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Abstract

Aims: A methodology for quantitative comparison of histological stains based on their 
classification and clustering performance, which may facilitate the choice of histological 
stains for automatic pattern and image analysis. Background: Machine learning and 
image analysis are becoming increasingly important in pathology applications for 
automatic analysis of histological tissue samples. Pathologists rely on multiple, contrasting 
stains to analyze tissue samples, but histological stains are developed for visual analysis 
and are not always ideal for automatic analysis. Materials and Methods: Thirteen 
different histological stains were used to stain adjacent prostate tissue sections from 
radical prostatectomies. We evaluate the stains for both supervised and unsupervised 
classification of stain/tissue combinations. For supervised classification we measure the 
error rate of nonlinear support vector machines, and for unsupervised classification we 
use the Rand index and the F‑measure to assess the clustering results of a Gaussian 
mixture model based on expectation–maximization. Finally, we investigate class 
separability measures based on scatter criteria. Results: A methodology for quantitative 
evaluation of histological stains in terms of their classification and clustering efficacy that 
aims at improving segmentation and color decomposition. We demonstrate that for a 
specific tissue type, certain stains perform consistently better than others according to 
objective error criteria. Conclusions: The choice of histological stain for automatic 
analysis must be based on its classification and clustering performance, which are 
indicators of the performance of automatic segmentation of tissue into morphological 
components, which in turn may be the basis for diagnosis.
Key words: Support vector machines, expectation‑maximization, Gaussian mixture 
model, F‑measure, Rand index, Mahalanobis distance, Fisher criterion, high throughput 
imaging systems
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INTRODUCTION

Pathologists rely on histological stains to identify 
morphological changes in tissue that are linked to cancer 
and other diseases. Different stain combinations target 
different types of tissue. With the most common stain, 

hematoxylin/eosin, the hematoxylin stains the cell nuclei 
blue, and the counter‑stain, eosin, stains the cytoplasm 
pink and stromal components in various grades of 
red/pink. This and most other stains are developed for 
visual examination of the tissue under a microscope, 
and thus they are often not optimal for automated 
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pattern and image analysis. However automated and 
computer‑assisted analysis of histopathology specimens 
is gaining importance since the introduction of high 
throughput imaging systems.

As a first step in the automated analysis of tissue samples, 
morphological components, such as nuclei, stroma, and 
cytoplasm, often need to be identified and segmented 
from the surrounding tissue for further analysis. This 
identification relies on the absorption of histological 
stains by the tissue components, and therefore the choice 
of stain has a significant effect on the outcome of the 
segmentation. Color image analysis for histologically 
stained tissue is further complicated by both inter‑ and 
intra‑specimen intensity variations due to variations in 
the tissue preparation process and overlap in the stain 
absorption spectra.[1,2]

Quantitative evaluation of the efficacy of a particular 
stain for automatic color image analysis relies upon the 
evaluation of the stained tissue in a color space where the 
distance between two points represents the chromaticity 
difference between the corresponding colors, reducing 
the dependence on the intensity variations that may arise 
from tissue preparation and image acquisition. In such a 
color space, the tissue image data forms distinct clusters, 
one cluster for each stain/tissue combination in the 
image. With an ideal stain, these clusters are compact 
and distant from each other, enabling a machine learning 
algorithm to separate the clusters and yield an accurate 
color segmentation.

We explore a methodology for selecting optimal 
histological stains for automation in terms of both 
supervised and unsupervised classification performances. 
We use three types of quantitative efficacy measures: 
The classification error for supervised classification, 
the F‑measure and the Rand index for clustering 
performance, and the Fisher criterion and Mahalanobis 
distance for cluster separability. We demonstrate these 
measures on 13 different stains applied to prostate 
tissue. Although these stains are not all typically used 
for prostate cancer malignancy grading, they are included 
for illustration purposes. We conclude that regardless of 

the classification method, the same stains perform the 
best for this type of tissue; for other types of tissues a 
different set of stains would undoubtedly perform better.

There are numerous methods in the literature dealing 
with color decomposition, or deconvolution.[1‑5] However 
they do not attempt to compare the different stains from 
a classification perspective. Our aim is to demonstrate 
a methodology for selecting an optimal stain for color 
decomposition. To our knowledge, there has not been a 
similar attempt at comparing histological stains from a 
machine learning point of view.

MATERIALS AND METHODS

Our data comprises adjacent sections of prostate 
tissue from radical prostatectomies prepared by the 
Department of Pathology, University Hospital, Uppsala, 
Sweden. The sections were stained with 13 different 
histological stains and scanned using the Aperio 
ScanScope XT Slide Scanner (Aperio Technologies, 
Vista, CA) with a ×40 objective. The histological 
stains were hematoxylin/eosin (H&E), Mallory’s 
trichrome (MALLORY), Miller’s elastic (MILLERS‑E), 
Van Gieson (VG), Van Gieson elastic (VG‑E), 
Giemsa‑eosin stain (GIEMSA), Grocott’s methenamine 
silver stain (GROCOTT), hematoxylin‑Herovici 
polychrome (HERO), Weigert’s elastic (WEIGERT), 
Cytokeratin immunohistochemistry (CYTK), Periodic 
acid‑Schiff (PAS), Ladewig (LADEWIG), and 
Sirius‑hematoxylin (SIR+), an experimental stain 
combination we have tested. For information on 
histological stains, the reader is referred to Bancroft et al.[6] 
Images of tissue samples stained with hematoxylin‑eosin, 
Mallory’s trichrome, and Sirius‑hematoxylin are shown in 
Figure 1.

Our methodology for comparing different stains is based 
on assessing the performance of both supervised and 
unsupervised classifications on the given dataset. In our 
case, we are interested in three stain/tissue combinations, 
or classes, namely nuclei, stroma, and cytoplasm. For the 
supervised case, we require a training set constituting 

Figure 1: (a) Hematoxylin-eosin stain. (b) Mallory’s trichrome stain. (c) Sirius-hematoxylin stain.
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the ground truth as seen by a pathologist, and this was 
obtained by the manual selection of 30 different regions 
in each of the stained 640  ×  816 pixel images and by 
the labeling of each region according to its class. The 
regions were selected completely within the target, with 
1000 pixels selected per class. We train and optimize a 
support vector classifier over the data from each stained 
image and report the classification error using ten‑fold 
cross‑validation. We chose the support vector classifier 
with a radial basis function, as it provides a significant 
range of complexity that may be controlled by optimizing 
the kernel and regularization parameters based on 
the cross‑validated classification error. This allows the 
classifier to generalize well and avoid overfitting. For the 
unsupervised case, we assess the clustering performance 
of the Gaussian mixture model by comparing the cluster 
labels with those of the ground truth by using precision 
and recall. We use the Gaussian mixture model, as it is 
not constrained by the assumption of spherical clusters 
as are the k‑means and fuzzy c‑means. For cluster 
separability we use two measures, the Fisher Criterion 
and the Mahalanobis distance.

RESULTS

Feature Space
To eliminate dependency on inter‑ and intra‑stain 
variations, which is essential for robust classification, 
we adopt the Maxwellian plane as our feature space. 
We first transform the image RGB data to a linear 
model using the Beer‑Lambert Law.[7] Next we transform 
the resulting color data to the Maxwellian plane[8] at a 
distance of 1 3/  from the origin, using the perspective 
transformation centered at the origin:[9,2]
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This decouples the intensity from the color information, 
thereby eliminating the dependence on intensity. As a 
result, the distance between two points in the Maxwellian 
plane corresponds to the chromaticity difference 
between the corresponding colors. Figure 2a shows the 
scatter plots for the color data in a section stained with 
MILLERS‑E in the RGB space, the Beer‑Lambert space, 
and the Maxwellian chromaticity plane. It is evident that 
there is considerable overlap between the color regions 
corresponding to the cytoplasm and the nuclei in the 
Maxwellian plane. This intrinsic class overlap limits 
the performance of the classification. In Figure 2b, the 
corresponding scatter plots for CYTK show that the 
classes are well separated in the Maxwellian plane and 
consequently the classification should yield a much 
better result.

Supervised Classification
To assess classification performance, a support vector 
machine[10,11] was utilized for each stain. Given an image 
with a particular stain, let 
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Supervised classification

To assess classification performance, a support vector machine [12, 13] was utilized for each 
stain. Given an image with a particular stain, let {𝒙𝒙𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛} denote the set of vectors 
representing pixel locations in the image (i.e., patterns) where 𝑛𝑛 is the total number of pixels. 
In the Maxwellian plane, each such vector 𝒙𝒙𝑖𝑖 is in ℝ2. For every pair of classes, 𝜔𝜔1,𝜔𝜔2, a
general support vector classifier is defined as 𝑓𝑓(𝒙𝒙) = 𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0, where 𝒙𝒙 is a pattern to be 
classified, 𝒘𝒘,𝑤𝑤0 are the weights defining the classifier, and 𝜙𝜙(. ) is a mapping of the patterns 
into kernel space. We have used a radial basis function (RBF) defined by: 

𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = exp (−𝛾𝛾‖𝒙𝒙𝑙𝑙 − 𝒙𝒙‖2)

for the support vector classifier, where 𝛾𝛾 is a parameter that controls the width of the
Gaussian kernel. The classifier may be optimized with regard to 𝛾𝛾, using ten-fold cross-
validation; however the classifier parameters in this case consist not only of 𝛾𝛾 but also of a 

 denote the 
set of vectors representing the pixel locations in the 
image (i.e., patterns) where n is the total number of pixels. 
In the Maxwellian plane, each such vector xi is in ℝ2. For 
every pair of classes, w1, w2, a general support vector classifier 
is defined as 
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 where x is a pattern to be 
classified, w, w0 are the weights defining the classifier, and 
φ( ).  is a mapping of the patterns into kernel space. We 
have used a radial basis function (RBF) defined by:

Figure 2: (a-b) Scatter plots in RGB space (left), Beer-Lambert space (center), and Maxwellian plane (right). (a) MILLERS -E. (b) CYTK

a

b



J Pathol Inform 2013, 1:11 http://www.jpathinformatics.org/content/4/1/11

12

Results:

Feature space

To eliminate dependency on inter- and intra-stain variations, which is essential for robust 
classification, we adopt the Maxwellian plane as our feature space. We first transform the 
image RGB data to a linear model using the Beer-Lambert Law [9]. Next we transform the 
resulting color data to the Maxwellian plane [10] at a distance of 1/√3 from the origin using 
perspective transformation centered at the origin [11, 2]:

�
𝛼𝛼 
𝛽𝛽� =

⎣
⎢
⎢
⎢
⎡

1
√2

−
1
√2

0

−
1
√6

−
1
√6

√2
√3⎦
⎥
⎥
⎥
⎤
  �
𝑅𝑅
𝐺𝐺
𝐵𝐵
�.

This decouples intensity from color information and thereby eliminates dependence on 
intensity. As a result, the distance between two points in the Maxwellian plane corresponds 
to the chromaticity difference between the corresponding colors. Fig. 2(a) shows scatter plots 
for the color data in a section stained with MILLERS-E in RGB space, Beer-Lambert space, 
and the Maxwellian chromaticity plane. It is evident that there is considerable overlap 
between color regions corresponding to cytoplasm and nuclei in the Maxwellian plane. This 
intrinsic class overlap limits the performance of classification. In Fig. 2(b), the corresponding 
scatter plots for CYTK show that the classes are well separated in the maxwellian plane and 
consequently classification should yield a much better result.

Supervised classification

To assess classification performance, a support vector machine [12, 13] was utilized for each 
stain. Given an image with a particular stain, let {𝒙𝒙𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛} denote the set of vectors 
representing pixel locations in the image (i.e., patterns) where 𝑛𝑛 is the total number of pixels. 
In the Maxwellian plane, each such vector 𝒙𝒙𝑖𝑖 is in ℝ2. For every pair of classes, 𝜔𝜔1,𝜔𝜔2, a
general support vector classifier is defined as 𝑓𝑓(𝒙𝒙) = 𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0, where 𝒙𝒙 is a pattern to be 
classified, 𝒘𝒘,𝑤𝑤0 are the weights defining the classifier, and 𝜙𝜙(. ) is a mapping of the patterns 
into kernel space. We have used a radial basis function (RBF) defined by: 

𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = exp (−𝛾𝛾‖𝒙𝒙𝑙𝑙 − 𝒙𝒙‖2)

for the support vector classifier, where 𝛾𝛾 is a parameter that controls the width of the
Gaussian kernel. The classifier may be optimized with regard to 𝛾𝛾, using ten-fold cross-
validation; however the classifier parameters in this case consist not only of 𝛾𝛾 but also of a 

for the support vector classifier, where g is a parameter 
that controls the width of the Gaussian kernel. The 
classifier may be optimized with regard to g using ten‑fold 
cross‑validation; however, the classifier parameters in this 
case consist not only of g, but also of a regularization 
term C, which may be chosen freely (please refer to the 
Appendix for details). In order to optimize the classifier 
with regard to both these parameters simultaneously, an 
exhaustive grid search algorithm[12] ensures arriving at the 
optimal combination of the (C, g) values. An example of 
such an optimization is shown in Figure 3 in the form of 
a contour plot in which the minimum corresponds to the 
optimal combination.

For each stain, we construct a support vector classifier 
using an RBF kernel that is then optimized as 
described above, with g ranging from 2−15 to 25 and the 
regularization parameter C ranging from 2−5 till 29, to 
ensure coverage of a wide range of simple‑to‑complex 
boundaries.[12] We then perform ten‑fold cross‑validation 
on each stain using a support vector classifier optimized 
for that stain. The final result is shown in Figure 4, 
where the abscissa is ordered according to increasing 
classification error. We conclude that with respect to 
supervised classification, the stains MALLORY, CYTK, 
HERO, GIEMSA, and SIR+  show a considerably better 
performance for prostate tissue than the other stains. This 
is attributed to a significant class overlap for the other 
stains. A stain combination that stains several different 
structures in the tissue with the same color component is 
at a disadvantage, as this may lead to a high class overlap 
and low classification rates.

Unsupervised Classification
Blind classification is sometimes preferred over supervised 
classification because it avoids manual labeling. Assuming 
that the class labels are unknown, we assess the clustering 
performance by the Gaussian mixture model.[13,14] For 
each class, wj, the probability density function is modeled 
by a Gaussian component completely described by its 
mean mj and covariance matrix Σj:
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the number of features, i.e., 𝛼𝛼 and 𝛽𝛽 coordinates in the Maxwellian plane . Thus the complete 
dataset may be described as a mixture of these components given by: 
p(𝐱𝐱;ψ) = ∑ αjK

j=1 · p𝑝𝐱𝐱;θj� where K is the number of Gaussian components or clusters, ψ is 
the total set of parameters for the mixture distribution, and αj is the prior probability

where qj is the set of parameters for the distribution 
of class wj, that is, 
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and d is the number 
of features, that is, the a and b coordinates in the 
Maxwellian plane. Thus, the complete dataset may 
be described as a mixture of these components given 
by: 
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exhaustive grid search algorithm [14] ensures arriving at the optimal combination of (𝐶𝐶, 𝛾𝛾)

values. An example of such an optimization is shown in Fig. 3 in the form of a contour plot in 
which the minimum corresponds to the optimal combination.

For each stain, we construct a support vector classifier using an RBF kernel which is then 
optimized as described above with γ ranging from 2−15 to 25 and the regularization 
parameter 𝐶𝐶 ranging from 2−5 till 29 to ensure coverage of a wide range of simple to complex 
boundaries [14]. We then perform ten-fold cross-validation on each stain using a support 
vector classifier optimized for that stain. The final result is shown in Fig. 4 where the abscissa 
is ordered according to increasing classification error. We conclude that with respect to 
supervised classification, the stains MALLORY, CYTK, HERO, GIEMSA, and SIR+ show 
considerably better performance for prostate tissue than the other stains. This is attributed to 
significant class overlap for the other stains. A stain combination that stains several different
structures in the tissue with the same color component is at a disadvantage since this may 
lead to high class overlap and low classification rates.

Unsupervised classification

Blind classification is sometimes preferred over supervised classification because it avoids 
manual labeling. Assuming that the class labels are unknown, we assess the clustering 
performance by the Gaussian mixture model [15, 16]. For each class, 𝜔𝜔𝑗𝑗, the probability 
density function is modeled by a Gaussian component completely described by its mean 𝝁𝝁𝑗𝑗,
and covariance matrix 𝜮𝜮𝑗𝑗:

𝑝𝑝�𝒙𝒙;𝜃𝜃𝑗𝑗� =
1

�(2𝜋𝜋)𝑑𝑑�𝜮𝜮𝑗𝑗�
𝑒𝑒−

1
2�𝒙𝒙−𝝁𝝁𝑗𝑗�

𝑇𝑇𝜮𝜮𝑗𝑗
−1�𝒙𝒙−𝝁𝝁𝑗𝑗�,

where 𝜃𝜃𝑗𝑗 is the set of parameters for the distribution of class 𝜔𝜔𝑗𝑗, that is 𝜃𝜃𝑗𝑗 = �𝝁𝝁𝑗𝑗 ,𝜮𝜮𝑗𝑗� , and 𝑑𝑑 is 

the number of features, i.e., 𝛼𝛼 and 𝛽𝛽 coordinates in the Maxwellian plane . Thus the complete 
dataset may be described as a mixture of these components given by: 
p(𝐱𝐱;ψ) = ∑ αjK

j=1 · p�𝐱𝐱;θj� where K is the number of Gaussian components or clusters, ψ is 
the total set of parameters for the mixture distribution, and αj is the prior probability

 where K is the number of 
Gaussian components, or clusters, y is the total set of 
parameters for the mixture distribution, and aj is the prior 
probability associated with the jth Gaussian component, 
and ∑ αj

K
j=1 = 1.  The expectation–maximization algorithm 

is used to maximize the log‑likelihood, Q, by observing 
the data given by the Gaussian model. During the 
expectation step (or E‑step) of the algorithm, the cluster 
membership of each object, wji,  is computed using the 
Bayes’ theorem. This is followed by an update of the 
mixture prior probabilities, aj,  and the cluster means 

and covariance matrices, 
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associated with the jth Gaussian component, and ∑ αjK
j=1 = 1. The expectation-maximization 

algorithm is used to maximize the log-likelihood, 𝑄𝑄, of observing the data given the Gaussian 
model. During the expectation step (or E-step) of the algorithm, the cluster membership of 
each object, wji, is computed using Bayes’ theorem. This is followed by an update of the 
mixture prior probabilities αj and the cluster means and covariance matrices, 
θj = �𝛍𝛍j, 𝚺𝚺j�j=1,…,K

during the maximization step (or M-step). The E-M steps are repeated in 

succession until convergence, that is until the change in the log-likelihood function 𝑄𝑄 is below 
a tolerance of 10−10 (see Appendix for details). We initialize the expectation-maximization 
algorithm with repeated random initializations to obtain the first estimates for the mixture 
density parameters and select the result with the highest log-likelihood. The results of the 
Gaussian mixture model clustering for the MALLORY, GIEMSA, SIR+, and CYTK stains on 
the prostate tissue samples in Fig. 1 are shown in Fig. 5. The highlighted contours in the 
figures correspond to the level at 25 percent below the maximum value of the Gaussian. 

To assess the clustering performance objectively, we use the class labels from the 
supervised classification earlier and compute two cluster validation measures, the Rand 
index [17] and the F-measure [18-19] computed pairwise over all the objects in the dataset:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼:   RI =
TP + TN

TP + FP + FN + TN
 ,

where 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃, 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼 𝑇𝑇𝐼𝐼𝑁𝑁𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃, 𝐹𝐹𝑇𝑇 = 𝐹𝐹𝑅𝑅𝐹𝐹𝑃𝑃𝐼𝐼 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃, and 𝐹𝐹𝑇𝑇 =
𝐹𝐹𝑅𝑅𝐹𝐹𝑃𝑃𝐼𝐼 𝑇𝑇𝐼𝐼𝑁𝑁𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃, and

𝐹𝐹 ̵𝑚𝑚𝐼𝐼𝑅𝑅𝑃𝑃𝑇𝑇𝑇𝑇𝐼𝐼:   Fβ =
(1 + β2) · P · R
β2P +  R

 ,

where 𝑇𝑇 and 𝑅𝑅 are precision and recall defined as:

𝑇𝑇𝑇𝑇𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅:   𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
, and

𝑅𝑅𝐼𝐼𝑃𝑃𝑅𝑅𝐹𝐹𝐹𝐹:   𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 .

We chose β = 1 to give comparable weights to precision and recall, and the measure is then 
denoted as an F1-measure. The result of this analysis is shown in Fig. 6. Both performance 
measures indicate that the five best stains in the supervised case are also more favorable 
here. 

 during the 

maximization step (or M‑step). The E‑M steps are 
repeated in succession until convergence, that is, until 
the change in the log‑likelihood function Q is below a 
tolerance of 10−10 (see Appendix for details). We initialize 
the expectation–maximization algorithm with repeated 
random initializations to obtain the first estimates for 
the mixture density parameters and select the result with 
the highest log‑likelihood. The results of the Gaussian 
mixture model clustering for the MALLORY, GIEMSA, 
SIR+, and CYTK stains, on the prostate tissue samples 
in Figure 1, are shown in Figure 5. The highlighted 
contours in the figures correspond to a level 25% below 
the maximum value of the Gaussian.

To assess clustering performance objectively, we use the 
class labels from the previous supervised classifications 
and compute two cluster validation measures, the Rand 
index[15] and the F‑measure[16,17], which are computed 
pairwise over all the objects in the dataset:

Rand Index : RI =
TP+TN

TP+FP+FN+TN
,

Figure 3: Optimization of SVM radial basis function kernel 
parameter and regularization parameter C by grid search. Note 
that lg(.) is the base 2 logarithm

Figure 4: Ten-fold cross-validation error using an optimized SVM 
classifier for each stain
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where TP = True Positives, TP = True Negatives,  
FP = False Positives, and FN = False Negatives, and

F -measure :
( )

,F
P R

P Rb =
+

+
1 2

2

β
β

. .
,

where P and R are precision and recall, defined as:

Precision P
TP

TP FP
: ,=

+
and

Recall R
TP

TP FN
: .=

+

We chose b = 1 to give comparable weights to 
precision and recall, and the measure is then denoted 
as an F1‑measure. The result of this analysis is shown 
in Figure 6. Both performance measures indicate that 

the five best stains in the supervised case are also more 
favorable here.

Class Separability Measures
In order to assess the separability of the classes in terms 
of how compact and distant they are from each other, 
we have utilized a Fisher‑based criterion[18] and a sum 
of the squared Mahalanobis distance.[19] We define the 
Fisher criterion as trace

15

Class separability measures

In order to assess the separability of the classes in terms of how compact and distant they 
are from each other, we utilize a Fisher-based criterion [3] and the sum of squared 
Mahalanobis distance [4]. We define the Fisher criterion as trace(𝐒𝐒W−1𝐒𝐒B) where 𝐒𝐒W and 𝐒𝐒B
are the within- and between- scatter matrices: 

𝑺𝑺𝑊𝑊 = �
𝑛𝑛𝑖𝑖
𝑛𝑛
𝜮𝜮𝑖𝑖, and 

𝐾𝐾

𝑖𝑖=1

𝑺𝑺𝐵𝐵 = �
𝑛𝑛𝑖𝑖
𝑛𝑛

(𝝁𝝁𝑖𝑖 − 𝝁𝝁)(𝝁𝝁𝑖𝑖 − 𝝁𝝁)𝑇𝑇 ,
𝐾𝐾

𝑖𝑖=1

with µ the mean of the entire dataset, Σi and µi the covariance matrix and mean of class ωi,

respectively, ni the number of patterns in class ωi, and n the total number of patterns in the 

dataset. On the other hand, the Mahalanobis distance defined between two classes with

means µ1, µ2 and covariance matrices Σ1, Σ2 is given by: 

DM = (𝛍𝛍2 − 𝛍𝛍1)T �𝚺𝚺1+𝚺𝚺2
2
�
−1

(𝛍𝛍2 − 𝛍𝛍1).

If the classes are compact and well separated, then they should have a relatively high 
Mahalanobis distance. We compute the squared Mahalanobis distance for every pair of 
classes and sum up these values. The result is shown in Table 1 where we see that the
optimal stains according to these measures are Mallory’s trichrome and Cytokeratin. 
However we also see that some of the stains, such as Miller’s elastic, rank well despite their 
poor classification rate, and this is attributed to the fact that scatter-based criteria may not 
always predict the performance of a classifier correctly. A simple example that demonstrates 
this is when two classes are compact but completely overlapping whereas the third class is 
compact and extremely distant from the other two classes. This third class would influence 
the result positively although two of the classes are completely overlapping and will lead to a 
low classification rate. One can notice the effect a distant class may have on the 
Mahalanobis distance by observing the scatter plot of the Cytokeratin stain in the Maxwellian 
plane (see Fig. 5(d)) which has lead to the high value of the Mahalanobis distance for CYTK 
in Table 1.

 where SW and SB are the 
within‑ and between‑scatter matrices:
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with  m  the mean of the entire dataset, and  Si and  mi, 
the covariance matrix and mean of class wi, respectively, 
ni the number of patterns in class wi, and n the total 
number of patterns in the dataset. On the other hand, 
the Mahalanobis distance defined between two classes 
with means  m1, m2 and covariance matrices S1, S2 is given 
by:
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If the classes are compact and well‑separated, then they 
should have a relatively high Mahalanobis distance. We 
compute the squared Mahalanobis distance for every 

Figure 5: Gaussian mixture model clustering for different stains: Mallory (upper left), Giemsa (upper right), SIR+ (lower left), CYTK (lower right)

Figure 6: Clustering evaluation using the F1-measure and Rand index
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pair of classes and sum up these values. The result is 
shown in Table 1, where we see that the optimal stains 
according to these measures are Mallory’s trichrome 
and Cytokeratin. However, we also see that some of 
the stains, such as the Miller’s elastic, rank well despite 
their poor classification rate, and this is attributed to 
the fact that the scatter‑based criteria may not always 
predict the performance of a classifier correctly. A simple 
example that demonstrates this occurs when two classes 
are compact, but completely overlapping, and the third 
class is compact and extremely distant from the other 
two classes. This third class would influence the result 
positively, although two of the classes are completely 
overlapping, and will lead to a low classification rate. 
One can notice the effect a distant class may have on 
the Mahalanobis distance by observing the scatter plot of 
the Cytokeratin stain in the Maxwellian plane [Figure 5], 
which has led to the high value of the Mahalanobis 
distance for CYTK in Table 1.

DISCUSSION

We have presented a methodology for quantitative 
comparison of histological stains based on their 
classification and clustering performance. Among the 
stains we have investigated, using prostate tissue samples, 
the classification results suggest that MALLORY, CYTK, 
HERO, GIEMSA, and SIR+ have an advantage over the 
other stains, with supervised classification error rates 
below 11%, and below 5% for MALLORY and CYTK. 
Furthermore, blind classification was assessed using the 
Gaussian mixture model and the Rand and F1‑measures. 

Results show that MALLORY and SIR+  outperform 
other stains in terms of clustering accuracy, with Rand 
indices above 0.85. We also saw that simple criteria, such 
as the Fisher criterion and the Mahalanobis distance, 
give a good ranking of stains, but may in some cases be 
misleading. The ideal stain is one where the reference 
colors are compact and separate, with a good classification 
performance. Furthermore, with an ideal stain, all 
tissue types absorb a similar amount of stain, without 
oversaturation. For the purpose of high‑throughput 
imaging, the choice of a histological stain for a given 
application must be motivated by the objective criteria 
that optimize the automation process by facilitating 
machine learning and image analysis techniques.
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APPENDIX

Support Vector Machines
The correct classification of all objects is assumed if the 
following conditions hold for i = 1, ..., n:
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Appendix:  

Support vector machines

Correct classification of all objects is assumed if the following conditions hold for 𝑖𝑖 = 1, … ,𝑛𝑛:

�
𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0 ≥ 1 − 𝜉𝜉𝑖𝑖,       𝑦𝑦𝑖𝑖 = +1
𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0 ≤ −1 + 𝜉𝜉𝑖𝑖 ,    𝑦𝑦𝑖𝑖 = −1

𝜉𝜉𝑖𝑖 ≥ 0
  ,

where 𝑦𝑦𝑖𝑖 is the class label for object 𝒙𝒙𝑖𝑖, and 𝜉𝜉𝑖𝑖 is the slack variable corresponding to object
𝒙𝒙𝑖𝑖. These conditions may be rewritten in compact form as 

𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛.

The support vector classifier aims at maximizing the margin between the classes which is 
equivalent to minimizing the norm of the weights. In addition, the slack variables are added to 
the quantity to be minimized while regulated by a cost (or regularization) parameter C to 
allow for class overlap. This minimization is subject to constraints, namely that the patterns 
are classified correctly as described above. Thus the classifier minimizes the following 
criterion:

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚   
1
2
‖𝒘𝒘‖2 + 𝐶𝐶𝐶𝜉𝜉𝑖𝑖 

𝑛𝑛

𝑖𝑖𝑖𝑖

,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡   𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛.   

This may be formulated using Lagrange multipliers whereby the following Lagrangian form is 
obtained:  

𝐿𝐿 =
1
2
‖𝒘𝒘‖2 + 𝐶𝐶𝐶𝜉𝜉𝑖𝑖

𝑛𝑛

𝑖𝑖𝑖𝑖

−𝐶𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖)
𝑛𝑛

𝑖𝑖𝑖𝑖

−𝐶𝑟𝑟𝑖𝑖𝜉𝜉𝑖𝑖,
𝑛𝑛

𝑖𝑖𝑖𝑖

where 𝛼𝛼𝑖𝑖 is the Lagrange multiplier associated with the constraint equation corresponding to 
pattern 𝒙𝒙𝒊𝒊, and 𝑟𝑟𝑖𝑖 is the Lagrange multiplier associated with slack variable 𝜉𝜉𝑖𝑖 and ensures that 

𝜉𝜉𝑖𝑖 remains positive. By differentiating 𝐿𝐿 with respect to the weights and the slack variables, 
setting the result to zero, and solving we obtain the following:

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

= 0 ⇒ 𝒘𝒘 = 𝐶𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝜙𝜙(𝒙𝒙𝑖𝑖)
𝑛𝑛

𝑖𝑖𝑖𝑖

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤0

= 0 ⇒𝐶𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖𝑖𝑖

= 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝜉𝜉𝑖𝑖

= 0 ⇒ 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0

 .

where yi is the class label for object xi, xi and is the slack 
variable corresponding to object xi. These conditions may 
be rewritten in compact form as
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Support vector machines

Correct classification of all objects is assumed if the following conditions hold for 𝑖𝑖 = 1, … ,𝑛𝑛:

�
𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0 ≥ 1 − 𝜉𝜉𝑖𝑖,       𝑦𝑦𝑖𝑖 = +1
𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0 ≤ −1 + 𝜉𝜉𝑖𝑖 ,    𝑦𝑦𝑖𝑖 = −1

𝜉𝜉𝑖𝑖 ≥ 0
  ,

where 𝑦𝑦𝑖𝑖 is the class label for object 𝒙𝒙𝑖𝑖, and 𝜉𝜉𝑖𝑖 is the slack variable corresponding to object
𝒙𝒙𝑖𝑖. These conditions may be rewritten in compact form as 

𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛.

The support vector classifier aims at maximizing the margin between the classes which is 
equivalent to minimizing the norm of the weights. In addition, the slack variables are added to 
the quantity to be minimized while regulated by a cost (or regularization) parameter C to 
allow for class overlap. This minimization is subject to constraints, namely that the patterns 
are classified correctly as described above. Thus the classifier minimizes the following 
criterion:

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚   
1
2
‖𝒘𝒘‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖 

𝑛𝑛

𝑖𝑖=1

,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡   𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛. 

This may be formulated using Lagrange multipliers whereby the following Lagrangian form is 
obtained:

𝐿𝐿 =
1
2
‖𝒘𝒘‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

−�𝑟𝑟𝑖𝑖𝜉𝜉𝑖𝑖,
𝑛𝑛

𝑖𝑖=1

where 𝛼𝛼𝑖𝑖 is the Lagrange multiplier associated with the constraint equation corresponding to 
pattern 𝒙𝒙𝒊𝒊, and 𝑟𝑟𝑖𝑖 is the Lagrange multiplier associated with slack variable 𝜉𝜉𝑖𝑖 and ensures that 

𝜉𝜉𝑖𝑖 remains positive. By differentiating 𝐿𝐿 with respect to the weights and the slack variables, 
setting the result to zero, and solving we obtain the following:

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

= 0 ⇒ 𝒘𝒘 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝜙𝜙(𝒙𝒙𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤0

= 0 ⇒�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝜉𝜉𝑖𝑖

= 0 ⇒ 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0

 .

The support vector classifier aims at maximizing the 
margin between the classes, which is equivalent to 
minimizing the norm of the weights. In addition, the 
slack variables are added to the quantity to be minimized, 
while regulated by a cost (or regularization) parameter C 
to allow for class overlap. This minimization is subject to 
constraints, namely, the patterns are classified correctly, 
as described above. Thus the classifier minimizes the 
following criterion:
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𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛.

The support vector classifier aims at maximizing the margin between the classes which is 
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1
2
‖𝒘𝒘‖2 + 𝐶𝐶𝐶𝜉𝜉𝑖𝑖 

𝑛𝑛

𝑖𝑖𝑖𝑖

,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡   𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛.   

This may be formulated using Lagrange multipliers whereby the following Lagrangian form is 
obtained:  

𝐿𝐿 =
1
2
‖𝒘𝒘‖2 + 𝐶𝐶𝐶𝜉𝜉𝑖𝑖

𝑛𝑛

𝑖𝑖𝑖𝑖

−𝐶𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖)
𝑛𝑛

𝑖𝑖𝑖𝑖

−𝐶𝑟𝑟𝑖𝑖𝜉𝜉𝑖𝑖,
𝑛𝑛

𝑖𝑖𝑖𝑖

where 𝛼𝛼𝑖𝑖 is the Lagrange multiplier associated with the constraint equation corresponding to 
pattern 𝒙𝒙𝒊𝒊, and 𝑟𝑟𝑖𝑖 is the Lagrange multiplier associated with slack variable 𝜉𝜉𝑖𝑖 and ensures that 

𝜉𝜉𝑖𝑖 remains positive. By differentiating 𝐿𝐿 with respect to the weights and the slack variables, 
setting the result to zero, and solving we obtain the following:

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

= 0 ⇒ 𝒘𝒘 = 𝐶𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝜙𝜙(𝒙𝒙𝑖𝑖)
𝑛𝑛

𝑖𝑖𝑖𝑖

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤0

= 0 ⇒𝐶𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖𝑖𝑖

= 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝜉𝜉𝑖𝑖

= 0 ⇒ 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0

 .

This may be formulated using Lagrange multipliers, 
whereby the following Lagrangian form is obtained:

Table 1: Values for the fisher criterion and 
sum-of-squared mahalanobis distance for the 
different stains

Stain Maxwellian plane

Fisher criterion Mahalanobis distance

Mallory 7.7079 70.1254
CYTK 6.6916 108.9913
HERO 6.4888 58.4788
MILLERS‑E 5.0686 45.6796
GROCOTT 4.5433 40.9382
GIEMSA 4.2874 38.9782
SIR+ 3.2531 29.3748
WEIGERT 3.0074 27.2329
PAS 1.4119 12.7243
VG 1.3252 11.9435
VG‑E 1.2972 11.7466
LADEWIG 1.0858 9.7851
H&E 1.0351 9.3282

CYTK: Cytokeratin immunohistochemistry, HERO: hematoxylin‑Herovici polychrome, 
MILLERS‑E: Miller’s elastic, GROCOTT: Grocott’s methenamine silver stain, GIEMSA: 
Giemsa‑eosin stain, SIR+: Sirius‑hematoxylin,  WEIGERT: Weigert’s elastic, PAS: 
Periodic acid‑Schiff,  VG: Van Gieson, LADEWIG: Ladewig, H&E: Hematoxylin‑eosin



J Pathol Inform 2013, 1:11 http://www.jpathinformatics.org/content/4/1/11
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Support vector machines

Correct classification of all objects is assumed if the following conditions hold for 𝑖𝑖 = 1, … ,𝑛𝑛:

�
𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0 ≥ 1 − 𝜉𝜉𝑖𝑖,       𝑦𝑦𝑖𝑖 = +1
𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0 ≤ −1 + 𝜉𝜉𝑖𝑖 ,    𝑦𝑦𝑖𝑖 = −1

𝜉𝜉𝑖𝑖 ≥ 0
  ,

where 𝑦𝑦𝑖𝑖 is the class label for object 𝒙𝒙𝑖𝑖, and 𝜉𝜉𝑖𝑖 is the slack variable corresponding to object
𝒙𝒙𝑖𝑖. These conditions may be rewritten in compact form as 

𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛.

The support vector classifier aims at maximizing the margin between the classes which is 
equivalent to minimizing the norm of the weights. In addition, the slack variables are added to 
the quantity to be minimized while regulated by a cost (or regularization) parameter C to 
allow for class overlap. This minimization is subject to constraints, namely that the patterns 
are classified correctly as described above. Thus the classifier minimizes the following 
criterion:

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚   
1
2
‖𝒘𝒘‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖 

𝑛𝑛

𝑖𝑖=1

,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡   𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖 ≥ 0,   𝑖𝑖 = 1, … ,𝑛𝑛. 

This may be formulated using Lagrange multipliers whereby the following Lagrangian form is 
obtained:

𝐿𝐿 =
1
2
‖𝒘𝒘‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

−�𝑟𝑟𝑖𝑖𝜉𝜉𝑖𝑖,
𝑛𝑛

𝑖𝑖=1

where 𝛼𝛼𝑖𝑖 is the Lagrange multiplier associated with the constraint equation corresponding to 
pattern 𝒙𝒙𝒊𝒊, and 𝑟𝑟𝑖𝑖 is the Lagrange multiplier associated with slack variable 𝜉𝜉𝑖𝑖 and ensures that 

𝜉𝜉𝑖𝑖 remains positive. By differentiating 𝐿𝐿 with respect to the weights and the slack variables, 
setting the result to zero, and solving we obtain the following:

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

= 0 ⇒ 𝒘𝒘 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝜙𝜙(𝒙𝒙𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤0

= 0 ⇒�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝜉𝜉𝑖𝑖

= 0 ⇒ 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0

 .

where ai is the Lagrange multiplier associated with the 
constraint equation corresponding to pattern xi, and ri is 
the Lagrange multiplier associated with slack variable xi 

and ensures that xi remains positive. By differentiating 
L with respect to the weights and the slack variables, 
setting the result to zero, and then solving, we obtain the 
following:
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⎪
⎨

⎪
⎪
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𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤0

= 0 ⇒𝐶𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖𝑖𝑖

= 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝜉𝜉𝑖𝑖

= 0 ⇒ 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0

 .

Note that the last result C ri i− − =α 0  may be combined 
with ri ≥ 0 to give 0 ≤ ai ≤ C. By substituting these 
results back into the Lagrangian, we obtain the dual form 
of the Lagrangian:

22

Note that the last result 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0 may be combined with 𝑟𝑟𝑖𝑖 ≥ 0 to give 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. By 
substituting these results back into the Lagrangian, we obtain the dual form of the 
Lagrangian:

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝜙𝜙(𝒙𝒙𝑖𝑖)𝑇𝑇𝜙𝜙�𝒙𝒙𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

Quadratic programming is then employed to solve for 
the Lagrange multipliers, ai, i = 1,..., n. Once these 
are obtained, w is computed from 
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Note that the last result 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0 may be combined with 𝑟𝑟𝑖𝑖 ≥ 0 to give 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. By 
substituting these results back into the Lagrangian, we obtain the dual form of the 
Lagrangian:

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝜙𝜙(𝒙𝒙𝑖𝑖)𝑇𝑇𝜙𝜙�𝒙𝒙𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

, 
where SV is the set of support vectors (objects associated 
with ai ≠ 0). Thereafter, the offset w0 is obtained from: 
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Note that the last result 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0 may be combined with 𝑟𝑟𝑖𝑖 ≥ 0 to give 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. By 
substituting these results back into the Lagrangian, we obtain the dual form of the 
Lagrangian:

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝜙𝜙(𝒙𝒙𝑖𝑖)𝑇𝑇𝜙𝜙�𝒙𝒙𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

 by averaging over objects with 
0 < ai < C, that is, xi = 0. The support vector classifier 
is then derived as:
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Note that the last result 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0 may be combined with 𝑟𝑟𝑖𝑖 ≥ 0 to give 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. By 
substituting these results back into the Lagrangian, we obtain the dual form of the 
Lagrangian:

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝜙𝜙(𝒙𝒙𝑖𝑖)𝑇𝑇𝜙𝜙�𝒙𝒙𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The scalar product 
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Note that the last result 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0 may be combined with 𝑟𝑟𝑖𝑖 ≥ 0 to give 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. By 
substituting these results back into the Lagrangian, we obtain the dual form of the 
Lagrangian:

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝜙𝜙(𝒙𝒙𝑖𝑖)𝑇𝑇𝜙𝜙�𝒙𝒙𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

 is substituted by a kernel 

function, 
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Note that the last result 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0 may be combined with 𝑟𝑟𝑖𝑖 ≥ 0 to give 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. By 
substituting these results back into the Lagrangian, we obtain the dual form of the 
Lagrangian:

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝜙𝜙(𝒙𝒙𝑖𝑖)𝑇𝑇𝜙𝜙�𝒙𝒙𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

without the need to explicitly 
define the transformation function or mapping φ(.).

Gaussian Mixture Model
The likelihood of observing the data given by the model 
for a single component is given by:
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Note that the last result 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0 may be combined with 𝑟𝑟𝑖𝑖 ≥ 0 to give 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. By 
substituting these results back into the Lagrangian, we obtain the dual form of the 
Lagrangian:

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝜙𝜙(𝒙𝒙𝑖𝑖)𝑇𝑇𝜙𝜙�𝒙𝒙𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are 
given by:
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Note that the last result 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0 may be combined with 𝑟𝑟𝑖𝑖 ≥ 0 to give 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. By 
substituting these results back into the Lagrangian, we obtain the dual form of the 
Lagrangian:

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖
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𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

,

then the likelihood function may be rewritten as:
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substituting these results back into the Lagrangian, we obtain the dual form of the 
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𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖
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𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation–
maximization algorithm to maximize this likelihood or 
rather log‑likelihood function
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𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
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then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
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𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since zji is not known, the following function is 
maximized instead:
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Note that the last result 𝐶𝐶 − 𝛼𝛼𝑖𝑖 − 𝑟𝑟𝑖𝑖 = 0 may be combined with 𝑟𝑟𝑖𝑖 ≥ 0 to give 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. By 
substituting these results back into the Lagrangian, we obtain the dual form of the 
Lagrangian:

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝜙𝜙(𝒙𝒙𝑖𝑖)𝑇𝑇𝜙𝜙�𝒙𝒙𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

.
𝑛𝑛

𝑖𝑖=1

Quadratic programming is then employed to solve for the Lagrange multipliers, 𝛼𝛼𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛.
Once these are obtained, 𝒘𝒘 is computed from 𝒘𝒘 = ∑ 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙(𝒙𝒙𝑙𝑙)𝑙𝑙∈𝑆𝑆𝑆𝑆 where 𝑆𝑆𝑆𝑆 is the set of 
support vectors (objects associated with 𝛼𝛼𝑖𝑖 ≠ 0). Thereafter, the offset 𝑤𝑤0 is obtained from: 
𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙) + 𝑤𝑤0) − 1 + 𝜉𝜉𝑖𝑖) by averaging over objects with 0 < 𝛼𝛼𝑖𝑖 < 𝐶𝐶, that is 𝜉𝜉𝑖𝑖 = 0. The 
support vector classifier is then derived as: 

𝑓𝑓(𝒙𝒙) = � 𝛼𝛼𝑙𝑙𝑦𝑦𝑙𝑙𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) + 𝑤𝑤0.
𝑙𝑙∈𝑆𝑆𝑆𝑆

The scalar product 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙) is substituted by a kernel function, 𝐾𝐾(𝒙𝒙𝑙𝑙,𝒙𝒙) = 𝜙𝜙𝑇𝑇(𝒙𝒙𝑙𝑙)𝜙𝜙(𝒙𝒙)

without the need to explicitly define the transformation function or mapping 𝜙𝜙(. ).

Gaussian mixture model 

The likelihood of observing the data given the model for a single component is given by:

𝐿𝐿(𝒙𝒙1, … , 𝒙𝒙𝑛𝑛) = 𝑝𝑝(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛;𝜓𝜓) = �𝑝𝑝(𝒙𝒙𝑖𝑖;𝜓𝜓)
𝑛𝑛

𝑖𝑖=1

= ��𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝(𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

If we assume that the class labels are known and are given by:

𝑧𝑧𝑗𝑗𝑖𝑖 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖� = �
1,    𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖 ∈ 𝜔𝜔𝑗𝑗

 0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

then the likelihood function may be rewritten as:

𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ���𝛼𝛼𝑗𝑗 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗��
𝑧𝑧𝑗𝑗𝑗𝑗

𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

The Gaussian mixture model employs the expectation-maximization algorithm to maximize 
this likelihood or rather log-likelihood function

𝐿𝐿𝐿𝐿(𝒙𝒙1, … ,𝒙𝒙𝑛𝑛) = ��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑧𝑧𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

However, since 𝑧𝑧𝑗𝑗𝑖𝑖 is not known, the following function is maximized instead:

𝑄𝑄 = ��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑙𝑙𝑜𝑜𝑙𝑙�𝛼𝛼𝑗𝑗� +
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

��𝑤𝑤𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝒙𝒙𝑖𝑖;𝜃𝜃𝑗𝑗�
𝐾𝐾

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

During the E‑step, the cluster membership of each 
object, wji at any given iteration m becomes:
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During the E-step, the cluster membership of each object, 𝑤𝑤𝑗𝑗𝑗𝑗, at any given iteration 𝑚𝑚

becomes:

𝑤𝑤𝑗𝑗𝑗𝑗 = 𝑝𝑝�𝜔𝜔𝑗𝑗�𝒙𝒙𝑗𝑗,𝜓𝜓𝑚𝑚� =
𝛼𝛼𝑗𝑗

(𝑚𝑚) ∙ 𝑝𝑝�𝒙𝒙𝑗𝑗|𝜔𝜔𝑗𝑗;  𝜃𝜃𝑗𝑗
(𝑚𝑚)�

∑ 𝛼𝛼𝑘𝑘
(𝑚𝑚) ∙ 𝑝𝑝�𝒙𝒙𝑗𝑗|𝜔𝜔𝑗𝑗;  𝜃𝜃𝑘𝑘

(𝑚𝑚)�𝐾𝐾
𝑘𝑘=1

.

During the M-step of the algorithm the distribution parameters are updated:

𝛼𝛼𝑗𝑗 =
1
𝑛𝑛
�𝑤𝑤𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 ,

𝝁𝝁𝑗𝑗 =
∑ 𝑤𝑤𝑗𝑗𝑗𝑗 ∙ 𝒙𝒙𝑗𝑗𝑛𝑛
𝑗𝑗=1
∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑛𝑛
𝑗𝑗=1

 , and

𝚺𝚺j =
∑ 𝑤𝑤𝑗𝑗𝑗𝑗 ∙ �𝒙𝒙𝑗𝑗 − 𝝁𝝁𝑗𝑗��𝒙𝒙𝑗𝑗 − 𝝁𝝁𝑗𝑗�

𝑇𝑇𝑛𝑛
𝑗𝑗=1

∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑛𝑛
𝑗𝑗=1

 .

These two steps are repeated iteratively until convergence.

During the M‑step of the algorithm the distribution 
parameters are updated:
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(𝑚𝑚)�𝐾𝐾
𝑘𝑘𝑘𝑘

.

During the M-step of the algorithm the distribution parameters are updated:

𝛼𝛼𝑗𝑗 =
1
𝑛𝑛
�𝑤𝑤𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗𝑘𝑘

 ,

𝝁𝝁𝑗𝑗 =
∑ 𝑤𝑤𝑗𝑗𝑗𝑗 ∙ 𝒙𝒙𝑗𝑗𝑛𝑛
𝑗𝑗𝑘𝑘
∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑛𝑛
𝑗𝑗𝑘𝑘

 , and

𝚺𝚺j =
∑ 𝑤𝑤𝑗𝑗𝑗𝑗 ∙ 𝑝𝒙𝒙𝑗𝑗 − 𝝁𝝁𝑗𝑗�𝑝𝒙𝒙𝑗𝑗 − 𝝁𝝁𝑗𝑗�

𝑇𝑇𝑛𝑛
𝑗𝑗𝑘𝑘

∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑛𝑛
𝑗𝑗𝑘𝑘

 .

These two steps are repeated iteratively until convergence.These two steps are repeated iteratively until 
convergence.
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