
ORIGINAL RESEARCH
published: 26 November 2019
doi: 10.3389/fonc.2019.01313

Frontiers in Oncology | www.frontiersin.org 1 November 2019 | Volume 9 | Article 1313

Edited by:

Minesh P. Mehta,

Baptist Health South Florida,

United States

Reviewed by:

Peter B. Schiff,

New York University, United States

Radka Stoyanova,

University of Miami, United States

*Correspondence:

Ning Wen

nwen1@hfhs.org

Specialty section:

This article was submitted to

Radiation Oncology,

a section of the journal

Frontiers in Oncology

Received: 14 May 2019

Accepted: 12 November 2019

Published: 26 November 2019

Citation:

Bagher-Ebadian H, Janic B, Liu C,

Pantelic M, Hearshen D, Elshaikh M,

Movsas B, Chetty IJ and Wen N

(2019) Detection of Dominant

Intra-prostatic Lesions in Patients With

Prostate Cancer Using an Artificial

Neural Network and MR Multi-modal

Radiomics Analysis.

Front. Oncol. 9:1313.

doi: 10.3389/fonc.2019.01313

Detection of Dominant
Intra-prostatic Lesions in Patients
With Prostate Cancer Using an
Artificial Neural Network and MR
Multi-modal Radiomics Analysis
Hassan Bagher-Ebadian 1, Branislava Janic 1, Chang Liu 1, Milan Pantelic 2,

David Hearshen 2, Mohamed Elshaikh 1, Benjamin Movsas 1, Indrin J. Chetty 1 and

Ning Wen 1*

1Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States, 2Department of Radiology, Henry

Ford Health System, Detroit, MI, United States

Purpose: The aim of this study was to identify and rank discriminant radiomics

features extracted from MR multi-modal images to construct an adaptive model for

characterization of Dominant Intra-prostatic Lesions (DILs) from normal prostatic gland

tissues (NT).

Methods and Materials: Two cohorts were retrospectively studied: Group A consisted

of 98 patients and Group B 19 patients. Two image modalities were acquired using a

3.0T MR scanner: Axial T2 Weighted (T2W) and axial diffusion weighted (DW) imaging.

A linear regression method was used to construct apparent diffusion coefficient (ADC)

maps from DW images. DILs and the NT in the mirrored location were drawn on each

modality. One hundred and sixty-eight radiomics features were extracted from DILs

and NT. A Partial-Least-Squares-Correlation (PLSC) with one-way ANOVA along with

bootstrapping ratio techniques were recruited to identify and rank the most discriminant

latent variables. An artificial neural network (ANN) was constructed based on the optimal

latent variable feature to classify the DILs and NTs. Nineteen patients were randomly

chosen to test the contour variability effect on the radiomics analysis and the performance

of the ANN. Finally, the trained ANN and a two dimension (2D) convolutional sampling

method were combined and used to estimate DIL-NT probability map for two test cases.

Results: Among 168 radiomics-based latent variables, only the first four variables

of each modality in the PLSC space were found to be significantly different between

the DILs and NTs. Area Under Receiver Operating Characteristic (AUROC), Positive

Predictive and Negative Predictive values (PPV and NPV) for the conventional method

were 94%, 0.95, and 0.92, respectively. When the feature vector was randomly

permuted 10,000 times, a very strong permutation-invariant efficiency (p < 0.0001)

was achieved. The radiomic-based latent variables of the NTs and DILs showed no

statistically significant differences (Fstatistic < Fc = 4.11 with Confidence Level of 95% for
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all 8 variables) against contour variability. Dice coefficients between DIL-NT probability

map and physician contours for the two test cases were 0.82 and 0.71, respectively.

Conclusion: This study demonstrates the high performance of combining radiomics

information extracted from multimodal MR information such as T2WI and ADC maps,

and adaptive models to detect DILs in patients with PCa.

Keywords: radiomics, multiparametric MRI (mpMRI), prostate cancer, intraprostatic lesion, artifical neural

network (ANN)

INTRODUCTION

Radiation Therapy (RT) has been proven to be an effective form
of treatment for prostate cancer (PCa) and still is considered
as one of the standard treatment options available. The current
practice is to treat the entire prostate with a homogeneous dose
distribution (1, 2). Escalated dose conformal radiotherapy has
shown an advantage in biochemical progression-free survival but
it is associated with the increase in acute and late toxicities (3).
Simultaneous dose escalation to the dominant intra-prostatic
lesions (DILs), while maintaining acceptable doses to the whole
prostate gland has potential to improve therapeutic ratio for
prostate cancer patients. A median dose to the entire gland
could prevent the disease recurrence in the prostate from satellite
tumors and significantly reduce the side effects associated with
escalated radiation dose to the entire gland. A boosting dose to
the DIL can maintain the effectiveness of focal therapy to treat
the DIL that is the main determinant for tumor progression and
prognosis. For this strategy to be successful, key requirements are
the ability to accurately and reliably identify clinically significant
tumors in the prostate gland.

Among different imaging techniques, Magnetic Resonance
Imaging (MRI) is used increasingly and provides clinicians
and researchers with useful information for delineation of
the prostate gland and clinically significant tumors in PCa
patients (1, 2, 4). While multi-parametric (MP) MRI is well-
established (5, 6) for detection of lesions and for staging of
the disease, the sensitivity for small and lower grade lesions
as well as spare tumors has been low (7) and MP-MRI
has failed to improve the detection accuracy of lesions in
the central gland (8). Furthermore, accurate and automatic
delineation of DILs from prostate glandular tissue which is not a
common practice, still remains a challenge. Radiomics analysis,
which is defined as the post-processing for high throughput
extraction of textural and intensity-based information from
medical images, can play a central role toward detecting
biomarkers for diagnosis and/or therapy of patients with
cancer (9, 10).

This study aims to identify discriminant radiomics features
in the real radiomics-feature space and the latent-variable
space (constructed from radiomics features in the space of
Partial Least Square Correlation, PLSC) for construction
of an adaptive model to classify DILs and NTs. The
discriminant feature set in the PLSC latent-variable space
can also be used for intra-tumoral segmentation and treatment
response evaluation.

METHODS AND MATERIALS

Patient Population, and Pre-processing
A total of hundred-seventeen patients consisted of the following
two groups were studied:

Group A: This group consisted of 98 PCa patients collected
in Radboud University Nijmegen Medical Centre (11) and
evaluated with Computer-Aided Diagnosis (CAD) (12, 13). Each
MR study was read and reported by or under the supervision
of an expert radiologist (Barentsz), with more than 20 years
of experience in prostate MR. The radiologist indicated areas
of suspicion with a score per modality using a point marker.
If an area was considered likely for cancer a biopsy was
performed. All biopsies were performed under MR-guidance
and confirmation scans of the biopsy needle in situ were
made to confirm accurate localization. Biopsy specimen were
subsequently graded by a pathologist and the results were used as
ground truth. Gleason grade groups for these patients are listed
in Table 1, GroupA.

All MR studies included T2-weighted (T2W) and diffusion-
weighted (DW) imaging. The images were acquired on two

TABLE 1 | Gleason Grade Group and PSA level of PCa patients for the two

groups are shown in the table.

Gleason grade group No. of patients

GROUP A

1 30

2 39

3 19

4 5

5 5

GROUP B

1 5

2 7

3 3

4-5 4

PSA level No. of patients

<4 5

4-10 8

10–20 2

>20 4

The PSA levels are not available for group A.
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different types of Siemens 3T MR scanners, the MAGNETOM
Trio and Skyra. T2W images were acquired using a turbo spin
echo sequence and had a resolution of around 0.5mm in plane
and a slice thickness of 3.6mm. the DWI series were acquired
with a single-shot echo planar imaging sequence with a resolution
of 2mm in-plane and 3.6mm slice thickness and with diffusion-
encoding gradients in three directions. Three b-values were
acquired [50, 400, and 800 (sec-mm−2)], and subsequently, the
ADC map was calculated by the scanner software. All images
were acquired without an endorectal coil, as per the PI-RADS
guidelines for acquisition of prostate MRI (14).

Group B: Consisted of 19 patients (age range: 56–84, mean:
67) collected in our hospital, presented with increased PSA
levels, suspicion in MR images, and biopsy-proven localized
prostate carcinoma with no prior treatment. PSA and Gleason
score of these patients are listed in Table 1, GroupB. All
patients underwent an MP MRI study. An ultrasound guided
needle biopsy was performed to confirm the diagnosis. Among
19 patients, 15 had histopathologically identified cancer in
peripheral zone and 4 in the central gland. Two image modalities
were acquired from the pelvis of all patients using a 3.0 T MR
scanner (Ingenia, Philips Medical System, Best, the Netherlands)
using small field of view as follows: Axial T2W Images (T2WI)
acquired with Fast-Spin-Echo (TE/TR: 4389/110ms, Flip Angle:
90◦ with image resolution of 0.42 × 0.42 × 2.4 mm3) and
axial Diffusion Weighted Images (DWI) with two b-values
[TE/TR:4000/85ms, FA:90◦, 1.79 × 1.79 × 0.56 mm3, b-values:0
and 1000 (sec-mm−2)]. The voxel-wise Apparent Diffusion
Coefficient (ADC) map was constructed using two DWIs with
two b-values. A large field of view transverse T2W sequences was
also acquired to access the pelvic bones and lymph nodes. Image
registration and lesion contouring was performed on in-house
developed software.

Data Contouring and Harmonization
For each patient of group B, a radiologist with over 20 years of
experience evaluated the axial T2WI and ADC maps and used
the following criteria for delineation of DIL: Areas with a well-
circumscribed, hypo-intense with the highest Gleason score in
the prostate on T2WI and ADC map. DIL and the equivalent
region in contralateral (normal prostatic glandular tissues, NT)
were contoured on axial T2WI and ADC maps, respectively.
To harmonize the data and make them independent from MR
scanner gains (can affect weighted images), for each patient of
both groups, the signal intensity of their DIL was normalized to
the mean value of their corresponding normal volume prior to
the radiomics analysis.

Radiomics Analysis
All data processing was performed off-line using a commercial
software package (MATLAB 2016a, the MathWorks Inc., Natick,
MA, 2000). For each patient, 168 radiomics features (15),
from eight different categories, were extracted from DIL and
NT volumes contoured on ADC maps and T2W images. The
8 feature categories (15), as detailed below and in Table 2,
were classified as follows: Intensity Based Histogram Features
(IBHF−9 features), Gray Level Run Length (GLRL−7 features),

Law’s Textural information (LAWS−18 features), Discrete
Orthonormal Stockwell Transform (DOST−18 features), Local
Binary Pattern (LBP−6 features), Two-Dimensional Wavelet
Transform (2DWT−48 features), Two Dimensional Gabor Filter
(2DGF−40 features), and Gray Level Co-Occurrence Matrix
(GLCM−22 features) (15).

Feature Selection and Statistical Analysis
A Partial Least Square Correlation (PLSC) (16) technique
combined with one-way analysis of variance (ANOVA) were
recruited to identify the most discriminant PLSC latent variables
constructed from radiomics features extracted from NTs and
DILs of multimodal MR information (T2WI and ADC map).
PLSC method which is also called as projection to latent
structures, can relate the information present in two MR
modalities in which collect measurements on the same set
of observations (16, 17). The goal of the PLSC is to find
pairs of latent vectors with maximal covariance and with the
additional constraints that the pairs of latent vectors made
from two different indices are uncorrelated and the coefficients
used to compute the latent variables are normalized. As
shown in Figure 1, two observation matrices were constructed
using 168 radiomics features extracted from the two image
modalities (T2WI and ADC) from total patients. A singular
value decomposition (SVD) technique was used to analyze
the common and discriminant information between the two
observation matrices. For each MR modality, a latent vector
was computed by the SVD technique and then it was tested by
the ANOVA (with homoscedasticity assumption and confidence
level of 0.95) to identify the most discriminant features in latent
variable space between the features extracted from DIL and NT
volumes in both groups. The Holm–Bonferroni method (18) was
also used for circumventing the problem ofmultiple comparisons
for the p-values. This method of p-value adjustment controls the
familywise error rate and offers a uniform test, which is more
powerful than the classic Bonferroni correction (18). Using the
discriminant latent variable set identified by ANOVA, an optimal
feature set for both modalities was identified and constructed.

Feature Ranking Using Bootstrapping
Ratio Technique
A bootstrapping ratio (16, 19, 20) and permutation test (10,000
times randomly repeated) were performed on the latent vectors
of the features sets (extracted from T2WI and ADC) and the
SVD was computed for each configuration and distribution of
eigen values was used to estimate the ranking and efficiency of the
radiomics features against random permutation. For radiomics
feature ranking, bootstrap ratios were computed by dividing the
mean of the bootstrapped distribution of a significant latent
variable by its standard deviation. The bootstrap ratio is akin to
a Student t criterion and so if a ratio is large enough (>2.00;
because it roughly corresponds to 95% of confidence level for a
t-test) then the variable is considered significant/important for
the dimension. The bootstrap estimates a sampling distribution
of a statistic by computingmultiple instances of this statistic from
bootstrapped samples obtained by sampling with replacement
from the original sample (16, 19, 20).
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TABLE 2 | Eight different radiomics feature categories along with a short explanation of each category is shown in this table.

Category Number of radiomics

features

Radiomics features

IBHF 9 features Nine features are extracted from histogram of the pixel intensity values: 1-Mean, 2-Standard Deviation, 3-Skewness,

4-Kurtosis, 5-Entropy, 6-Central Moment of 3rd order, 7- Central Moment of 4th Order, 8- Central Moment of 5th Order, 9-

Central Moment of 6th Order.

GLRL 7 features Seven Gray Level Run Length texture descriptors were constructed based on the following emphasizes: Short Run

Emphasis (SRE), Long Run Emphasis (LRE), Gray Level Non-Uniformity (GLN), Run Percentage (RP), Run Length

Non-Uniformity (RLN), Low Gray Level Run Emphasis (LGRE), and High Gray Level Run Emphasis (HGRE).

LAWS 18 features Nine textural maps were constructed by filtering the image data using the following convolution kernels: L5 = [1 4 6 4 1], E5

= [−1 −2 0 2 1], S5 = [−1 0 2 0 −1], R5 = [1 −4 6 −4 1] and then, 18 LAWS textural features were computed by applying

and combining the energy and entropy operators on these maps as following: L5E5/E5L5, L5R5/R5L5, E5S5/S5E5, S5S5,

R5R5, L5S5/S5L5, E5E5, E5R5/R5E5, and S5R5/R5S5.

DOST 18 features The two-dimensional matrix of DOST coefficients was divided into nine equal segments and the energy and entropy of each

segment was averaged over the tumor volume and eighteen features (nine energy along with nine entropy) were generated

and used as the DOST radiomics features.

LBP 6 features Local Binary Pattern algorithm with a radial filter (eight-neighborhood) was used to generate a two-dimensional LBP map

and Entropy, Entropy, Mean, Standard Deviation, Skewness, and Kurtosis of the LBP maps were used as the six LBPF

radiomics features.

2DWT 48 features Two-dimensional Wavelet Transform with six decomposition levels for four different information attributes (Multi-resolution

image, vertical, horizontal, and diagonal) was used to generate 24 maps of 2DWT information. Energy and entropy of the

information maps were calculated and used as the 48 2DWT radiomics features.

2DGF 40 features Two-dimensional Gabor (2DG) filter with five different scales for four different orientations generated 20 maps. Energy and

entropy of the maps was averaged over the tumor volume and used as the 2DGT radiomics features.

GLCM 22 features Gray-Level-Co-occurrence Matrix (GLCM) was generated and the following 22 features were measured from the GLCM

using an 8-bit depth quantization: 1-Autocorrelation, 2-Contrast, 3-Correlation (2), 4-Correlation (1), 5-Cluster Prominence,

6-Cluster Shade, 7-Dissimilarity, 8-Energy, 9-Entropy, 10-Homogeneity (1), 11-Homogeneity (2), 12-Maximum probability,

13-Sum of squares(Variance), 14-Sum average, 15-Sum variance, 16-Sum entropy, 17-Difference variance, 18-Difference

entropy, 19-Information measure of correlation (1), 20-Information measure of correlation (2), 21-Inverse difference

normalized, and 22-Inverse difference moment normalized.

Artificial Neural Networks: Architecture
Optimization, Training, and Validation
Strategies
Eight latent variables constructed from the radiomics
information were identified as the optimal feature set and
were used as the input to an artificial neural networks (ANN)
with a feed-forward multilayer perceptron (MLP) architecture
and back-propagation training algorithm (21) for classification
of DILs and NTs. In this type of ANN, the nodes are organized
in multiple layers; The ANN used in our study had three layers:
the input layer, single intermediate layer, and the output layer
(21, 22). Nodes were interconnected by weights in such a way
that information propagates from one layer to the next, passing
through a sigmoid (bipolar) activation function (22). Learning
rate and momentum factors were set to control the internode
weight adjustments during training (learning rate: 0.01, and
Momentum: 0.01). A back propagation learning strategy (21)
was employed for training the ANN in a supervised mode. In
this strategy, a trial set of weights (the weight vectors, one vector
for each layer of the ANN) was proposed. The initial weights
were assigned randomly, and the same set of initial weights
was saved and used for different trial during the leave-one-out
method. The weight vectors were then adjusted to minimize
some measure of error (in this case the Mean Square Error,
MSE) between the output of the ANN and the training set. This

procedure was performed iteratively across the entire data set
using a batch processing mode to improve the convergence
rate and the stability of training. The weight changes obtained
from each training case were accumulated, and the weights
updated after the entire set of training cases was evaluated. Batch
processing improves stability, but with a tradeoff in reduction of
the convergence (21–23).

Two different training and validation strategies were recruited
and tested as follows:

Strategy 1: Leave-One-Out Cross-Validation (LOOCV)

method, which is a particular case of the Leave-P-Out Cross

Validation (called as Exhaustive Method) was employed for
training, testing, and ANN architecture optimization (21, 22, 24–

26). LOOCV was recruited to find the optimal structure,

termination error, and validation of the ANN. As shown in

Figure 2, this approach leaves one data point out of training
data, i.e., if there are N data points in the original sample then,

N-1 samples are used to train the model and 1 point is used as

the validation. This is repeated for all combinations in which

original sample can be separated this way, and then the error
is averaged for all trials, to give overall effectiveness with less

estimated bias (27). This method is generally preferred over the

Leave-P-Out Cross Validation when the sample size is small
since it does not suffer from the intensive computation, as
number of possible combinations is equal to number of data
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FIGURE 1 | The flowchart demonstrates different steps for the extraction of radiomics features from T2W images and ADC maps for DILs and normal tissues. As

shown in this figure, for each MR modality, 168 radiomics features are extracted from normal and DIL volumes. The optimal feature set for the two MR modalities are

identified using ANOVA applied on the latent variables generated by the PLSC technique for features with Silhouette coefficient of 0.5 and greater.

points in original sample or N (28). Finally, to evaluate the
stability of the optimal ANN against optimal number of training
epochs, a series of ROC curves were generated by applying a

threshold at the output of the randomly (100 times) trained
ANN. The, the optimal cut-point which is the point closest-to-
corner in the ROC plane was calculated. The optimal cut-point
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FIGURE 2 | This figure demonstrate three major phases as follows: Training, optimization, and evaluation phases for the ANN using the leave-one-out technique and

area under correct classification fraction.

defines as the point minimizing the Euclidean distance between
the ROC curve and the (0, 1) point (29). As the sensitivity
(true positives) increases, the ANN can identify more cases
with DIL, while the accuracy on identifying NTs (specificity)
are sacrificed. Cut-points dichotomize the test values, so this
provides the classification (DIL or not). Simultaneous assessment
of sensitivity and specificity is used to estimate the cut-point
value which is considered as optimal when the point classifies
most of the individuals correctly (29, 30).

To measure how accurately the ANN matched the whole
input dataset with the entire identifier set, the ANN’s Correct-
Classification-Fraction (CCF: True Positive plus True Negative,
TP+TN) curve was generated at different levels of epochs during
the LOOCV procedure. The area under Receiver-operating
characteristic (AUROC, Az-value) curves (21, 22, 24, 25) for the
ANN that is an index of predictive performance, was used to
compare the ANN’s performance in determining the optimal
architecture of the ANN, and also finding the termination error
(avoid overfitting) for training the optimal ANN.

Strategy 2: For each discriminant latent variable, the data
of the patient group A (96 patients) was split 100 times into
training and validation components. In each data split, two-
thirds (67%) of the entire dataset was randomly sampled and
used as a training set and the remaining one-third (33%) was
used as the unseen cohort or validation dataset (31). Using the
training and validation sets for each of the 100 iterations, the
ANN was trained and validated separately for each discriminant
latent variable. The same procedure was repeated for the set
of eight latent variables. The AUROC, Positive Predictive value
(PPV) and Negative Predictive value (NPV) were computed
for each trial and were averaged to evaluate ANN classification
performance for each discriminant latent variable and the set of
eight latent variables.

All data processing and classifier implementation were
performed using a series of in-house codes developed in the
MATLAB environment.

Testing of Data Harmonization, Feature
Consistency, and Generalization Error
Data harmonization refers to all efforts to combine different
datasets collected by different scanners in different institutions.
Finally, in order to test the consistency of the identified
discriminant latent variables against the data harmonization
and also testing the performance of the classifiers against
prospective/unseen datasets (ANN generalization error), the
following sub-analysis was conducted: An ANN was trained
using the eight discriminant latent variables (constructed from
radiomics information) extracted from patients information
of group A. The trained ANN was then applied on the
eight discriminant latent variables (constructed from radiomics
information) extracted from patient information of group B (as
test set or unseen patient cohorts). Ultimately, a ROC analysis
was performed on the predictions of the trained ANN and
AUROC, NP, and PP values for the unseen testing cohort (group
B) were calculated.

Contour Variability Test
Nineteen patients were randomly chosen from hundred-
seventeen patients and their DIL and NT contours were modified
by scaling the contours by a factor of 1.2 in all directions
followed by a 1 voxel shift in all directions and their modified
contours were used to repeat the radiomics and PLSC analyses
and ANOVA method was used to test the sensitivity of the latent
variables against contour variability.
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TABLE 3 | Feature ranking based on the PLSC and Bootstrapping techniques for

the first 10 significant radiomic features of two MR modalities.

Feature

no.

Image

modality

Radiomics

feature

Radiomics feature

category

Bootstrapping

ratio (mean/std)

1 T2WI LBP_Energy LBP 21412.01

2 ADC Map LBP_Energy LBP 410.83

3 T2WI RLN GLRL 159.69

4 ADC Map RLN GLRL 70.32

5 T2WI GLN GLRL 35.29

6 T2WI HGRE GLRL 35.28

7 ADC Map DOST_ENTROPY_22 DOST 25.13

8 ADC Map ENG_GAB02 2DGF 22.99

9 ADC Map LBP_KURTOSIS LBP 22.95

10 T2WI LBP -KURTOSIS LBP 22.92

Tumor Probability Map
The trained ANN and a two dimension (2D) convolutional
sampling method window size = 25 × 25) were combined and
used to estimate DIL-NT probability map for two test cases.
Dice coefficients between the DIL contours and the DIL patch
estimated from the probability maps (Pthr > 0.001) for the two
cases were calculated and compared.

RESULTS

A flowchart demonstrating different steps for extracting
radiomics features from T2W images and ADC maps for DILs
and NTs are shown in Figure 1. As shown in the figure, for
each MR modality, 168 radiomics features were extracted from
each of the NTs and DILs and finally, the optimal discriminant
latent feature set for the two MR modalities were identified
using a PLSC technique and ANOVA. Table 3 shows feature
ranking results based on the PLSC and bootstrapping ratio
techniques for the first 10 significant radiomic features of two
MRmodalities. Figures 3A,B demonstrate the scatter plots of the
first three PLSC latent variables for T2WI and ADC, respectively.
Figures 3C,D demonstrate the permutation tests for the inertia
explained by the PLSC of the T2WI and ADC map along with
their observed inertia for the 10,000 permutations.

Figure 4A shows correct classification fraction (CCF = TP +

TN) of the optimal ANN at different training epochs for LOOCV
technique. The epoch corresponding to 10% change in plateau for
the optimum architecture (8:5:1) was used as the stopping epoch
(epoch= 17) of the ANN. Figure 4B shows TP, TN, false positive
(FP), and false negative (FN), of the optimal ANN at different
training epochs.

The AUCCF values for different ANN structures for LOOCV
technique are shown in Figure 4C. As shown in this figure, the
ANN with five neurons in its only hidden layer shows the highest
performance (Az = 0.95) and is chosen as the ANN with optimal
structure. Figure 4D shows the average AUROC of the ANN
generated for randomly (100 times) trained ANNs along with
the optimal cut-point (OCP = 0.96). Given the average AUROC
(Az test ∼ 0.96), the optimal cut-point of the ANN, and the

eigen value distributions for the randomly permuted (10,000
permutations) radiomics features, the generalization error of the
ANN was about 4% with a very strong permutation-invariant
efficiency, p < 0.0001) against the order of the latent variables.

AUROC, PPV, and NPV for the conventional method were
94%, 0.95, and 0.92, respectively. ROC analyses for eight
individual latent variables (4 for T2WI and 4 for ADC) are shown
in Figure 5. Figures 5A–D demonstrate the ROC analyses of
the ANN for the first 4 latent variables constructed from T2WI
for 100 random iteration corresponding to a different division
of training and validation data of group A while Figures 5E–H
depict the corresponding information for the ADC map. Table 4
shows AUROC, NPV, and PPV values along with their confidence
intervals measured for each individual latent variable for 100
iterations (each corresponding to a different division of training
and validation datasets).

As shown in Figure 5I, for the conventional training and
validation method, the average AUROC, PPV and NPV were
95%, 0.96, and 0.93, respectively. Figure 5J shows the response
of the trained ANN (group A) when it was applied on group B.
The performance of the trained ANN (using group A dataset)
when it was applied on the unseen data cohort (group B) was:
Sensitivity/Specificity = 0.95/0.94. The radiomic-based latent
variables of the NTs and DILs showed no statistically significant
differences (Fstatistic for all 8 latent variables were smaller than
Fcritical = 4.11, with Confidence Level of 95%) against contour
variability. Figures 6A–F, illustrate T2WI, ADC map, and lesion
probability map for a slice of prostate gland of two different
patients estimated by the trained ANN using a 2D-convolutional
sampling method (window size = 25 × 25). Dice coefficients
between DIL-NT probability map and physician contours for the
two test cases were 0.82 and 0.71, respectively.

DISCUSSION

Recent studies have shown that cancerous tissues are spatially
heterogeneous due to factors, such as cell structures, genes,
protein contents, cell morphologies, tumor microenvironment,
and physiology (32). Indeed, themain purpose of using radiomics
is to reveal and extract additional information from medical
imaging modalities, associated with macroscopic and microscopic
image-based features that have the potential to serve as surrogates
for pathophysiological and radiological parameters, such as
tumor heterogeneity level, pathology, response to a given
therapy, decoration and distribution of information in images,
and structural and image-based patterns in digital images. In our
study, given the variation and nature of the radiomics features,
we extracted multi scale information in form of features from the
prostate gland to characterize normal prostatic tissue and tumor
phenotypes from multi model MRI.

The PLSC technique used in this study allowed the finding
of shared information between the two image modalities
(T2WI and ADC). This approach is equivalent to a correlation
problem (16, 17, 33) and provided descriptive features from
multivariate information in form of latent variables which
are optimal linear combinations of the variables extracted
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FIGURE 3 | (A,B) Clusters of NTs and DILs for each latent variable are well-separated with less diffusivity. It confirms that the distribution of the identified latent

variable (PLSC-ANOVA) in the feature space is well-matched to its own cluster (less scattered) and poorly diffused to its neighboring clusters for the MR modalities.

(C,D) Show the results of the permutation tests for the inertia explained by the PLSC of T2WI and ADC map for 10,000 permutations. As shown in the subfigures, the

observed value (shown by vertical arrows) were never obtained in the 10,000 permutations for both modalities. Therefore, it is concluded that PLSC extracted a

significant amount of common variance between these two modalities with P < 0.0001.

from the two image modalities. Partial least square (PLS)
method that benefits from projecting feature information on
latent structures, relates the information present in two data
tables (modalities) that collect measurements on the same set
of observations (16). PLSC latent variables constructed on
the basis of radiomics information extracted from DIL and
NT consists of all radiomics features and can help reveal
variations of descriptive features or discriminant parameters
for classification of DIL from NT. An adaptive classifier (such
as ANN) provides capability of implicitly detecting complex
non-linear relationships between dependent and independent
radiomics variables (already found as optimal feature set in latent
variable space) and their variations, modeling their non-linear
changes as well as detecting all possible interactions between

the predictor variables. As shown in Figures 3A,B, clusters of
NTs and DILs for each latent variable are well-separated with
less diffused marginal points in the feature space. It confirms
that the distribution of the identified latent variable (PLSC-
ANOVA) in the PLSC space is well-matched to its own cluster
(less scattered) and poorly diffused to its neighboring clusters.
Figures 3C,D show the results of the permutation tests for the
inertia explained by the PLSC of T2WI and ADC map for
10,000 permutations. The observed value (shown by vertical
arrows) were never obtained in the 10,000 permutations for
both modalities. Therefore, it is concluded that PLSC technique
was able to successfully extract significant amount of common
variances between these two modalities with p-value smaller
than 0.0001.
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FIGURE 4 | (A) Shows true positive plus true negative (TP+TN) of the optimal ANN (8:5:1) at different training epochs. (B) Shows true positive, true negative, false

positive, and false negative of the optimal ANN at different training epochs. (C) Demonstrates the area under receiver operating characteristic (AUROC, Az test) value

for different ANN structures. As shown in this figure, the ANN with five neurons in its only hidden layer shows the highest performance and is chosen as the optimal

ANN. (D) Shows the average ROC of the optimal ANN along with optimal-cut-point of the ANN.

Recruitment of PLSC technique and ANOVA in this
study allowed robust comparison and revealing of the
correlation and descriptive power of different radiomics
features extracted from the two MR modalities, while providing
more predictive accuracy and a much lower chance of
risk for the two sets of features affecting each other. The
major limitations could be the sensitivity to the relative
scaling of the descriptor variables that was addressed by
the standardization and harmonization steps prior to the
feature extraction.

Recent studies (34–39) have shown that ADC measurements
are affected by the user selected repetition time (TR) values,
especially if it is comparable to the relaxation time. The degree
of TR dependence is also codependent on another parameter

called number of diffusion preparation pulses. Similar to TR

dependence of ADC values, it is expected that there could be
an echo time (TE) dependence on ADC values. In fact, Wang
et al. (39) found a modest correlation between TE and ADC
values in the prostate. It has been shown that tissue specific
relaxation time parameters such as T1 and T2 and imaging
parameters such as TR and TE affects the optimum b-value for
different anatomies, tissues, and even lesion types within the
same organ. Therefore, since the ADC value could be highly
and “non-linearly” affected by the MR imaging parameters (34–
39), in this study, as part of data harmonization, normalization
to normal volume was performed to suppress the effect of the
MR imaging parameters on the ADC values. Such normalization
made the ANN independent and less sensitive to theMR imaging
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FIGURE 5 | (A–D) Depict ROC curves corresponding to 100 iterations each corresponding to a different division of training and validation datasets for ANN for the

T2WI latent variables number 1–4. (E–H) depict ROC curves corresponding to 100 iterations each corresponding to a different division of training and validation

datasets for ANN for the ADC latent variables number 1–4. As shown in this figure for each modality, from left to right as the order of latent variable increases the

information content or discrimination power of the variable for classification deceases. (I) illustrates a family of ROC curves for 100 iterations, each corresponding to a

different division of training and validation datasets for ANN for all 8 latent variables. (J) shows the response of the trained ANN against an unseen/prospective dataset

(trained with group A and tested with group B).

parameters for prospective patients whom could be scanned with
different scanners or different imaging parameters.

As shown in Figure 5 and according to the statistical measures
reported in Table 4, as it is expected, for each modality, from
left to right (Figures 5A–D or Figures 5E–H), as the order
of the latent variable increases the information content or
discrimination power of the variable for DIL classification
deceases. As shown in Table 4 and Figure 5, the analysis results

strongly confirm that compared to T2WI modality, the ADC
modality is more discriminative with higher information content
for the classification of DILs and NTs.

The application of novel machine learning techniques
such as Bayesian approach, Support vector machine (SVM)
kernels: polynomial, radial base function (RBF) and Gaussian
and Decision Tree for detecting prostate cancer have been
proposed by several research groups (40–42). Moreover, different
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TABLE 4 | This table shows AUROC, NPV, and PPV values along with their confidence intervals measured for each individual latent variable for 100 iterations (each

corresponding to a different division of training and validation datasets).

Latent variable AUROC AUROC-CI PPV PPV-CI NPV NPV-CI

First latent variable (T2WI) 0.87 0.86–0.89 0.86 0.84–0.88 0.78 0.76–0.79

Second latent variable (T2WI) 0.79 0.72–0.85 0.84 0.78–0.90 0.71 0.68–0.74

Third latent variable (T2WI) 0.76 0.75–0.80 0.72 0.67 0.74 0.72 0.70–0.74

Fourth latent variable (T2WI) 0.66 0.64–0.68 0.58 0.57–0.60 0.69 0.65–0.73

First latent variable (ADC) 0.91 0.90–0.92 0.88 0.85–0.90 0.82 0.80–0.84

Second latent variable (ADC) 0.88 0.86–0.89 0.87 0.85–0.89 0.81 0.80–0.83

Third latent variable (ADC) 0.79 0.72–0.87 0.80 0.75–0.85 0.83 0.81–0.86

Fourth latent variable (ADC) 0.74 0.72–0.76 0.66 0.64–0.67 0.81 0.78–0.85

FIGURE 6 | (A–F) illustrate T2WI, ADC map, and lesion probability map for a slice of prostate gland for two different patients estimated by the trained PLSC-ANN

using a 2D-convolutional sampling method (window size = 25 × 25).

features extracting strategies are proposed to improve the
DIL detection performance (40). ANNs have been used in
different fields on a variety of tasks such as computer vision,
speech recognition, machine translation, social network filtering,
medical diagnosis, and in many other domains. There have
been numerous applications of ANNs within medical decision-
making (26, 43, 44). It has been shown that ANNs have unique
properties including robust performance in dealing with noisy or
incomplete input patterns, high fault tolerance, and the ability
to generalize from the training data (26, 43). The adaptive
model constructed in this study can benefit from the ANN’s
properties stated above and can distinguish DILs from NTs
with almost uniform sensitivity at different levels of specificities
(see Figures 4A,B, 5I). The stability (lesions being non-patchy
and uniform) of the predicted DILs and NTs in the probability
maps (shown in Figure 6) clearly confirm the robustness of
the PLSC-ANN technique in information extraction from the
two MR modalities. The proposed ANN in this study was
trained without any data augmentation. The results implied that

the trained ANN can also evaluate any suspicious lesion in
different zones of the prostate gland (PZ or TZ) regardless of its
Gleason score.

Our study also confirms that the most discriminant features
are textural-based features and given the bootstrapping feature
ranking results, it can be concluded that frequency or
arrangement-based features (LBP, GLRL, DOST, and 2DGF, see
Table 3, a measure of the decoration or disorder of information
distribution within a region), that are associated with subtle and
descriptive information content of the two imagemodalities, play
a key role in discrimination of DIL from NT. Also, we did not
include morphological features such as volume, shape, solidity,
convexity, eccentricity, and etc. in order to eliminate any possible
biasing result from the manual contouring of DILs and NTs.

In this study, DIL and the NT contours were separately drawn
on each image modality. While such a process could increase
the chance of contour variability and negatively increase the
variation of the data, it had an advantage that the two image
modalities (T2W images and ADCmap) did not necessarily need
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to be co-registered to each other prior to the radiomic analysis
and adaptive modeling and therefore, the analysis results were
not negatively affected by any possible co-registration errors.
DILs and NTs contoured on unregistered image modalities were
directly used for training and testing of the ANN. We only co-
registered the two image modalities (T2WI and ADCmap) using
rigid co-registration [affine transform (45)] method for the two
test cases (see Figure 6) to predict DIL-NT probability map using
the trained ANN and 2D-convolutional sampling method.

The currentmajor computer aided diagnosis systems recorded
AUROC performance ranging from 0.77 to 0.89 and the focus
was to detect lesions in the peripheral zone. Most image features,
either individually or in combination that were effective in the
differentiation of prostate cancer, are volume averaged quantities
such as the 10th percentile of the ADC, T2W signal intensity
skewness (46). Niaf et al. studied texture features extracted from
MP-MRI on 30 fully annotated patients using four different
feature selection and classification methods (47). They could
achieve a diagnostic performance of 0.89 but the study was
limited to the peripheral zone only. The performance was poorer
due to the overfitting problem when all features were used
for classification.

In this study, despite using 117 subjects (two cohorts: 96, and
19) with two different training and validation strategies, there are
still several challenges as follows: Compared to the number of
radiomics features, the study is limited by the number of patients,
which will impact the optimal features selected, and also might
render a predictive model susceptible to Type II errors. A larger
sample size will also allow the construction of a more reliable
ANN in order to draw a reliable and unequivocal conclusion.

In this study, two different training and validation strategies
were recruited and the strong agreement between the analysis
results confirmed the robustness of the identified features. In
the first strategy, employing the LOOCV method in this study,
allowed us to use a high proportion of the available training
data fraction (1–1/K = 0.99 for K = 117), for training, while
making use of all the data in estimating the generalization error
or agreement. The cost is that the process can be lengthy, since
we need to train and evaluate the network K times. Typically,
according to the literatures, K≈ 10 is considered reasonable (48).
In this study, K was set to 117 for 117 patients (one case with
DIL and NT in each fold) and the ANN had a single output, to
predict the outcome. The radiomics features selected might be
impacted by the intensities, size of the contour, and contrast of
the NT. Since the region of interests were delineated manually,
the accuracy and variability of the ROIs could impact on the
optimal feature selection and the training results.

The Az-test for the average ROC analysis of the ANN is 1%
higher than the Az-test of the optimal ANN (see Figures 3C,D).
This is due to the difference between the way the two tests are
conducted: for average AUROC, each NT or DIL from each
subject is considered as a sample (thus the total samples are equal
to 234) while in the ordinary Az-test for the optimal ANN, pair
of NT and DIL for each subject is considered as a sample (thus
the total samples are equal to 117). Strong agreement between
the statistical measures of the LOOCV and conventional methods
and also the high predictive power of the trained ANN (group A)

when it was applied on group B (as prospective or unseen data
cohort), confirm the consistency and high information content
of the discriminant features identified in this study.

The 2D-convolutional sampling analysis results presented in
Figure 6, imply that the trained-ANN is capable of estimating the
DIL and normal tissue probabilities when the target contour (the
2D window) consists of a mixed radiomic information extracted
from DIL and normal tissue.

ANN was implanted as a classifier since it has high tolerance
against variation of input feature components and contours
(according to the contour variability test results) while they are
less sensitive to random noise (49), which allows the construction
of a variation- and noise-insensitive adaptive classifier with
higher accuracy and speed. Most importantly, ANN considers
non-linear relationships among input data that cannot always be
recognized by conventional analyses. Results of the permutation
test also imply that the discriminant features used for training,
are reliable and efficient for classification.

CONCLUSION

In conclusion, this study demonstrates the high performance
of combining radiomics analysis, PLSC technique and adaptive
model for extracting and ranking features from multimodal
MR information such as T2WI and ADC maps to detect DILs
and NTs in patients with PCa. The radiomics information
of ADC modality was proved to have higher discrimination
power compared to the corresponding features extracted from
T2WI modality. Results are suggestive that the integration of
quantitative image analysis methods such as radiomics analysis
and PLSC technique when combined with an adaptive model
can help identify imaging biomarkers and show great potential to
help clinicians improve the classification of clinically significant
prostate lesions for therapy of prostate cancer.
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