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Abstract

Granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances immune responses by 

inducing dendritic cell proliferation, maturation, and migration and B and T lymphocyte 

expansion and differentiation. The potency of DNA vaccines can be enhanced by the addition of 

DNA encoding cytokines, acting as molecular adjuvants. We conducted a phase I/II trial of human 

GM-CSF DNA in conjunction with a multipeptide vaccine (gp100 and tyrosinase) in stage III/IV 

melanoma patients. Nineteen human leukocyte antigen (HLA)-A*0201(+) patients were treated. 

Three dose levels were studied: 100, 400, and 800 mcg DNA/injection, administered 

subcutaneously (SQ) every month with 500 mcg of each peptide. In the dose-ranging study, 3 

patients were treated at each dose level. The remaining patients were then treated at the highest 

dose. Most toxicities were grade 1 injection site reactions. Eight patients (42%) developed CD8+ 

T-cell responses, defined by a ≥3 SD increase in baseline reactivity to tyrosinase or gp100 peptide 

in tetramer or intracellular cytokine staining assays. There was no relationship between dose and 

T-cell response. Responding T cells had an effector memory cell phenotype. Polyfunctional T 

cells were also demonstrated. At a median of 31 months follow-up, median survival has not been 

reached. Human GM-CSF DNA was found to be a safe adjuvant.

Introduction

Granulocyte-macrophage colony stimulating factor (GM-CSF) has become an attractive 

vaccine adjuvant because of its immune modulation effects and low toxicity profiles.1 There 

is significant pre-clinical and clinical data demonstrating the adjuvant effects of GM-CSF in 

a variety of cancer vaccine approaches, including cellular vaccines, viral vaccines, peptide 

and proteins vaccines, and DNA vaccines.2-11
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These studies have been based on pre-clinical mouse studies that showed that vaccination 

with syngeneic mouse melanoma cells secreting GM-CSF stimulated more potent and long-

lasting anti-tumor immunity than vaccines that produced other cytokines.2 Similar results 

were observed in other tumor models, including lung, colon, renal cell, prostate, lymphoma 

and leukemia.3-7 The ability of GM-CSF to act as a growth factor to stimulate and recruit 

dendritic cells (DC), thus augmenting the survival and density of antigen presenting cells 

(APC), may explain its adjuvant role.12,13 After being stimulated by exogenous antigens, 

DCs migrate to regional lymph nodes, where they present antigen to T cells.

We are currently investigating the efficacy of DNA vaccines in patients with solid tumor 

and hematologic malignancies.14,15 One of the advantages of DNA vaccines is the ability to 

combine them with cytokine genes as molecular adjuvants. The use of molecular adjuvants 

allows more efficient co-administration with DNA vaccines, the inclusion of cytokines for 

which there is no clinical grade recombinant protein, and gene modifications to increase 

potency such as fusion to immunoglobulin Fc domains.16

We have shown that administration of mouse GM-CSF DNA by particle bombardment into 

skin induces an inflammatory response that leads to a significant increase in DCs at the 

inoculation site and in draining lymph nodes.8,17 GM-CSF DNA expression increases T-cell 

responses following peptide immunization and antibody responses following xenogeneic 

DNA immunization.8 It also provides increased tumor protection in mice immunized with 

human tyrosinase-related protein-1 (TRP-1/gp75/TYRP1) or tyrosinase-related protein-2 (a 

DOPAchrome tautomerase, DCT, also known as TRP-2).8,9 We also showed in studies in 

companion animals that human GM-CSF DNA enhanced the effects of a DNA vaccine 

targeting tyrosinase.10 Based on these pre-clinical studies, we performed a phase I/II study 

of human GM-CSF DNA combined with a multiepitope peptide vaccine (tyrosinase and 

gp100) in patients with advanced melanoma.

Results

Clinical Trial Design

The endpoints of this study were safety and immunogenicity of human GM-CSF DNA given 

in combination with tyrosinase and gp100 peptides (500 mcg each). In the dose ranging part 

of the study, patients were treated in three different cohorts with escalating doses of 100, 

400 and 800 mcg of GM-CSF DNA. Further dose escalation was not planned, since the goal 

of the study was not to define a maximum tolerated dose of GM-CSF DNA, but to identify a 

biologically active dose. DNA was administered subcutaneously with the Biojector2000® 

needle-free delivery system. Three patients were treated at each dose level. An additional 

patient was treated at the highest dose as two patients had consented simultaneously. In the 

second part of the trial, 10 additional patients were treated at the highest dose of GM-CSF 

DNA. One patient was removed from the study and replaced due to progression of disease 

prior to administration of the second vaccine. This patient was evaluable for toxicity. A total 

of 19 patients completed the study.
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Patient Demographics

The trial enrolled mainly stage III melanoma patients who were free of disease after surgery 

but at high risk for recurrence (Table 1). All patients with stage III disease either progressed 

on high-dose IFN, had a medical contraindication to high-dose IFN or refused IFN therapy 

after a complete discussion of the data from the relevant Eastern Cooperative Oncology 

Group (ECOG) trials with a physician investigator. One patient with stage III discontinued 

adjuvant interferon after 3 months due to poor tolerance. One patient had a large mucosal 

melanoma of the nasal cavity. Three patients had stage IV disease. One patient was 

classified as stage IV with no evidence of disease (NED), after receiving neo-adjuvant 

chemotherapy prior to resection of a metastatic jejunal lesion. Two additional patients with 

stage IV disease had low volume disease. One had a left upper lobe pulmonary nodule 

present at the time of enrollment that was subsequently found to be metastatic disease when 

it increased in size 7 months after study completion and was resected. A second patient had 

a similar evolution of a liver lesion. Patients were enrolled within 6 months of definitive 

surgery for resection of primary tumor, and/or regional lymph nodes or metastatic disease. 

There were 11 male and 8 female patients. The age range was 12-77 (median 60). All 

patients had Karnofsky performance status ≥ 80 with minimal or no laboratory abnormalities 

at study entry.

Toxicity

No patient enrolled in this study developed a dose-limiting toxicity, defined as any event in 

the NCI Common Toxicity Criteria (CTC v2) of grade 3 or 2 allergic/immunologic toxicity. 

Side effects consisted primarily of grade I injection site reactions. Given that patients were 

injected with double-stranded DNA, we measured anti-nuclear anti-DNA antibodies (Hep-2 

indirect fluorescence assay) during and after treatment. Similar to prior DNA vaccination 

trials,14,18 we did not detect any persistent elevation of anti-DNA antibodies. In accordance 

with FDA guidelines for gene transfer studies, all patients are being followed for 15 years as 

surveillance for second malignancies, neurologic or autoimmune disease.

Pharmacokinetics

After injection of GM-CSF DNA, we measured GM-CSF levels in the serum. Unlike our 

studies in mice,17 in which we detected transient low levels of GM-CSF in the serum after 

injection of plasmid, no GM-CSF was detected in patients on the clinical trial.

Evaluation of CD8+ T-Cell Responses

Peripheral blood mononuclear cells (PBMCs) were collected and stored at -120° C at two 

time points before the first immunization (A, B), at 7 weeks (C), 11 weeks (D) and 17 weeks 

(E) following the first immunization. Since we did not observe any responses on freshly 

thawed PBMCs without prior in vitro stimulation in our study of tyrosinase DNA,14 we used 

a more sensitive assay, in which PBMCs are incubated with peptide-pulsed K562 cells 

expressing HLA-A* 0201 for 10 days to expand previously activated CD8+ T cells,19 prior 

to tetramer and intracellular cytokine staining (ICS) analysis. We defined a positive response 

as one in which: (1) the population of responding cells was >0.1% of total CD3+CD8+ cells, 

and (2) the post-vaccination specimen was ≥ 3 SDs above the pre-vaccination specimens. 
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Eight of 19 patients demonstrated a positive response to tyrosinase369-377 or gp100209-217 at 

one or more post-vaccination time points by either assay (Fig 1, Table 2). In the tetramer 

assay, the peak response ranged 1.7-90.2-fold greater than the respective pretreatment 

values, while the range in the ICS assay was a 1.3-7.1 fold increase. Positive responses were 

seen as early as week 7, two weeks prior to the last immunization and up to week 17, two 

months after the final immunization. Positive responses were divided among all three dose 

levels. We have previously validated the reproducibility of the assays,19 and confirmed it in 

two of the patients in the present study.

Phenotype of responding CD8+ T cells

We assessed the phenotype of responding CD8+ T cells (Figs 2 and 3, Table 2). The 

majority of specimens positive by tetramer assay were CD45R0high and CD62Llow or 

CD62Lint, indicating an effector memory phenotype.20 Expression of CCR7 was also low, 

consistent with the phenotype. One patient had a positive response by tetramer staining with 

a predominantly CD62Lhigh population and co-expression of CCR7, consistent with a 

central memory phenotype. Two of four responses scored positive by ICS comprised T cells 

that were CD45R0high CD62Llow, indicative of an effector memory population. In two of 

these responders, we also detected expression of the effector molecule granzyme B in 

responding T cells (Fig 3). Surface expression of CD107a in these specimens, which 

indicates degranulation and lytic function, was however low in three of four responders.21 

CD107a expression was only detected in the patient analyzed in the polyfunctional assay 

(see below, Fig 4), in which both Brefeldin A and Monensin were used to detect intracellular 

cytokines. We have recently shown that combining the two agents increases detection of 

CD107a compared to using Brefeldin A alone (J. Yuan, unpublished observation). 

Expression of CD127 (CD127Rα) was generally low on tetramer positive or IFNγ-secreting 

cells, consistent with an effector phenotype.22-24

Polyfunctional responses are observed in some patients

We were able to analyze polyfunctional responses25,26 in patient 12, who had a response to 

gp100 in the ICS assay (Fig 4). We examined CD8+ T cell secretion or expression of IFNγ, 

MIP1β, TNF, CD107a and IL-2 (Fig 4A). Prior to immunization, the majority of CD8+ T 

cells only secreted a single cytokine (Fig 4B, time points A+B). In contrast, 7 weeks after 

the 1st immunization (time point C), a significant percent of CD8+ T cells were 

polyfunctional, expressing up to 3 or 4 markers, including CD107a. This time point also 

corresponded to the peak response to the gp100 vaccine. At the following time point, the 

percentage of polyfunctional CD8+ T cells decreased (time point D) and at the last time 

point (time point E), a majority of T cells had no detectable function, although we cannot 

exclude other cytokines being produced, since we only studied 5 markers.

Clinical Observations

Although this study was not designed to evaluate clinical efficacy, we have continued to 

follow these patients for a median of 31 months since enrollment. Fourteen of 19 patients 

remain alive and we have not reached a median overall survival as of yet.
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Discussion

We have previously shown that GM-CSF DNA acts as a potent adjuvant for melanoma 

DNA vaccines in pre-clinical mouse models as well as in companion animal studies.8-10 In a 

recent study in companion animals, we treated groups of dogs with melanoma on three 

different arms, mouse tyrosinase DNA alone, human GM-CSF DNA alone, or the 

combination of the two constructs. Dogs were treated on the same dose escalation of GM-

CSF DNA used in the present study. Although the animals were treated sequentially rather 

than in a randomized fashion due to the later availability of the GM-CSF DNA construct, 

study entry criteria were similar in the three groups. A significantly improved overall 

survival was observed in the combination arm compared to the other two arms.

In the present study, we treated 19 patients with human GM-CSF DNA in combination with 

a multiepitope peptide vaccine (tyrosinase and gp100) and observed CD8+ T cell responses 

in eight patients either by tetramer or ICS assay. The majority of the responding CD8+ T 

cells had an effector memory phenotype, similar to observations in our recent study of 

tyrosinase DNA.14 Furthermore, in one of the patients that responded in the ICS assay, we 

were able to study polyfunctional responses using polychromatic flow.25,26 Polyfunctional T 

cells have been demonstrated in a number of infectious diseases pre-clinical models as well 

as in patients infected with HIV-1 or immunized using vaccinia constructs.26-28 These 

studies indicate that polyfunctional T cell responses correlate with improved control of viral 

replication, suggesting that an effective vaccine should attempt to elicit these types of 

responses.29 A recent study in mice showed polyfunctional responses following a DNA 

prime adenoviral vector boost immunization with a bicistronic vector expressing GM-CSF 

and OVA.30 In the patient we studied, we demonstrated polyfunctional CD8+ T cells to the 

gp100 peptide, with almost 75% of the T cells demonstrating 3 or more cytokines or 

markers at time point C, which was the peak response determined by IFNγ secretion. 

Interestingly, only time point C would be considered a positive response to the vaccine when 

using 3 SD above the mean as a definition of a positive response. However, clear differences 

in the type of polyfunctional response were also noted at time point D compared to pre-

vaccine time points, indicating that this assay may be biologically more informative than 

studying IFNγ alone as is routinely done in most vaccine studies. To our knowledge, this is 

the first demonstration of a polyfunctional CD8+ T cell response to a cancer vaccine in 

humans. Future studies in which this approach is used systematically will help determine 

whether it provides a better assessment of immune responses to cancer vaccines.

One of the primary aims of this study was to investigate the safety and feasibility of 

injection of GM-CSF DNA as a vaccine adjuvant. We found that SQ jet injection of all three 

doses of DNA was well tolerated, with transient grade 1 injection site reactions the only 

reproducibly reported side effect. No significant induction or exacerbation of anti-DNA 

antibodies was noted. These results are consistent with those of other reports of early clinical 

trials of GM-CSF DNA.31-33 Timmerman et al.31 performed a Phase I/II clinical trial of 

DNA vaccines encoding autologous idiotype linked to mouse immunoglobulin (MsIg) 

heavy- and light-chain constant regions chains in patients with follicular B-cell lymphoma. 

Patients received 3 series of vaccines, including DNA given intramuscularly, then 

intramuscularly and intradermally, and finally in combination with 500 mcg of GM-CSF 
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DNA. Addition of GM-CSF DNA appeared to boost the B and T cell responses to the mouse 

immunoglobulin in some of the patients. In another study, patients with melanoma were 

immunized with gp100 DNA alone or with GM-CSF DNA.33 Although increased dendritic 

cell infiltration was seen at the injection site of patients who received GM-CSF DNA, no 

conclusions could be drawn on the effect of GM-CSF DNA on T cell responses, as they 

were only studied in a small subset of patients. Finally, in a study of a DNA vaccine against 

Plasmodium falciparum, addition of GM-CSF DNA (20, 100 or 500 mcg) had a negative 

effect on class I-restricted but not class II restricted responses.32 Although injection of 

peptides alone without any adjuvant or carrier should not elicit a response, we cannot 

exclude that we would be able to detect some responses with the sensitive T cell assays we 

used in the present study. Nevertheless, we think the superior survival we observed in 

companion animals treated with GM-CSF DNA as an adjuvant and the detection of vaccine-

specific T cell responses in the present study indicate that GM-CSF DNA provided an 

adjuvant effect.

The results of this study and those of others demonstrate that GM-CSF DNA is a safe and 

potentially effective adjuvant. In future studies we plan to combine human GM-CSF DNA 

(800 mcg/dose) with DNA vaccines targeting cancer antigens in patients with melanoma or 

other malignancies. We will use separate plasmid vectors for the GM-CSF DNA and the 

antigen, as this makes practical sense allowing the use of the molecular adjuvant with a 

number of different vaccines. Furthermore, recent studies have demonstrated that the use of 

fusion gene constructs where GM-CSF is linked to an antigen can lead to anti-GM-CSF 

auto-antibodies and decreased immune responses.30,34

Materials and Methods

Patients

Patients with AJCC stage IIb-IV melanoma, HLA-A*0201+, and confirmed pathologic 

diagnosis were eligible to participate. Patients must have had any potentially curative 

surgery before being allowed entry. Patients with stages IIb-III disease must have either 

progressed on, been ineligible for or refused high dose interferon-alfa after a complete 

discussion of the results of the relevant ECOG trials.35-37 Patients with stage IV disease had 

at most five anatomic sites of metastasis and no evidence of brain metastases. All patients 

signed an informed consent approved by the Memorial Sloan-Kettering Cancer Center 

(MSKCC) IRB. The protocol was approved by the NIH Recombinant DNA Advisory 

Committee and the Food and Drug Administration.

Plasmid design

Human GM-CSF cDNA was cloned at MSKCC and inserted into the pING vector,38 a 

standard eukaryotic expression plasmid used extensively in preclinical models and in 

clinical trials by our group,10,14,39 which conforms to criteria specified in the FDA points to 

consider for DNA vaccines. Clinical grade material was manufactured by Althea 

Technologies, Inc (San Diego, CA). The potency of the plasmid was confirmed by detection 

of human GM-CSF protein by ELISA in the skin of mice injected with human GM-CSF 

DNA using the gene gun (data not shown).
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Peptide

The vaccine consisted of tyrosinase 368–376(370D) peptide (YMDGTMSQV) and gp100 

209–217(210M) peptide (IMDQVPFSV), which were prepared and administered separately. 

Both peptides are HLA-A2.1 restricted. The gp100 209–217(210 M) peptide was modified 

at the second position to increase the affinity of binding to HLA-A2.1 and to enhance 

induction of T cells against the native peptide expressed by melanoma.40 Both peptides were 

provided by Cancer Treatment Evaluation Program/NCI under an Investigational New Drug 

application held by the NCI.

Immunization

Patients were injected with GM-CSF DNA subcutaneously monthly for a total of three 

immunizations using the Biojector2000 needle-free delivery system with the #3 syringe 

(Tualatin, OR). On day 5 or 6 following GM-CSF DNA administration, 500 mcg each of the 

tyrosinase and gp100 peptides were injected at the same site using the same method of 

injection. Injection sites were rotated for each immunization and no injection was given to a 

site where draining lymph nodes had been removed.

Pharmacokinetics

Following GM-CSF DNA administration, serum was collected at specific time points (6 

hours, 24 hours, 48 hours and 120 hours). GM-CSF concentrations in serum were 

determined using a commercial ELISA kit according to the manufacturer’s instructions 

(R&D Systems, Minneapolis, MN).

T-cell stimulation in vitro

Thawed PBMCs were stimulated in triplicate with K562-A*0201 cells pulsed with peptides 

(tyrosinase369-377 YMDGTMSQV, gp100209-217 ITDQVPFSV, EBV-BMLF1280–288 

GLCTLVAML)40-42 at 10 μg/ml as previously described.19

Immune Response Assays

The tetramer and ICS assays were performed as previously described with some 

modifications.14,19 The following tetramers and fluorochrome-labeled antibodies were used: 

HLA-A*0201-PE labeled tetramers loaded with EBV369-377, gp100209-217, and 

tyrosinase369-377 peptides (Tetramer Core, Lausanne Branch, Ludwig Institute of Cancer 

Research), CD45RO, CD3 and anti-IFNγ (BD Biosciences, San Jose, CA), CD127, 

CD45RO, MIP-1β, CD107a, TNFα, CD28, CD27, CD8 and Granzyme B (BD, Pharmingen, 

San Jose, CA), CD3 (Caltag Laboratories, Burlingame, CA), CD122 (Sanquin, NL), CD127, 

CD4, CD45RA and CD8 (Beckman Coulter Inc., Fullerton, CA.), CD62L (eBioscience San 

Diego, CA) CCR7 (R&D Systems, Minneapolis, MN). Brefeldin A (1 mcg/ml, BD 

Biosciences) was added two hours after peptide stimulation in the ICS assay. Cells were 

analyzed by flow cytometry using a CYAN flow cytometer with Summit software 

(DakoCytomation California Inc., Carpinteria, CA). The percentage of positive cells was 

determined by gating on the population of cells that were viable (forward scatterlow and side 

scatterlow), CD3high and CD8high. 4’,6-diamidino-2- phenylindole (DAPI, Invitrogen, 

Carlsbad, CA) was used to gate out dead cells for tetramer staining.
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For the polyfunctional assay, thawed PBMCs were stimulated at a 1:1 ratio with irradiated 

autologous PBMCs pulsed with the tyrosinase and gp100 peptides (10 mcg/ml). Cells were 

harvested at day 10 and analyzed by polyfunctional intracellular cytokine staining.25,26 

Brefeldin A (1 mcg/ml) and Monensin (5 mcg/ml, Sigma, St. Louis, MO) were added after 

peptide stimulation. Unstimulated samples were used as negative controls to set up single 

function gates. The data analysis program Simplified Presentation of Incredibly Complex 

Evaluations (version 4.1.6; kindly provided by M.E. Roederer, NIH, Bethesda, MD) was 

used to analyze and generate graphical representations of T cell responses detected by 

polychromatic flow cytometry. All values used for analyzing proportionate representation of 

responses were used after the background was subtracted.

Assay validation

For the tetramer and ICS assays, standard operating procedures were established in the 

Ludwig Center for Cancer Immunotherapy Immunologic Monitoring Facility for use in 

clinical trial monitoring. Freshly-thawed HLA-A*0201 tyrosinase369-377, gp100209-217 and 

EBV-BMLF1280–288 tetramer positive T-cell lines were used for each tetramer staining as a 

positive control. We have subjected these methods to validation criteria outlined by the FDA 

for cell based assays (http://www.fda.gov/CBER/summaries/120600bio10.htm).

Statistical methods

In order to determine positive T-cell responses, we calculated the SD of the pre-vaccination 

replicate values. Patients were considered to have positive T-cell responses if at any post-

vaccination time point there was an increase of ≥ 3 SDs from the baseline mean and the 

response was at least 0.1%. Overall survival was estimated using the Kaplan-Meier method.
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Figure 1. Immunization with GM-CSF DNA followed by tyrosinase and gp100 peptides induced 
peptide-specific CD8+ T cells assessed by tetramer binding and IFNγ production
PBMCs were collected pre-vaccination, and at several time points during or after 

vaccination (C = week 7, D = week 11, and E = week 17) and analyzed by tetramer and ICS 

IFNγ assays. (a) Two patients with positive tetramer assays – patient # 4, Tyrosinase time 

points D and E; patient # 20 gp100 time point D, and (b) the corresponding ICS IFNγ assays 

are shown. Only patient # 20 – time points C and D – are positive. Pre-vac, pre-vaccination.
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Figure 2. GP100 tetramer-reactive CD8+ cells in the responder population have an effector 
memory phenotype
PBMCs were analyzed by tetramer assay after in vitro culture using gp100209-217 

ITDQVPFSV peptide. (a) Dot plots from patient # 20 at time point D are shown. (b) 

Contour plots from patient # 20 at time point D show CD3+CD8+ T cells analyzed for 

tetramer reactivity. Upper plots gated CD3+CD8+tetramer+ T cells; lower row plots gated 

on CD3+CD8+tetramer-T cells.
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Figure 3. Phenotypic characterization of cells secreting IFNγ in ICS assays
ICS assays were performed with CD45RO, CD62L, CD127, CD107a, and granzyme B. (a) 

Representative dot plots from patient # 20 at time point D are shown. (b) Contour plots from 

patient # 20 at time point D show the gated CD3+CD8+IFN-γ+ T cells. Upper plots gated on 

CD3+CD8+IFNγ+ T cells; lower row plots gated on CD3+CD8+IFNγ- T cells.
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Figure 4. Polyfunctional antigen specific CD8+ T cells are induced following immunization
(a) Representative dot-plots from sample patient #12 at time point C. Single function gates 

were set based on negative control (unstimulated sample, bottom row) and were placed 

consistently across samples. (b) Responses in patient #12 are shown at all 5 time points. 

Every possible combination of responses is shown on the x axis. Responses are grouped and 

color coded according to the number of functions. Bars indicate the percentage of the total 

response contributed by CD8+ T cells with a given functional response. (c) Each pie 

represents a time point in patient #12 and each slice of the pie represents the fraction of the 

total response that consists of CD8+ T cells positive for a given number functions.
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Table 2

Immune Responsesa

Patient No. Positive Assay Time Phenotype Clinical Status

GM 01 Gp100 Tetramer W7, W17 CD45ROhigh; CD62Llow; CCR7low; CD127low NED

GM 03 gp100 Tetramer W7 ND NED

gp100 ICS W7 CD45ROlow; CD62Llow; CD107alow; Granhigh

GM 04 gp100 Tetramer W7 CD45ROhigh; CD62Lint; CCR7low; CD127low NED

Tyr Tetramer W11, W17 CD45ROhigh; CD62Lint; CCR7low; CD127low

GM 08 gp100 Tetramer W11 CD45ROhigh; CD62Lint; CCR7low; CD127low DOD

gp100 ICS W11 CD45ROhigh; CD62Llow; CD107alow; Granhigh; CD127low

GM 12 gp100 Tetramer W7, W11, W17 CD45ROhigh; CD62Llow; CCR7low; CD127low NED

Tyr Tetramer W11 CD45ROhigh; CD62Lint; CCR7low; CD127low

gp100 ICS W7 ND

GM 14 gp100 Tetramer W11 ND DOD

Tyr Tetramer W7 CD45ROhigh; CD62Lhigh; CCR7int; CD127low

GM 20 gp100 Tetramer W11 CD45ROhigh; CD62Llow; CCR7low; CD127low NED

gp100 ICS W7, W11 CD45ROhigh; CD62Llow; CD107alow; CD127high

GM 21 Tyr Tetramer W7b CD45ROint; CD62Llow; CCR7int; CD127 low NED

Abbreviations: DOD, died of disease; ICS, intracellular cytokine staining; ND, not determined; NED, no evidence of disease; W, week after 
initiation of study.

a
Markers not indicated were not examined. Low = 0–30%, intermediate = 30–60%, and high = 60–100% of cells that are positive for above-

mentioned markers.

b
Patient was unavailable at time of scheduled W11 and W17 visits.
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