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ABSTRACT
Ketamine is a phencyclidine derivative and a non-competitive antagonist of N-methyl-D-
aspartate (NMDA) receptor for which glutamate is the full agonist. It produces a functional
dissociation between the thalamocortical and limbic systems, a state that has been termed as
dissociative anaesthesia. Considerable variability in the pharmacokinetics and
pharmacodynamics between individuals that can affect dose-response and toxicological profile
has been reported. This review aims to discuss pharmacokinetics of ketamine, namely focusing
on all major and minor, active and inactive metabolites. Both ketamine optical isomers undergo
hepatic biotransformation through the cytochrome P450, specially involving the isoenzymes
3A4 and 2B6. It is first N-demethylated to active metabolite norketamine. Different minor
pathways have been described, namely hydroxylation of the cyclohexanone ring of ketamine
and norketamine, and further conjugation with glucuronic acid to increase renal excretion.
More recently, metabolomics data evidenced the alteration of several biological pathways after
ketamine administration such as glycolysis, tricarboxylic acid cycle, amino acids metabolism
and mitochondrial b-oxidation of fatty acids.
It is expected that knowing the metabolism and metabolomics of ketamine may provide further
insights aiming to better characterize ketamine from a clinical and forensic perspective.
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Introduction

Ketamine is a synthetic, non-barbiturate, injectable dis-
sociative anaesthetic first synthesized by Calvin Stevens
of the Parke-Davis Pharmaceutical Company in 1962
(Ann Arbor, Michigan) while searching for an alterna-
tive to the potent hallucinogenic agent phencycli-
dine [1,2]. Due to its quick onset and short duration of
action with only slight cardio-respiratory depression in
comparison with other general anaesthetics and the pos-
sibility of inhalation to maintain the anaesthetic state,
ketamine is a preferred drug for short-term surgical pro-
cedures in veterinary and human medicine, especially in
children [3,4]. Indeed, in adults, it induces severe psy-
chomimetic reactions, namely hallucinations, delirium,
nightmares, altered of short-term memory and cogni-
tion [5–7]. It has also been proposed as analgesic and for
the treatment of alcoholism [8], heroin addiction [9],
anorexia [10] and for the treatment of depression due to
its long-lasting effects and rapid onset of action (within
4 h post-administration) [11–14].

Ketamine produces dissociative anaesthesia (i.e.
sense of dissociation from the body and the environ-
ment), a neologism first coined by Corssen and Dom-
ino [15,16]. This means that the patient remains
conscious and appears to be awake (i.e. eyes may be
open with presence of nystagmus) but exhibit no

apparent response to surgical pain; “the lights are on,
but no one’s home” [17]. Represents a “trancelike cata-
leptic state” characterized by profound and complete
analgesia and total amnesia with preservation of pro-
tective airway reflexes (i.e. intubation is unnecessary),
spontaneous respirations and cardiovascular stability
(i.e. blood pressure and pulse rate do not decrease and
may even increase slightly) [6,17]. The dissociative
state seems to result from a functional dissociation:
inhibition of thalamocortical pathways and stimulation
of the limbic regions of the brain [18]. These neuronal
systems help to maintain neuronal connections
required for consciousness.

Ketamine is primarily a stereoselective non-competi-
tive antagonist of the ionotropic receptor of N-methyl-
D-aspartate (NMDA) reducing calcium ion influx
through this channel and therefore prevents neuronal
activation required for conscious state [19,20]. This effect
at NMDA receptors is able to reverse the enhanced pain
sensitivity that is frequently present in major trauma or
surgical injury and increases the antinociceptive effects
of conventional opioid and nonsteroidal anti-inflamma-
tory drugs (NSAIDs) [21,22]. In addition, ketamine also
exerts non-NMDA related effects, interacting with sev-
eral receptors, namely [19,23–27]: (1) m, k and d opioid
receptors, that contributes to its analgesic effects;
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(2) anticytokine effect; (3) inhibition of acetylcholine
muscarinic and nicotinic receptors; (4) inhibition of L-
type calcium and sodium channels current; (5) adrener-
gic receptors; (6) serotonin receptors; (7) dopaminergic
D2 receptors; and (8) inhibition of neuronal sodium
channels (producing a modest local anaesthetic action).
In opposition to several other anaesthetics, it does not
affect g-aminobutyric acid receptors at clinically relevant
concentrations [28].

As shown in Figure 1, ketamine [2-(O-chloro-
phenyl)-2-(methylamino)-cyclohexanone] has one
stereogenic centre in the C2 position of the molecule
and therefore can exist as two possible stereoisomers
[R (l-ketamine) and S (d-ketamine; esketamine)]. Dif-
ferences in pharmacological effects and pharmacoki-
netic properties between the two enantiomers have
been described in vivo and in vitro [29,30]. The affinity
of S-ketamine was demonstrated to be four times
higher for the phencyclidine site of the NMDA recep-
tor when compared with R-ketamine [31,32], resulting
in a likewise increase in the hypnotic/anesthetic prop-
erties of the S-enantiomer [29] and its analgesic poten-
tial was reported to be twice that of the racemic
mixture and four times that of R-ketamine [33]. Origi-
nally, it was used as racemic mixture, but nowadays in
human medicine, S-ketamine is preferable due to its

higher potency together with faster post-anaesthetic
recovery times [3,4]. Unfortunately, the drug is still
used as the racemic mixture.

One of the objectives of metabolism and metabolo-
mics is related to the qualitative and quantitative char-
acterization of all pictures of biochemical and
biological metabolic processes of an organism (i.e. the
metabolome) and their changes over time [34]. Several
studies have demonstrated an unpredictable inter-indi-
vidual variability of ketamine pharmacokinetics and
pharmacodynamics [35,36]. Moreover, metabolic sub-
strates and/or inhibitors or inducers of the same cyto-
chrome P450 isoforms (CYP) implicated in ketamine
metabolism are administered concurrently and thus
important clinical and forensic consequences are
expected. This work aims to perform a literature
review of ketamine biotransformation and metabolo-
mics, their pharmacological, toxicological effects,
which have not been characterized sufficiently in most
studies.

Methodology

An English exhaustive literature search was carried out
to identify relevant articles. Ketamine metabolizing
enzymes and metabolites, and metabolomics were
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Figure 1. Metabolism of ketamine.
Note: �Indicates chiral carbon atom. Bold arrow indicates the most relevant route. Dashed lines indicate different substituents location. CYP, cytochrome
P450.
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searched in PubMed (U.S. National Library of Medi-
cine) without a limiting period. Furthermore, elec-
tronic copies of the full papers were obtained from the
retrieved journal articles as well as books on ketamine
and then further reviewed to find possible additional
publications related to human and non-human, in vivo
and in vitro studies.

Absorption, distribution and excretion

Since it is water- and lipid-soluble xenobiotic, keta-
mine can be administered via almost any route
depending on the intent. Oral, inhaled, rectal, smoked,
intramuscular, subcutaneous, intravenous, epidural
and intrathecal are the most frequently applied
routes [28,32,37]. Oral ketamine administration
undergoes significant first-pass effects leading to the
formation of norketamine and dehydronorketamine
(Figure 1) [38]. Rectal administration has a more rapid
onset of action and has been applied specially in chil-
dren [39]. When used as a recreational drug, ketamine
is usually inhaled (insufflated). Usually, the liquid
commercial legal anaesthetic form is allowed to evapo-
rate before administration [32]. Because of ketamine
crystalline appearance, the drug can be mistaken for or
passed off as methamphetamine and cocaine. Bioavai-
labity largely depends on the route of administration
(e.g. 20% oral; 90% intramuscular; 25% rectal; 50%
intranasal; 77% epidural) [32,40,41].

Since ketamine is very lipid-soluble and has a rela-
tively low protein binding (about 20%–50%), a very large
volume of distribution (3–5 L/kg) is attained [32,42].
Therefore, it rapidly crosses the blood–brain barrier to
induce anaesthesia although the onset time is slower
than thiopental. The affinity for a1-acid glycoprotein
seems to be much higher than albumin [43]. After intra-
muscular or subcutaneous injection, sedation or anaes-
thesia develops within 10–15 minutes and typically lasts
for 30–120 minutes [5]. When administered intrave-
nously, the onset of action typically occurs within 1–2
minutes and anaesthesia lasts for approximately 20–60
minutes [5]. After oral administration, the action onset
typically occurs within 20–30 minutes and the duration
of effect is between 60 and 90 minutes [5]. Termination
of anaesthesia is due to redistribution from the brain
and plasma to other tissue. Ketamine is a week base with
a pKa of 7.5 [44]. At physiological pH of 7.4, it is 44.3%
un-ionized [45]. Since its pKa is close to physiological
pH, small changes in pH result in a wide variation in the
ionized and non-ionized fractions.

Analogous to other anaesthetics such as barbiturates
and propofol, the elimination half-life is short; approxi-
mately 2–4 h by intravenous route [46]. The pharmacoki-
netics in children is not very different from adults,
although children do form more norketamine than
adults [47]. Indeed, children require higher infusion rates

than adults to maintain the ketamine steady-state proba-
bly attributed to age-related pharmacokinetics [48].

Ketamine and metabolites are excreted in urine; 2%
is excreted unchanged, 2% in the form of norketamine,
16% as dehydronorketamine and 80% as conjugates of
hydroxylated ketamine metabolites with glucuronic
acid [32,49]. Other studies on human subjects given
tritium-labelled ketamine intravenously have shown
that while 91% of the administered radioactivity could
be recovered in urine over a period of five days [50],
only 20% of the dose is presented as parent drug, nor-
ketamine and 5,6-dehydronorketamine [51]. This
means that a great proportion of an intravenous dose
of ketamine is converted to other metabolites whose
chemical structure and pharmacological activity are
yet to be established. Hydroxylated metabolites of the
parent drug and/or norketamine may be formed in
vivo and subsequently eliminated in urine and bile as
conjugates [20,52]. Several studies described that fre-
quently repeated doses of ketamine prolonged its elim-
ination time as long as 11 days [49,53]. In another
study, norketamine was detected in urine samples up
to 14 days after administration of a single intravenous
dose of ketamine to children [49].

Metabolism

The metabolism of ketamine has been described as
extensive and stereoselective and occurs mainly in the
liver [52]. The major metabolic pathway is N-demethyl-
ation to an active metabolite norketamine by CYP3A4
(Figure 1) [18]. Norketamine, besides some psychoac-
tive properties, also retains anaesthetic effects; this fact
explains the maintenance of the therapeutic efficacy at
lower blood ketamine concentrations [32]. In humans,
at therapeutic concentrations, CYP2B6, CYP3A4 and
CYP2C9 make only a minor contribution to ketamine
N-demethylation [54]. Nevertheless, there are some dis-
sonant results regarding enzymes comparative contribu-
tions to clinical ketamine metabolism [55]. Non-human
data indicate that norketamine crosses the blood–brain
barrier and has about one-fifth to one-third the potency
of ketamine, contributing to the analgesic and psycho-
mimetic side effects, especially in long infusions or
chronic use [56–58]. Paul and colleagues [26] demon-
strated that besides ketamine, also norketamine and
hydroxynorketamine increase the levels of the activating
phosphorylated form of mammalian target of rapamy-
cine (mTOR; a protein kinase involved in protein syn-
thesis, synaptic plasticity and neurotrophic signalling)
and cognate signalling kinases in vitro and prefrontal
cortex in the rat.

Ketamine and norketamine are also hydroxylated
at 3–6 carbons of the cyclohexanone ring leading to
the formation of both inactive free and glucuroni-
dated hydroxylated derivatives, which are more
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water-soluble compounds in order to facilitate uri-
nary excretion [55,59–62].

The hydroxylation of the alicyclic ring led to the
introduction of a second chiral centre and thereby dia-
stereomers with two chiral centres are formed.
Although previous studies did not show formation of
phenolic metabolites of ketamine [63], more recent
studies evidence their existence in urine of subjects
after oral ketamine administration [62].

Cyclohexanone ring also undergoes oxidative metab-
olism by dehydrogenation to an active metabolite 5,6-
dehydronorketamine [64]. Only the 5-hydroxynorket-
amine stereoisomers proved to be precursors of 5,6-
dehydronorketamine [60,65,66]. 5,6-dehydronorket-
amine has been posted as the most useful metabolite to
target in a forensic context since it has a longer plasma
half-life (i.e. detected for 6–10 days in volunteers) [3,67].
Hydroxylated dehydronorketamine or dihydroxynorket-
amine metabolites were not obtained from microsomal
incubates of ketamine or norketamine [62].

Drug–drug interactions and
pharmacogenomics in metabolism

Since ketamine undergoes extensive metabolism,
drug–drug interactions and inter-individual variability
due to polymorphisms in genes coding for drug-
metabolizing enzymes are expected to result in clini-
cally important consequences. However, there are few
reports about drug interactions and pharmacogenom-
ics of ketamine in humans. The treatment with diaze-
pam, a substrate of CYP2C19 and CYP3A4, or
secobarbital, an inhibitor of CYP2B, increased plasma
half-lives of ketamine in humans and therefore their
sedative effects [68,69]. Since ketamine decreases
CYP3A enzyme activity, diazepam metabolism may be
also slowed [70]. When ketamine was associated with
bupivacaine, local anaesthetic effect was significantly
enhanced as well as its elimination half-life [71]. In
rats, ketamine also decreases the clearance of the
CYP2D1 substrate flecainide and the CYP3A substrate
ethosuximide, by 13% and 18%, respectively [72]. Pre-
treatment of rat and rabbit with phenobarbital, an
inducer of the CYP2B subfamily, causes a marked
increase in the rate of ketamine metabolism by hepatic
tissue in vitro [65]. Rifampicin, a potent inducer of
many CYP enzymes, particularly of CYP3A, signifi-
cantly reduces the plasma concentrations of ketamine
and norketamine after oral administration of S-keta-
mine; this effect was only moderately registered after
its intravenous administration [73,74]. Clarithromycin,
a potent inhibitor of CYP3A and P-glycoprotein trans-
porter, also increased serum S-ketamine concentra-
tions (263%) [75]. Unexpectedly, itraconazole, a
potent inhibitor of CYP3A and P-glycoprotein trans-
porter, had no effect on the pharmacokinetics of S-
ketamine, whereas inhibition of CYP2B6 by ticlopidine

significantly increased its serum concentrations,
emphasizing the role of CYP2B6 in the elimination of
ketamine [74]. Further studies are needed to evaluate
the influence of polymorphisms of CYP3A4, but espe-
cially for CYP2B6 and/or CYP2C9, on ketamine phar-
macokinetics. Until now, a significant impact of the
CYP2B6�6 allele (i.e. the most prevalent and clinically
important variant) on N-demethylation of ketamine
was registered in vitro [76]. Corroborating these
results, CYP2B6�6 allele was associated with reduced
steady-state ketamine plasma clearance in chronic
pain patients [36]. Authors hypostatized that the
higher plasma concentrations obtained may predispose
to higher incidence of ketamine adverse effects.

Ketamine also causes “self-induction” of multiple
hepatic P450 isoforms in rat liver microsomes (i.e. 1A,
2B, 2E1 and 3A proteins by 2-, 13-, 2- and 2-fold, respec-
tively), meaning that after chronic administration of
ketamine, higher doses may be required to obtain the
therapeutic effect [77,78]. There is some evidence that
cocaine may interact with ketamine to cause hepatic
injury, at least in experimental animals [77]. The effect
strongly suggests that due to ketamine P450 induction,
liver toxicity may increase after exposure to cocaine and/
or increase formation of norcocaine (i.e. the main hepa-
totoxic oxidative metabolite) [79]. Nevertheless, results
are not conclusive since other authors have shown that
gene expression of CYP3A4 was suppressed by ketamine
by disturbing cytoskeleton remodelling due to reduction
of calcium mobilization and adenosine triphosphate
(ATP) synthesis [80]. Perhaps, differences in experimen-
tal designs may explain such discrepancies since keta-
mine need time to achieve its inductive effect [81].
Indeed, while single-dose administration of ketamine
inhibited CYP3A4-involved N-demethylation of erythro-
mycin [80], repetitive exposure can induce CYP activi-
ties, similarly to ethanol [82,83].

Moreover, some studies demonstrated that ketamine
noncompetitively inhibits the glucuronidation of mor-
phine to morphine-3-glucuronide in rats [38]. This
result may explain the prolonged duration of morphine-
induced analgesia, less administrations and reduced
adverse effects of morphine in humans [15,16]. Since
ketamine is often used in combination with other drugs,
especially cocaine and heroin (for which morphine is the
active metabolite), these possible interactions should not
be disregarded [79,84,85]. Insights are needed to explain
mechanisms of alterations of CYP activities since these
may compromise drug metabolism, drug–drug interac-
tions and the toxicity and carcinogenicity of foreign
chemicals [81].

Endogenous metabolome

Besides exposure metabolites, several other endoge-
nous metabolic changes are expected after ketamine
administration, but were not yet well explored in
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detail. Zhang and colleagues [86] provide data regard-
ing serum metabolites changes due to ketamine abuse
in rats. Authors shown that ketamine induced altera-
tions in the levels of phosphate, propanoic acid, buta-
noic acid, ribitol, propanetricarboxylic acid,
hexadecanoic acid, d-fructose, l-leucine, l-threonine,
alanine, glycine, butanoic acid, valine, l-serine, l-pro-
line, mannonic acid, octadecanoic acid and cholesterol.
Particularly important are the phosphate, propanoic
acid, ribitol and d-fructose alterations, which are inter-
mediate substances in energy metabolism. Propanoic
acid is a product of glycolysis that can be metabolized
into propionyl-CoA and then enters the tricarboxylic
acid cycle (TCA cycle). Moreover, since phosphate is
used to ATP synthesis, ketamine abuse in rats may
result in changes in the energetic status of cells.
Regarding alanine, glycine, butanoic acid, valine, l-ser-
ine, l-proline, malfunctioned protein synthesis and
degradation are expected. Ketamine may be also impli-
cated in liver damage since lipid metabolism was also
compromised. In other study, Wen et al. [87] observed
that compared with the control group, the levels of
glycerol, uridine and cholesterol in rat brain of the
ketamine group decreased, while the urea levels
increased. Glycerol and fatty acids are released into
blood when the body uses stored fat as a source of
energy. Uridine plays a role in the glycolysis pathway
of galactose, which is converted to glucose and metab-
olized in the common glucose pathway. Urea is an end
product of the metabolism of nitrogen containing
compounds by animals that is excreted in urine.
Authors also found biomarkers differently expressed
in plasma and brain: compared with the control group,
the levels of butanoic acid, phosphate, aminomalonic
acid, gluconic acid, hexadecanoic acid, oleic acid and
arachidonic acid increased in the plasma of the keta-
mine group, while the levels of glycine, l-lysine and
cholesterol decreased [87]. Several hippocampal path-
ways including glycolysis/gluconeogenesis, pentose
phosphate pathway and citrate cycle are also affected
after ketamine administration [88].

An interesting study was performed by Villase~nor
et al. [89]. Authors performed a metabolomic analysis
of plasma samples from patients receiving ketamine
for the treatment of bipolar depression. Results evi-
denced that lysophosphatidylethanolamines and lyso-
phosphatidylcholines increased in responder’s patients
suffering from resistant bipolar depression. These find-
ings suggest that alterations in the mitochondrial
b-oxidation of fatty acids are not registered in keta-
mine-administered group. Authors concluded that
metabolomics may be useful to predict response aim-
ing a ketamine personalized therapy. More recently,
Rotroff and colleagues [90] used metabolomics to pro-
vide new insights aiming to map global blood meta-
bolic effects of ketamine racemic mixture and S-
ketamine in treatment-refractory major depressive

disorder patients. Tryptophan, the amino-acid precur-
sor of serotonin, and related metabolites such as
indole-3-acetate, indole-3-lactate and tyrosine, the
amino-acid precursor of dopamine, were all decreased
after ketamine administration. However, neither dopa-
mine nor serotonin levels were significantly changed,
meaning that further studies are required. Authors also
observed that glutamate and circulating phospholipids
(e.g. phosphatidylcholine and phosphoethanolamine)
levels were significantly increased and were associated
with decreases in depression severity. Since ketamine
blocks the glutamatergic NMDA receptor, thus the
possible effect of increased glutamate levels could shift
glutamatergic signalling from NMDA to a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor
receptors to enhance the 5HT1B receptor activity that
is claimed to be required for antidepressant effects [91].
Moreover, since phosphatidylcholine is a major com-
ponent of cell membranes, authors hypothesized that
their increased synthesis is greater in the patients
whose depression severity is decreasing. Other struc-
turally non-identified metabolites also proved to be
potentially interesting.

Pan and colleagues [92] demonstrated that keta-
mine influenced the major energy and amino acid met-
abolic pathways in macaques. Indeed, serum levels of
a-glucose, myoinositol, lactate and succinate, and
urine levels of pyruvate and lactate were all decreased.
In contrast, the levels of leucine in serum and arginine
in urine were significantly higher in the ketamine
group.

Conclusion and future perspectives

For more than 50 years, ketamine has been widely used
to induce anaesthesia and to produce analgesia [6]. Nev-
ertheless, its use is limited due to its unfavourable psy-
choactive effects. In contrast to classic hallucinogens (e.
g. lysergic acid diethylamide, psilocybin, mescaline, etc.),
ketamine presents a higher risk of dependence and
addiction (i.e. to develop a compulsive drug-seeking
behaviour) [1]. Indeed, hallucinogens (i.e. compounds
able to change in lower doses the perception of reality
regarding thought, time and space and alterations of
humour and consciousness, without causing marked
psychomotor stimulation or depression) differ from
most other psychoactive drugs since they induce neither
dependence nor addiction nor are used for prolonged
periods; in other words, these drugs do not interfere
with mesolimbic rewarding system [66]. However, repet-
itive exposure causes rapid tolerance (also called tachy-
phylaxis) leading abusers to escalate doses to achieve the
full hallucinogenic experience [66,93]. In recent years,
ketamine has been used as a recreational and “club
drug” due to its hallucinogenic, dream-like state, sensa-
tion of floating outside the body, “cosmic” experiences,
body distortions and stimulant effects at dance parties
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and raves [94–96]. After being illegally diverted from
legal suppliers (e.g. veterinary), ketamine has also been
misused as a “date-rape” drug since it induces amnesia
as g-hydroxybutyric acid and flunitrazepam [97]. The
narcotic effects of ketamine are comparable to those
achieved by phencyclidine, and the hallucinogen action
is similar to that of lysergic acid diethylamide [59].

Although ketamine therapy is generally considered
safe, several toxicological consequences can be
highlighted [49]: (1) at lower doses it causes mild intoxi-
cation, dreamy thinking, alterations of speech, hearing
and seeing, muscular discoordination, disorientation,
anxiety, disinhibition, euphoria, seeing the world differ-
ently and irrational behaviour; (2) higher doses cause
great difficulty in moving, respiratory disturbances, seiz-
ures and nausea; (3) extreme doses produce complete
dissociation from reality and loss of consciousness, hal-
lucinations, out-of-body experiences and so-called
“near-death experiences” or the “K-hole” [93]; (4) in
absence of other drugs, deaths by overdose (e.g. due to
respiratory depression) are rare since doses used by
addicts are typically lower than necessary for therapeu-
tic anaesthesia. Accidental deaths have been reported as
consequence of falling, hypothermia, traffic accident or
drowning [75]; and (5) the frequent use of ketamine can
lead to addiction and dependence [98]. Sometimes keta-
mine abused is mixed with other drugs such as cocaine,
methamphetamine, 3,4-methylenedioxymethamphet-
amine and benzodiazepines [99].

Despite some studies, the metabolism and metabo-
lomics of ketamine remain poorly understood. In this
work, exogenous and endogenous metabolome of keta-
mine was fully reviewed. Ketamine undergoes hepatic
N-demethylation by several isoforms of cytochrome
P450 to norketamine, which is the main metabolite
excreted in urine. In order to better comprehend clini-
cal effects, pharmacokinetic studies should focus on
both active and inactive metabolites and on polymor-
phisms in genes encoding enzymes (e.g. CYP2B6)
involved in ketamine metabolism [100,101]. Moreover,
due to its extensive metabolism, potentially dangerous
interactions are expected when other drugs are taken
together. The identification of additional metabolites
will be particularly useful to confirm xenobiotic expo-
sure [102] and further sensitive analytical methods are
needed to prove consumption in a wider detection
window [49]. Since ketamine has become a popular
club and date-rape drug, research on biotransforma-
tion acquires particular importance in forensic toxicol-
ogy. Moreover, the mechanisms underlying the
emergence psychedelic alterations are not fully under-
stood. Based on the time course of their appearance
and due to the low levels of ketamine registered, active
metabolites are expected to be involved. Scarce data
exist in the literature regarding the binding of keta-
mine and metabolites such as norketamine and dehy-
dronorketamine to serum proteins namely to albumin

and a1-acid glycoprotein. The clinical relevance for
patients with serum protein levels severely altered also
needs to be further explored. Finally, particularly inter-
esting will be the metabolomics elucidation of the
mechanisms by which ketamine rapidly treats depres-
sive symptoms. To be accomplished, the identification
of unknown metabolites may provide novel insights
into the biological pathways involved.
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