dataset are infected by

previously-infected premises within the dataset; (b) any premise j

may infect other premises after the latency period T
inf
j zLj and

before the culling time Tend
j ; (c) infectious premises have same

infection strength a1, considered constant; (d) the infection risk of a

susceptible premise by an infectious premise decreases exponen-

tially with the distance separating both premises, this distance

being measured by the distance between the centroids of the

premises; (e) the presence of unsampled premises in the area

(premises for which genetic or epidemiological data is not

available) is ignored.

With the index i being sorted with respect to increasing

infection times T
inf
i , the probability p(J,Tinf DL,D,h,Dobs,Tend ,X)

can be written:

p(J,Tinf jL,D,h,Dobs,Tend ,X)

~p J(1),T
inf
1 jL,D,h,Dobs,Tend ,X

� 	

| P
I

i~2
p J(i),T

inf
i jJf1 : (i{1)g,Tinf

1:(i{1),L,D,h,Dobs,Tend ,X
� 	

,

ð7Þ

where Jf1 : (i{1)g~(J(1), . . . ,J(i{1)) and

T
inf
1:(i{1)~(T

inf
1 , . . . ,T

inf
i{1).

Each premise has the same chance (1=I ) to be infected first (by

an external source J(1)~0), and its infection time is assumed to be

greater or equal than a minimum infection time t0 (in this work we

used t0~{5), and less than or equal to the minimum removal

time minfTendg:

p(J(1),Tinf DL,D,h,Dobs,Tend ,X)~
1

I
|

1(t0ƒT
inf
1 ƒ minfTendg)

minfTendg{t0

:

Subsequent infections occur with the following probabilities:

p J(i),T
inf
i DJf1 : (i{1)g,Tinf

1:(i{1),L,D,h,Dobs,Tend ,X
� 	

~ exp {

ðT
inf
i

t0

Xi{1

j~1

a11(T
inf
j zLjƒtƒTend

j )fa2
(DDXi{Xj DD)dt

0
@

1
A

|a11(T
inf
J(i)zLJ(i)ƒT

inf
i ƒTend

J(i) )fa2
(DDXi{XJ(i)DD)

where the term

exp {
Ð T

inf
i

t0

Pi{1
j~1 a11(T

inf
j zLjƒtƒTend

j )fa2
(DDXi{Xj DD)dt

 !
is

the probability that premise i has not been infected until time

T
inf
i by the previously infected premises j~1, . . . ,i{1, and the

term a11(T
inf
J(i)zLJ(i)ƒT

inf
i ƒTend

J(i) )fa2
(DDXi{XJ(i)DD) is the proba-

bility density that premise i has been infected by J(i) at time T
inf
i .

The function fa2
is an exponential transmission kernel, defined for

all distance r§0 as

fa2
(r)~

1

2pa2
2

exp {
r

a2

� �
:

For transmissions modelled using the exponential transmission

kernel, the mean transmission distance (mean length of transmis-

sions) is 2a2: this measure depends on the distances between farms

as well as on the transmission kernel we used. Other transmission

kernels, such as those presented in [25,26] could be tested. The

selection of the best transmission kernel will be crucial for datasets

with large number of premises and large spatial extent. In our

applications, where the number of premises is limited and the

spatial extent is much smaller than the dispersal capacity of the

pathogen, there are enough data to infer the transmission

parameters, but not enough to carry out a significant model

selection about the transmission kernel.

Distributions of latency durations L and detection
durations D

Assumptions: (a) a priori, latencies and durations from

infectiousness to detection are independent; (b) characteristics of

the latency distribution (expectation and variance) do not depend

on time and premise; (c) the expectation (resp. variance) of the

duration from infectiousness to observation is equal to (resp. is

proportional to) the estimate provided.

We chose gamma distributions for latency durations Li, with

shape and scale parameters b2
1=b2

2 and b2
2=b1, respectively, so that

E(Li Db)~b1 and V (Li Db)~b2
2. We refer to b1 as mean latency

duration. We chose gamma distributions for detection durations
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Di with shape and scale parameters Dobs
i =d2 and d2, respectively,

so that E(Di DDobs)~Dobs
i and V (Di DDobs)~d2Dobs

i . Thus, the

joint distribution of the vectors of latent variables L and D satisfies:

p(L,Djh,Dobs,Tend ,X)

~p(Ljh,Dobs,Tend ,X)p(Djh,Dobs,Tend ,X)

~ P
I

i~1

b2
2

b1

 !b2
1
=b2

2

C
b2

1

b2
2

 !8<
:

9=
;

{1

L
(b2

1
=b2

2
){1

i exp {
Li

b2
2=b1

 !

| (d2)
Dobs

i
=d2

C
Dobs

i

d2

� �� �{1

D
(Dobs

i
=d2){1

i exp {
Di

d2

� �
,

ð8Þ

where C is the gamma function.

Prior distribution of parameters h
The four components of h~(a,b)~(a1,a2,b1,b2) have inde-

pendent exponential priors with mean parameters

(a,b)~(a1,a2,b1,b2):

p(h)~
1

a1a2b1b2

exp {
a1

a1

{
a2

a2

{
b1

b1

{
b2

b2

� �
: ð9Þ

We have used the values a1~a2~b1~b2~100.

Bayesian inference
We built a Monte Carlo Markov Chain (MCMC) algorithm to

assess the posterior distribution of (J,Tinf ,L,D,h), coded in the R

language [27]. Details of this algorithm are provided in Text S1.

We recall that, in order to reduce the complexity of the algorithm,

we replaced the conditional distribution of observed consensus

sequences appearing in the posterior distribution by a pseudo-

distribution. This replacement allowed us to remove some of the

latent variables, namely the unobserved pathogen sequences

transmitted at the infection times. Therefore, the MCMC

algorithm assesses a pseudo-posterior distribution of

(J,Tinf ,L,D,h). Vague priors were used for parameters a and b

(see above). In the cases considered in this study, 5|105 iterations

of the MCMC algorithm were enough to assess the posterior

distributions of the unknowns. Running 5|105 iterations took

about two days for the simulation with 20 premises and one month

for the simulation with 100 premises on an Intel Xeon Quad Core

processor with clock speed 2.93 GHz and 48 Gb of RAM

memory. The components of the algorithm which are especially

computationally costly are (i) the search of the most recent

ancestral premises appearing in the pseudo-distribution of the

observed genetic sequences given in Equation (5), (ii) the

computation of the joint distribution of J and Tinf in Equation

(7) which is based on a convolution between the transmission

kernel and the sources of infection, and (iii) the verification that

timing constraints are satisfied when infection times are updated

(see proposal distributions in Text S1).

Simulation datasets to assess the performance of the
inference

We generated data sets using the model described above and the

location of the premises. The spread of the disease was first

simulated using the conditional distributions of J , Tobs, L, D, X

and Tend , with previously inferred parameters, thus obtaining the

complete dynamics of the infection and a transmission tree.

Subsequently, genetic distances between the observed sequences

were generated using the binomial distributions described in

Equation (2). We note that in this case we generated the

unobserved transmitted sequences as well.

Supporting Information

Data S1 FMDV complete genomes for the 2007 dataset.

(FASTA)

Data S2 Epidemiological data for the 2007 dataset.

(TXT)

Data S3 FMDV complete genomes for the 2001 dataset.

(FASTA)

Data S4 Epidemiological data for the 2001 dataset.

(TXT)

Figure S1 Example of transmissions between four
spatially-confined premises (i,j,k,l). Bold lines: time intervals

D appearing in Equation (2) in Text S1, over which the true

conditional distributions of observed sequences can be computed.

(TIF)

Figure S2 Simulated outbreak. Trees with the five highest

posterior probabilities (coloured disks) and true transmissions

(black circles).

(TIF)

Figure S3 Simulated outbreak. Posterior distributions (his-

tograms) of parameters. Top four panels: parameters

(a1,a2,b1,b2); dashed line: true value; dotted-dashed curve: prior

distribution; solid line: posterior median; dotted lines: posterior

quantiles 0.025 and 0.975. Bottom left: transmission kernel,

depending on parameter a2; dashed curve: true kernel; solid curve:

posterior median; dotted-dashed curves: posterior quartiles 0.25

and 0.75; dotted curves: posterior quantile 0.025 and 0.975.

Bottom center: posterior sample of (a1,a2) provided by the

MCMC, showing a strong dependence in the joint posterior

distribution. Bottom right: posterior sample of (b1,b2) provided by

the MCMC.

(TIF)

Figure S4 Simulated outbreak. Posterior distributions of

infection times (top) and latency durations (bottom left) for the

simulated outbreak. In both panels, vertical solid lines indicate the

true values. In the top panel, vertical dashed lines indicate the

virus observation times.

(TIF)

Figure S5 2007 UK epidemics. Trees with the five highest

posterior probabilities (coloured disks).

(TIF)

Figure S6 2007 UK epidemics. Posterior distributions (histo-

grams) of parameters. Top four panels: (a1,a2,b1,b2); dotted-dashed

curve: prior distribution; solid line: posterior median; dotted lines:

posterior quantiles 0.025 and 0.975. Bottom left: transmission

kernel, depending on parameter a2; solid curve: posterior median;

dotted-dashed curves: posterior quartiles 0.25 and 0.75; dotted

curves: posterior quantile 0.025 and 0.975. Bottom center: posterior

sample of (a1,a2) provided by the MCMC, showing a strong

dependence in the joint posterior distribution. Bottom right:

posterior sample of (b1,b2) provided by the MCMC.

(TIF)
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Figure S7 2007 UK epidemics. Posterior distributions of

infection times (top) and latency durations (bottom left). In the top

panel, vertical dashed lines indicate the virus observation times.

(TIF)

Figure S8 2001 epidemics, Darlington cluster including
premise B. Top left: Posterior probabilities of transmissions (dots

with varying size). Top right: Tree with the highest posterior

probability mapped in space (arrows). Bottom: Trees with the five

highest posterior probabilities (coloured disks).

(TIF)

Figure S9 2001 epidemics, Darlington cluster without
premise B. Trees with the highest posterior probabilities

(coloured disks).

(TIF)

Figure S10 2001 epidemics, Darlington cluster with-
out premise B. Posterior distributions (histograms) of

parameters. Top four panels: (a1,a2,b1,b2); dotted-dashed

curve: prior distribution; solid line: posterior median; dotted

lines: posterior quantiles 0.025 and 0.975. Bottom left:

transmission kernel which depends on parameter a2; solid

curve: posterior median; dotted-dashed curves: posterior

quartiles 0.25 and 0.75; dotted curves: posterior quantile

0.025 and 0.975. Bottom center: posterior sample of (a1,a2)
provided by the MCMC, showing a strong dependence in the

joint posterior distribution. Bottom right: posterior sample of

(b1,b2) provided by the MCMC.

(TIF)

Figure S11 2001 epidemics, Darlington cluster without
premise B. Posterior distributions of infection times (top) and

latency durations (bottom left). In the top panel, vertical dashed

lines indicate the virus observation times.

(TIF)

Figure S12 Spatial representation of the tree with the
highest posterior probability, for different parametrisa-
tions of the prior distribution for the veterinarian
assessment of the age of the oldest lesion on a premise.
Left column: 2007 epidemics, right column: cluster in the 2001

epidemics. Top: prior variance of Di equal to 0:52Dobs
i . Center:

prior variance of Di set to Dobs
i (information provided by the

veterinarians are more uncertain). Bottom: prior variance of Di set

to 0:12Dobs
i (information provided by the veterinarians are less

uncertain). See also Fig. S13.

(TIF)

Figure S13 Uncertainty about the veterinarian as-
sessment of the age of the oldest lesion on a premise,
for different parametrisations of the prior distribu-
tion. Left: prior variance of Di set to 0:52Dobs

i . Center: prior

variance of Di set to Dobs
i (information provided by the

veterinarians are more uncertain). Right: prior variance of Di

set to 0:12Dobs
i (information provided by the veterinarians are

less uncertain).

(TIF)

Figure S14 Genetic network, based on statistical parsi-
mony, implemented in the software package TCS [16].
Full dots represent observed genomes, while empty dots represent

unsampled genomes (for these last ones, timing is arbitrary), links

represent single mutations. Top panel: subset of the Darlington

cluster, 2001 UK FMDV epidemics [13]; bottom panel: 2007 UK

FMDV epidemics [15]. Each arrow indicates the network root,

based on the references above.

(TIF)

Figure S15 Transmissions for the simulated outbreak
with 100 farms. True transmissions are indicated with circles;

dot sizes are proportional to posterior probabilities of transmis-

sions.

(TIF)

Figure S16 Tree with the highest posterior probablity -
simulated outbreak with 100 farms. The tree has been

divided in 4 panels (premises 1–25, 26–50, 51–75, 76–100

respectively) for clarity. Solid arrows represent inferred transmis-

sions. When the inference is not correct, the true transmission is

drawn as a dotted-dashed arrow.

(TIF)

Figure S17 Posterior distributions (histograms) - simu-
lated outbreak with 100 farms. Posterior distributions of

mean latency duration (~b1; left) and mean transmission distance

(~2a2; right); dashed lines: true values; dotted-dashed curves:

prior distributions; solid lines: posterior medians; dotted lines:

posterior quantiles 0.025 and 0.975.

(TIF)

Table S1 Additional criteria to assess the performance
of the estimation algorithm over three series of 100
simulations (test, 2007, 2001). Criteria are the coverages by

the 95% posterior intervals of the infection times, the times at

which the premises became infectious, the transmission parame-

ters (source strength and dispersion parameter) and the latency

parameters (mean and Sd.).

(PDF)

Text S1 Details about the mathematical model, the
Monte Carlo Markov Chain Algorithm, further analyses
of its performances and comparison with previous
results in the literature.
(PDF)
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13. Cottam EM, Thébaud G, Wadsworth J, Gloster J, Mansley L, et al. (2008)

Integrating genetic and epidemiological data to determine transmission
pathways of foot-and-mouth disease virus. Proc R Soc B 275: 887–895.

14. Ypma RJF, Bataille AMA, Stegeman A, Koch G, Wallinga J, et al. (2011)
Unravelling transmission trees of infectious diseases by combining genetic and

epidemiological data. Proc R Soc B 279: 444–450.

15. Cottam EM, Wadsworth J, Shaw AE, Rowlands RJ, Goatley L, et al. (2008)
Transmission pathways of foot-and-mouth disease virus in the united kingdom in

2007. PLoS Pathog 4: e1000050.
16. Clement M, Posada D, Crandall KA (2000) Tcs: a computer program to

estimate gene genealogies. Mol Ecol 9: 1657–1659.

17. Keeling MJ, Woolhouse MEJ, Shaw DJ, Matthews L, Chase-Topping M, et al.
(2001) Dynamics of the 2001 uk foot and mouth epidemic: Stochastic dispersal in

a heterogeneous landscape. Science 294: 813–817.
18. Gibbens JC, Wilesmith JW (2002) Temporal and geographical distribution of

cases of foot-and-mouth disease during the early weeks of the 2001 epidemic in
great britain. Vet Rec 151: 1307–1320.

19. Charleston B, Bankowski BM, Gubbins S, Chase-Topping ME, Schley D, et al.

(2011) Relationship between clinical signs and transmission of an infectious

disease and the implications for control. Science 332: 726–729.
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