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An analysis of blood flow through a tapered artery with stenosis and dilatation has been carried out where the blood is treated as
incompressible Herschel-Bulkley fluid. A comparison between numerical values and analytical values of pressure gradient at the
midpoint of stenotic region shows that the analytical expression for pressure gradient works well for the values of yield stress till 2.4.
The wall shear stress and flow resistance increase significantly with axial distance and the increase is more in the case of converging
tapered artery. A comparison study of velocity profiles, wall shear stress, and flow resistance for Newtonian, power law, Bingham-
plastic, andHerschel-Bulkley fluids shows that the variation is greater for Herschel-Bulkley fluid than the other fluids.The obtained
velocity profiles have been compared with the experimental data and it is observed that blood behaves like a Herschel-Bulkley fluid
rather than power law, Bingham, and Newtonian fluids. It is observed that, in the case of a tapered stenosed tube, the streamline
pattern follows a convex pattern when we move from 𝑟/𝑅 = 0 to 𝑟/𝑅 = 1 and it follows a concave pattern when we move from
𝑟/𝑅 = 0 to 𝑟/𝑅 = −1. Further, it is of opposite behaviour in the case of a tapered dilatation tube which forms new information that
is, for the first time, added to the literature.

1. Introduction

Blood flow through a stenosed artery is one of the important
areas of research because a stenosed artery affects the entire
cardiovascular system. Aortic stenosis causes chest pain
and decreased blood flow to the brain resulting in loss of
consciousness and heart failure which increases the risk of
death. It is well known that fluid dynamical factors play a
pivotal role in the formation and development of stenosis.
Young [1] and Young and Tsai [2] studied the effects of
stenosis on blood flow through arteries. Several investigators
[3–10] analyzed the blood flow through a stenosed artery and
have shown that the physical parameters affect the blood flow.
Pulsatile flow of blood through a stenosed porous medium
under the influence of periodic body acceleration considering
blood as a Newtonian fluid has been studied by El-Shahed
[11]. El-Shehawey et al. [12] have examined the pulsatile flow
of blood through a tube considering blood as a Newtonian
fluid taking into account the body acceleration and porosity

of the tube. Sharma et al. [13] investigated the effects of radial
variation of hematocrit and magnetic field on the flow of
blood as a Newtonian fluid through a porous medium in a
stenosed artery.

Viscoplastic materials are concentrated suspensions of
solid particles or macromolecules and are classified as
generalized Newtonian fluids. They flow like liquids when
subjected to a stress above a critical value but respond as
elastic or inelastic solids below this critical stress. According
to the von Mises yield criterion, flow is assumed to occur
when the second invariant of the stress exceeds the so-called
yield stress [4]. It is understood that the important time-
independent non-Newtonian fluid possessing a fluid behav-
ior index (power law index) and yield values is the Herschel-
Bulkley fluid, which has pivotal applications in polymer
processing industries [12], developing blood oxygenators, and
biomechanics [4]. Further, Herschel-Bulkley fluids include
both shear thinning and shear thickening materials. The
practical examples of such materials are greases, colloidal
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suspensions, starch pastes, tooth pastes, paints, and blood
flow in an artery. These fluids have been useful as lubricant
in roller bearing [13].

The non-Newtonian behavior of blood has been con-
sidered and studied by [14–17]. Chaturani and Samy [18]
investigated the effects of non-Newtonian nature of blood
treating it as a Casson’s fluid and pulsatility on flow through a
stenosed tube. The two-dimensional flow of power law fluid
in stenosed arteries has been studied and the effect of power
law index on the flow separation and reattachment point
has been thoroughly investigated [19]. Nadeem et al. [20]
and Ismail et al. [21] have investigated blood flow through
a tapered artery with a stenosis assuming the blood as a
non-Newtonian power law fluid model. They analyzed the
influences of different parameters (power law index, flow
rate, stenosis shape, and stenosis height) in different types of
tapered arteries (converging tapered, diverging tapered, and
nontaperted artery). Pincombe et al. [22] proposed a fully
developed one-dimensional casson flow through a stenosed
artery with multiple abnormal segments. They have studied
the effects of multiple stenoses and poststenotic dilatation
on non-Newtonian blood flow in small arteries. Scott Blair
and Spanner [23] have suggested that blood obeys Casson’s
model only for moderate shear rate flows and that there is
no difference between Casson’s and Herschel-Bulkley plots
over the range where Casson’s plot is valid (for blood). Fur-
thermore, Sacks et al. [24] have experimentally pointed out
that blood shows the behavior characteristic of a combination
of Bingham-plastic and pseudoplastic fluid-Herschel-Bulkley
fluid with the fluid behavior index greater than unity. In view
of the experimental observation [24] and suggestion made
in [23], it is pertinent to consider the behavior of blood as
a Herschel-Bulkley fluid.

The non-Newtonian aspects of blood flow through
stenosed arteries have been studied by [25] treating blood
as a Herschel-Bulkley fluid. Biswas and Laskar [26] have
investigated the steady flow of blood as a Herschel-Bulkley
fluid through a stenosed artery. In these studies, the com-
bined effects of the rheology of blood as Herschel-Bulkley
fluid model, stenosis height, dilatation depth, and tapering
on the flow of blood have not been investigated. Hence, the
aim of the present paper is to analyze the flow of Herschel-
Bulkley fluid in a tapered artery with stenosis and dilatation
(Figure 2). The expressions for velocity, wall shear stress, and
flow resistance have been derived. The effects of parameters
such as power law index, shear dependent nonlinear vis-
cosity, stenotic height, taper angle, dilatation depth, and the
yield stress on physiologically important quantities, namely,
wall shear stress and flow resistance, are presented graphi-
cally.

2. Formulation of the Problem

Consider the steady and axially symmetric flow of an incom-
pressible Herschel-Bulkley fluid lying in a tube having length
𝐿 (Figures 1 and 2). We take the cylindrical coordinate
system (𝑟, 𝜃, 𝑧) in such a way that 𝑢, V, and 𝑤 are the
velocity components in 𝑟, 𝜃, and 𝑧 directions, respectively.
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Figure 1: Geometry of an axially nonsymmetrical artery with ste-
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Figure 2: Geometry of the tapered artery with stenosis and dilata-
tion for different taper angle.

The equations governing the two-dimensional steady incom-
pressible Herschel-Bulkley fluid are
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(1)

In the above equations the extra stress tensor 𝜏 for
Herschel-Bulkley fluid is defined as

𝜏 = 𝑘 ( ̇𝛾)
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, (2)

where 𝑘 is the consistency index, 𝑛 is the power law index (or
fluid behaviour index), 𝜏
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where 𝛾
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, 𝑖, 𝑗 = 1, 2, 3, is the rate of strain tensor component.
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where 𝑢
0
is the average velocity of flow of Newtonian fluid,
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1
, 𝑙
2
), 𝛿 = max(𝛿

1
, 𝛿
2
),𝑅
0
is the radius of the normal

artery, Re is the Reynolds number, 𝑅(𝑧) is the radius of the
abnormal artery, and 𝜇 is the viscosity of Newtonian fluid. By
assuming
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≪ 1) and mild dilatation
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where |𝜏| = 𝜏
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+ 𝑘(−𝜕𝑤/𝜕𝑟)

𝑛. The corresponding boundary
conditions are

(i) 𝜏 is finite at 𝑟 = 0

(ii) 𝑤 = 0 at 𝑟 = 𝑅.
(7)

The equations describing the geometry of the wall are
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where 𝛿
𝑖
is the maximum distance the 𝑖th abnormal segment

projects into the lumen and is negative for aneurysms and
positive for stenosis, 𝑅 is the radius of the artery, and 𝜁 =
tan𝜙, where 𝜙 is the taper angle. For converging tapering
𝜙 becomes greater than 0, 𝜙 < 0 indicates the diverging
tapering, and 𝜙 = 0 for the case of nontapered artery, 𝑙

𝑖
is the

length of the 𝑖th abnormal segment, 𝛼
𝑖
denotes the distance

from the origin to the commencement of the 𝑖th abnormal
segment and is given by
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𝛽
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indicates the distance between the origin of the flow region

and the end of the 𝑖th abnormal segment and is given by
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and 𝑑
𝑖
is the distance separating the start of the 𝑖th abnormal

segment from the end of the (𝑖 − 1)th or from the start of the
segment if 𝑖 = 1 [22].

3. Solution of the Problem

The exact solution for velocity field satisfying the boundary
conditions can be written as
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(11)

where 𝑞(𝑧) = −𝑑𝑝/𝑑𝑧.
The plug core velocity is given by
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The volumetric flow rate is defined as
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Table 1: A comparison between numerical value of pressure gradient and approximate value of pressure gradient at the midpoint of stenotic
region for different values of yield stress taking 𝑛 = 0.8, 𝑘 = 1.2, 𝜁 = 0.01, and 𝛿

1
= 0.2.

𝜏
𝑦

0.05 0.1 0.4 0.8 1.2 1.6 2 2.4

Numerical value of 𝑞(𝑧) 17.9423 18.1099 19.1145 20.4511 21.7841 23.1127 24.4368 25.7559
Analytical value of 𝑞(𝑧) 17.9424 18.1104 19.124 20.4895 21.8712 23.2692 24.6834 26.1137

Table 2: A comparison between numerical value of pressure gradient and approximate value of pressure gradient at themidpoint of dilatation
region for different values of yield stress taking 𝑛 = 0.8, 𝑘 = 1.2, 𝜁 = 0.01, and 𝛿

2
= −0.2.

𝜏
𝑦

0.05 0.1 0.4 0.8 1.2 1.6 2 2.4

Numerical value of 𝑞(𝑧) 5.0954 5.2106 5.9001 6.8133 7.7185 8.6152 9.5037 10.3845
Analytical value of 𝑞(𝑧) 5.0956 5.2116 5.9163 6.8799 7.8709 8.8892 9.9349 11.008

The shear stress 𝜏 at the wall of the tapered arterial stenosis
with dilatation (wall shear stress 𝜏

𝑤
) is defined as

𝜏
𝑤
=

𝑅

2

𝑞 (𝑧) . (17)

The flow resistance 𝜆 is defined as

𝜆 = ∫

𝑧

0

𝑞 (𝑧)

𝑄

𝑑𝑧, (18)

where 𝑧 is any point of cross section of nonuniform tube along
the axial direction.

Case 1. For any value of yield stress 𝜏
𝑦
, (16) can be rewritten

as
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(19)

where 𝑥 = −𝑑𝑝/𝑑𝑧. For 𝑄 = 1.0, one can numerically
compute the value of 𝑥 (pressure gradient) from (19) for
different values of the parameters. Equation (19) has been
numerically solved for 𝑥 using Newton-Raphson method.

Case 2. For small value of yield stress 𝜏
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Using (17) and (20), the wall shear stress is obtained as
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Substituting (20) into (18), the analytical expression for flow
resistance is obtained as
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(23)

Considering the number of abnormal segments within an
arterial segment as shown in Figure 1, we define 𝛼

𝑖
as the

starting point and 𝛽
𝑖
as the ending point of each portion.

Taking this into account (22) can be rewritten as
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4. Discussion

A comparison between numerical values and analytical
values of pressure gradient at the midpoint of stenotic region
shows that, up to 𝜏

𝑦
= 2.4, the maximum error is less than

1.4% and for dilatation region the maximum error is less than
6%. This is illustrated in Tables 1 and 2. This implies that the
analytical expression for pressure gradient works well for the
values of yield stress till 2.4.

A comparative study of velocity profiles for fluids such
as Newtonian, power law, Bingham-plastic, and Herschel-
Bulkley fluids is represented graphically in Figure 3. From
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Figure 3: Comparison of velocity profiles for various fluids with
experimental results.

Figure 3, it is observed that the velocity of Herschel-Bulkley
fluid agrees with experimental values compared to that of the
other fluids.

The variation of wall shear stress (WSS) with respect
to axial distance for the case of a converging tapered,
not tapered, and diverging tapered arterial stenosis with
dilatation is displayed in Figures 4–8. WSSs of fluids such
as Newtonian, power law, Bingham-plastic, and Herschel-
Bulkley fluids are compared in Figure 4. It is important to
note thatWSS increases in the upstreamof the stenotic region
(𝑧 = 2 to 2.5), reaches maximum at the midpoint (𝑧 = 2.5),
and decreases in the downstream of region (𝑧 = 2.5 to 3),
while, in the dilatation region,WSS decreases as 𝑧 varies from
4 to 4.5, reaches minimum at the midpoint (𝑧 = 4.5), and
increases in the region (𝑧 = 4.5 to 5). In the case of stenosis,
increase is more for converging tapered artery (𝜁 = 0.01) as
compared to the case of not tapered (𝜁 = 0) and diverging
tapered (𝜁 = −0.01) artery. It is observed from the view of
variation of WSS around the midpoint of stenotic region that
the effect of the presence of stenosis is higher on the rheology
of blood as Bingham fluid model in comparison with the
rheology of blood as Newtonian, Hershel-Bulkley, and power
law fluid models, respectively. It is important to observe from
Figure 5 that the power law index (𝑛) plays a significant role in
stenotic region (𝑧 = 2 to 3) since the percentage of variation
in WSS is higher for stenosis as compared to the case of
dilatation.

Axial variation of WSS with respect to yield stress in
the case of converging tapered, not tapered, and diverg-
ing tapered arterial stenosis with dilatation is displayed in
Figure 7. Increase in yield stress causes wall shear stress to
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Figure 4: Axial variation of wall shear stress for Newtonian, power
law, Bingham-plastic, and Herschel-Bulkley fluids with different
values of 𝜁.
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Figure 5: Axial variation of wall shear stress (𝜏
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) for different values

of power law index (𝑛) taking 𝑘 = 1.4, 𝛿 = 0.2, and 𝜏
𝑦
= 0.1.
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Figure 15: Stream lines for (a) power law fluid, (b) Herschel-Bulkley fluid (𝜏
𝑦
= 0.1), and (c) Herschel-Bulkley fluid (𝜏

𝑦
= 0.4) taking 𝛿

1
= 0.2

and 𝜁 = 0.01 in the stenotic region.

increase and the variation is more in the stenotic region than
in the dilatation region. The effect of stenotic height on WSS
has been investigated in Figure 8.As stenotic height increases,
WSS increases in the stenotic region while it decreases in the
dilatation region. When there is no stenosis, WSS increases
linearly with respect to the axial distance. It is observed that

the stenotic height plays a predominant role in increasing the
WSS. The variation is more in the case of converging tapered
than not tapered and diverging tapered arteries.

Figures 9–13 are prepared to see the variation of resis-
tance to flow with respect to the axial distance in the case
of converging tapered, not tapered, and diverging tapered
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Figure 17: Stream lines for (a) Newtonian fluid and (b) Bingham-plastic fluid taking 𝛿
2
= −0.2 and 𝜁 = 0.01 in the dilatation region.

arterial stenosis with dilatation. A comparative study of
flow resistance for Newtonian, power law, Bingham-plastic,
and Herschel-Bulkley fluids is depicted in Figure 9. Flow
resistance increases significantly in the stenotic region (𝑧 =
2 to 3): the increase is more for Herschel-Bulkley fluid
and comparatively less for Newtonian fluid. Flow resistance
decreases with the axial distance in the dilatation region.

The variation of flow resistance for power law and Bingham-
plastic is lesser when compared with Herschel-Bulkley and
greater when compared with Newtonian fluid. Figures 10
and 11 depict that flow resistance increases as 𝑛 and 𝑘
increases. Increase in power law index causes flow resistance
to increase significantly as compared to the consistency
index (𝑘). The effect of yield stress on flow resistance having
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Figure 18: Stream lines for (a) power law fluid and (b) Herschel-Bulkley fluid taking 𝛿
2
= −0.2 and 𝜁 = 0.01 in the dilatation region.
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Figure 19: Stream lines for different values of 𝑘: (a) 𝑘 = 1 and (b) 𝑘 = 1.2 taking 𝑛 = 0.8, 𝜏
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2
= −0.2, and 𝜁 = 0.01 in the dilatation

region.

other parameters fixed has been studied from Figure 12.
Flow resistance increases as yield stress increases and the
variation caused by yield stress is less compared to other
parameters. Figure 13 shows that the flow resistance increases
with stenotic height and its increase is more in the case of
converging tapered artery.

The effects of consistency index (𝑘), power law index (𝑛),
and yield stress (𝜏

𝑦
) on the stream line pattern have been

examined and illustrated in Figures 14–19. In the case of
tapered stenosed tube (Figures 14–16), the non-Newtonian
behaviour of blood plays a predominant role in the formation
of trapping bolus. Increase in 𝑘 or 𝑛 does not cause a
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significant change in the stream line pattern. Increase in
yield stress leads to a significant increase in the size of
trapping bolus. It is observed that the parameters 𝑘 and 𝑛
are weak parameters in the sense that these parameters bring
a small change in the stream line pattern in comparison
with the yield stress. Figures 14–19 reveal that, in the case
of a tapered stenosed tube, the stream line pattern follows a
convex pattern when we move from 𝑟/𝑅 = 0 to 𝑟/𝑅 = 1 and
it follows a concave pattern when we move from 𝑟/𝑅 = 0
to 𝑟/𝑅 = −1. Further, it is of opposite behaviour in the case
of a tapered dilatation tube. In the case of dilatation, the
variation in the stream line pattern corresponding to change
in parameters is less due to lower pressure gradient. This has
been illustrated in Figures 17–19.

5. Conclusion

This work presents a model of flow of an incompressible
Herschel-Bulkley fluid through a tapered artery with stenosis
and dilatation. In this paper, we conclude the following.

(i) Expressions for velocity profile, wall shear stress, and
flow resistance are derived.

(ii) A comparison between numerical values and ana-
lytical values of pressure gradient at the midpoint
of stenotic region shows that, up to 𝜏

𝑦
= 2.4, the

maximum error is less than 1.4% and, for dilatation
region, the maximum error is less than 6%. This
implies that the analytical expression for pressure
gradient works well for the values of yield stress till
2.4.

(iii) Effects of parameters such as power law index, con-
sistency index, yield stress, stenotic height, dilatation
depth, and taper angle on the above mentioned
physiologically important quantities are studied.

(iv) For given value of power law index (𝑛), Herschel-
Bulkley fluid has greater wall shear stress than the
power law fluid.

(v) It is important to note that increase in yield stress
leads to increase in wall shear stress and resistance to
flow.

(vi) Flow resistance increases significantly as the stenotic
height increases for given 𝑛, 𝑘.

(vii) It is observed that the parameters 𝑘 and 𝑛 are weak
parameters in the sense that these parameters bring a
small change in the stream line pattern in comparison
with the yield stress and the stream line pattern for
tapered dilatation tube is of opposite behaviour as
compared to tapered stenosed tube.

(viii) From the present work, results for power law (taking
𝜏
𝑦
= 0), Bingham-plastic (taking 𝑛 = 1), and

Newtonian fluids (taking 𝑛 = 1 and 𝜏
𝑦
= 0) can be

obtained.
(ix) Results illustrated through graphs show the effects of

multiple diseased portions of artery in close proxim-
ity to each other (a poststenotic dilatation) on the

increase of flow resistance causing the reduction of
blood flow.
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